account of the operations of
THE GREAT TRIGONOMETRICAL SURVEY OF INDIAVOIUMME IVA.
GENERAL DESCRIPTIONOF THE
PRINCIPAL TRIANGULATIONor
THE JODHP0RE AND THE EASTERN SIND MERIDIONAL SERIESor
THE NORTH-WEST QUADRILATERAL,
With the details of their redoction and the final results.
prefparid in the office of the trigonometrical branch, survey of india, COLONEL C. T. HAIG, r. e., Offg. DEPUTY SURVEYOR GENERAL, IN CHARGE.

PUBLISHED UNDER THE ORDERS OF
COLONEL G. C. DePRÉE, s. c., SURVEYOR GENERAL OF INDIA.

printed at the office of the trigonometrical branch, survey of india.
B. V. HUGEES.
1886.

Ogitrace by Google

CONTENTS.

Prepact vii
Skeleton Chart of the Principal Chains of Triangles West of the Meridian of $9 \mathbf{R}^{\circ}$ and the Groups into which they have been arranged for Reduction \{Facing eie Groups into which they have been arkanged for Reduction \{page viii
Errata et Addenda xvi
Vocabulary of certain Native Words with their Meanings xvii
PART I.
INTRODUCTORY ACCOUNT OF THE FINAL REDUCTIONS OF THE JODHPORE AND THE EASTERN SIND MERIDIONAL series of the north-west quadrilateral.

Chapter I. Account of the Triangulation of the Jodhpore and the Eastern Sind Meridional Series.

1. The Triangulation included in this Volume
2. The Observers and the Instruments employed on the Triangulation ib.
3. The Dependency of the Triangulation on the North-West Quadrilateral for the Fixed
Data ..
..
...
4. The Construction of the Principal Stations ib.

Chapter II. The Measurement of the Angles and the General Principles followed in the Reduction of the Triangulation.

1. The Measurement of the Horizontal Angles and their Record [7]
2. The Deduction of an Angle from its several Measures and its Weight [8]
3. Preliminary Reductions of the Groups of Angles contained in Independent Trigonometrical Figures ..

Chapter II-(Continued).

| 4. The Calculation of the Sides of the Triangles | .. | .. | .. | .. | [13] |
| ---: | :--- | :--- | :--- | :--- | :--- | ---: |
| 5. The Geodetic Elements of Stations and Sides | .. | .. | .. | .. | $\boldsymbol{i b}$. |

6. The Reduction of the Vertical Angles for the determination of Differences of Height and the Coefficients of Refraction
7. The Final Values of Height above Mean Sea Level [18]
8. The Determinations of Azimuth by Astronomical Observations ib.
9. The Final Reduction of the Triangulation. Preliminary Sketch [19]
10. The Final Reduction of the Triangulation. Formation of the Circuit Equations[21]
I. Linear Equations $i b$.
II. Geodetic Equations [22]
11. The Final Reduction of the Triangulation. The Solution of the Equations between the Indeterminate Factors [24]
Chapter III. The Details of the Final Reductions.
12. Preliminary Remarks [26]
13. The Figural Reductions antecedent to the Final Simultaneous Reduction of each Series $i b$.
14. The Description of the Reduction Charts [27]
15. General Outline of the Formation of the Linear and Geodetic Equations of Condition [28]
16. The Formation of the Coefficients of the Unknown Quantities [29]
17. The Synoptical Exhibition of the several Equations of Condition [30]
18. The Numerical Values of the Fixed Data on which the Separate Reductions of the Jodhpore and Eastern Sind Meridional Series are based. [31]
19. The Sides and Angles of the Circuit Triangles [32]
20. Preliminary Latitudes, Longitudes and Azimuths of the Stations on the Line of the Traverse [37]
21. 'The Numerical Values of the Absolute Terms in the Primary Equations of Condition [40]
22. The Numerical Values of the $\mu \mathrm{s}$ and $\phi \mathrm{s}$ [41]
23. The Numerical Values of the Coefficients b and \mathfrak{c} of the Unknown Quantities y and z [43]
24. The Coefficients of the Indeterminate Factors in the Values of the Unknown Quantities [48]

Chapter III-(Continued).

14. The Equations between the Indeterminate Factors, and their Solution [53]
15. The Angular Errors x, y and z [56]
16. The Arbitrary Corrections [57]
17. The Final Results of the Simultaneous Reduction of each Series [58]
Chapter IV. The Non-circuit Triangles and their Final Figural Adjustments [59]

PART II.
the details of the observations and the final results of the jodhpore and the mastern sind meridional series of the north-west quadrilateral.

THE JODHPORE MERIDIONAL SERIES.

THE EASTERN SIND MERIDIONAL SERIES.
Alphabetical List of Principal Stations 119
Numerical do. do. 120

THE EASTERN SIND MERIDIONAL, SERIES-(Continued).

Plates of Figures

Reduction Chart of the Jodepore Meridional Series.
Ditto the Eastern Sind Ditto.

尸尺円円AC円。

The present volume forms one of that series of publications，known as the＂Account of the Operations of the Great Trigonometrical Survey of India，＂of which the design is，as has already been stated in the second volume of the series，＂to give full reports－historical and descriptive－of the nature and the general ＂procedure of the operations；to describe the instruments which were employed in executing the several ＂linear and angular measurements；to furnish complete details of the actual facts of observation and the ＂methods of reduction by which these facts have been combined together and duly harmonized；and lastly， ＂to give the results which have been determined after this final reduction of the operations．＂

The first volume of the series accordingly gives the details of the measurements of the several base－ lines on which the triangulation of India rests，together with a discussion of the instruments on which the measurements depend，and the theoretical probable errors of the results．Volume II describes the principal triangulation，the theodolites with which it was executed，the procedure adopted in observing the angles，and all necessary details of the operations carried on in the field ；it further describes the processes by which prelimi－ nary results were obtained from the observations，to satisfy immediate requirements，pending the completion of the several chains of triangles；also the method of final reduction which was adopted after the chains were completed，and by which the errors at the junctions of the chains with each other and with the base－lines are eliminated with the closest possible approach to mathematical rigour．It states briefly at page 28 ，and ex－ plains more fully at pages 162 to 170 ，the reasons why the method of final reduction could only be applied to limited portions of the triangulation at a time，thus necessitating the division of the triangulation into five great sections，to be reduced in succession，as indicated at page 32．It shows how the whole of the triangula－ tion contained in the first of these sections－known as the North－West Quadrilateral－was reduced simul－ taneously；and，together with Volumes III and IV，it gives all the facts of angular observation appertaining to that Quadrilateral，full details of the preliminary and the final reductions of the angles and the several trigo－ nometrical figures，and finally，the resulting values of the lengths and azimuths of the sides of the triangles and the latitudes and longitudes of the stations．

Volume V deals with a subject of its own，the Indian Pendulum Operations，which is quite uncon－ nected with the triangulation and therefore need not be here noticed．

Volume VI treats almost entirely of the triangulation appertaining to the South－East Quadrilateral， the second of the five great sections into which the principal triangulation of India has been divided for final reduction．It commences with a brief recapitulation of the formulæ employed in the calculations，in order
to obviate the necessity for frequent reference to Volume II, and then gives first, a complete exposition of the Simultaneous Reduction of the six chains or series of triangles forming the South-East Quadrilateral; and afterwards, for each series, an introductory account of the operations, a descriptive list of the statious, an abstract of the observations of each angle, full details of the preliminary reductions of the angles-made to satisfy the geometrical conditions of the trigonometrical figures-the final values of the angles after having been corrected to satisfy the conditions of the Quadrilateral, and finally, the resulting values of the lengths and azimuths of the sides, and of the latitudes and longitudes of the stations of the triangulation.

In like manner Volumes VII and VIII treat of the triangulation appertaining to the North-East Quadrilateral, the third of the five great sections before alluded to ; and contain full details of the observations, reductions and final results of the sixteen chains or series of triangles embraced within the limits of that Quadrilateral.

Volume IX is devoted to the Electro-Telegraphic Longitude Operations which have been carried out by the Survey of India Department; but as no attempt has yet been made in this Department, to solve the equations of condition presented by the several arcs of longitude already measured, no combination of these equations with those of the triangulation has been possible and therefore the subject of Volume IX like that of Volume V may at present be considered as distinct from that of the other volumes.

The present volume is the tenth of the series in order of publication but is numbered IV A as it forms a supplement to Volumes II, III and IV, in that it treats of the reduction of two of the chains of the NorthWest Quadrilateral, the Jodhpore and the Eastern Sind Meridional Series, which did not exist at the time the North-West Quadrilateral was finally reduced, and of which the execution had been postponed indefinitely, on account of their falling in a tract of country mostly desert and not so immediately requiring triangulation as other portions of India.

In order that the reader may obtain a clear conception of the triangulation of India as a whole, and the position of the two series which form the subject of this volume relatively to the other series and especially as to their position in the North-West Quadrilateral, a Skeleton Chart of the Principal Triangulation of India is given opposite this page. In this chart each line represents a chain of triangles. The chain which approximates to the meridian of 78° and extends from the extreme south of India to latitude 30°, where it terminates on the Dehra Dún Base-line at the foot of the Himalaya Mountaius, forms the back-bone of the triangulation, and is well known as the Great Meridional Arc of India, which was commenced by Colonel Lambton in Southern India, and carried upwards to the Himalayas by Colonel Everest; Colonel Lambtou's portion has been revised of late years, with all the refinement which the latest and best instruments and the most approved procedure rendered possible. Of the remaining chains, some were accomplished in the earlier days of the Survey, when the instrumental equipment was generally very inferior to what it became subsequently, and when the procedure, as regards portions of the operations-more particularly the construction of towers for the principal stations in the plains-was still imperfect; other chains were executed in more modern times, with the best instruments and with the utmost possible refinement in every particular. The chains last executed are generally on a par with the Great Arc itself, while some are superior to it in accuracy. It so happened that lines of demarcation could be drawn broadly between the several chains of triangles, in such a manner as to divide the superior and the inferior chains into separate groups, each group containing a large number of interdependent chains; this circumstance was therefore availed of in designing

Photomincographed at the Office of the Trigonomedrical Branch, Swroy of India, Delira Dien, April 1886.

Ogitiex by Google
the great sections into which the triangulation had to be divided for final reduction. The bounding chains of these sections are represented in the Skeleton Chart by thick black lines, while the intermediate and all other chains are shown by thin lines. It will be seen that there are five sections in all, of which four are quadrilateral figures, while the fifth-which lies to the south of the others-is a trigon. The four quadrilaterals meet at the point Kaliánpur,-approximately in latitude 24° and longitude 78°-which was employed by Colonel Everest as the central or reference station of the triangulation; they are therefore distinguished by the corresponding cardinal points-North-East, South-East, South-West, and North-West-with reference to the central station.

It has already been shown, in Section 7 of Chapter I of Vol. II, that the most accurate of all the chains of triangles are those which enter the North-West and the South-East Quadrilaterals; the least accurate enter the North-East and the South-West Quadrilaterals. When therefore the method for the general treatment of the principal triangulation had been elaborated and was ready to be put into practice, the Simultaneous Reductions were taken in hand in the following order, first the North-West Quadrilateral, second the South-East, third the North-East Quadrilateral, and fourth the two remaining chains of the North-West Quadrilateral-the subject of the present volume,-fifth the Southern Trigon (now in the press), and sixth the South-West Quadrilateral, of which the reduction is in course of completion.

Any description of the triangulation of this Survey and the operations connected therewith, from the observations of the angles to the deduction of the most probable and therefore final results, is naturally subdivisible under six heads; first, the general principles in accordance with which the operations have been conducted; second, the practical execution of the measurement of the angles; third, the general principles followed in the combination and adjustment of the individual angular measures, with a view to satisfying all the geometrical conditions involved, as well as the primary linear elements which are fixed by the baselines; fourth, the preliminary geometrical reduction of the individual triangles, polygons and net-works of which the chains are composed; fifth, the simultaneous reduction of each of the groups of chains, or sections, into which the triangulation has been divided for convenience; and sixth, the presentation of the most probable values of the maguitudes of the angles, of the lengths and azimuths of the sides of the triangles, and of the latitudes and longitudes of the stations of the triangulation, which are the final results of the several reductions. The first and third of these branches of the subject are of general application, and they form the principal matter of Volume II; which was intended to be introductory to all subsequent volumes relating to the triangulation. The second, fourth and sixth branches have special reference to individual series or chains of triangles. The fifth has reference to each of the sections or aggregations of chains grouped together for simultaneous reduction. In the present volume it has not been necessary to touch otherwise than lightly on the first and third divisions of the subject; but the remaining divisions, including the simultaneous reduction of each series, are dwelt on at length, and full numerical details are given for each of the chains of triangles.

For their linear and geodetic elements the Jodhpore and the Eastern Sind Meridional Series are dependent on the final elements of the Karachi (Kurrachee) Longitudinal Series and the Sutlej and the Great Indus Series.

The present volume is divided into two parts. Part I is devoted to the final reduction of each series and Part II to the details of each series.

Part I.

Chapter I gives a general account of each chain of triangles, indicates their dependency on the North-West Quadrilateral for their fixed data and describes the structure of the principal stations.

Chapter II describes the procedure followed in the measurement of the horizontal angles, and the methods adopted in determining their weights; it quotes the mathematical formulæ employed in the reduction of the triangulation from Volume II, where they are demonstrated; it indicates the fiual adjustment of the trigonometrical determinations of height by connection with the main lines of spirit levels; and lastly, it indicates the general principles of the final reduction of each series.

Chapter III gives full details of the Simultaneous or Final Reduction of each Series separately as follows:-

First. Preliminary remarks.
Second. A synopsis of the independent partial reductions antecedent to the Final Reduction.
Third. A description of the Reduction Charts which are given at the end of the volume, and of which a careful study is essential to a clear understanding of the several processes of calculation.

Fourth. A general out-line, of the formation of the Linear and Geodetic Equations of Condition, four in number for each series, which had to be satisfied, in order to produce the requisite consistency in the triangulation per se, and between it and the fixed elements on which it depended.

Fifth. The method of constructing the Coefficients of the Unknown Quantities in the Equations of Condition, showing the general notation which was adopted for expressing the values of these coefficients, and specifying every exception to the general form.

Sixth. A synoptical exhibition of the several Equations of Condition, showing at a glance the triangles of which the angular errors enter as unknown quantities into each of the four Equations of Condition.

Seventh. The Numerical Valnes of the Fixed Data on which each series is based.
Eighth. The Values of the Sides and Angles of the Circuit Triangles, as they stood before the Final Reduction.

Ninth. The Latitudes, Longitudes and Azimuths of the Stations on the right-hand flanks of the Circuit Triangles, as they stood before the Final Reduction.

Tenth. The Numerical Values of the Absolute Terms in the several Linear and Geodetic Equations of Condition.

Eleventh. The Numerical Values of the $\mu \mathrm{s}$ and $\phi \mathrm{s}$, the geodetic summations-exhibited in the table at pages [42] and [43]-which are required in forming the Coefficients of the Unknown Quantities (the Angular Errors) in the Geodetic Equations of Condition.

Twelfth. The Numerical Values of the Coefficients, b and c , of the Unknown Quantities in the several Linear and Geodetic Equations of Condition.

Thirteenth. The Coefficients, $\mathbf{x B}$ and \mathbb{C}, of the Indeterminate Factors, in the equations in which the values of the Angular Errors are expressed in terms of those factors.

Fourteenth. The Equations between the Indeterminate Factors, showing every Significant Coefficient and Absolute Term as it stood, first on the formation of the equations, and secondly after the successive
eliminations of individual factors in the process of solution; finally, the numerical values of the Factors are given.

Fifteenth. The Values of the Errors, x, y and z, of the angles of each triangle, resulting from each Final Reduction and the subsequent apportionments of residual error.

Sixteenth. The Dispersion of the Residual Errors which were met with after the Final Reduction.
Seventeenth. A Statement of the Final Resuits of each reduction, shewing the numerical accuracy ultimately attained in the calculations.

Chapter IV gives the Reduction of the Non-Circuit Triangles of the two series,-viz., the triangles excluded from each Final Reduction-which was needed for the final adjustments of their angles, to satisfy the geometrical conditions of the polygonal figures to which they appertain.

Part II.
This part gives full details of the principal work of the two chains or series of triangles-from the observations of the principal angles to the determination of the final' results, angular, linear and geodetic-series by series. The Secondary and Tertiary Triangulations which were executed pari passu with the principal triangulation for geographical and topographical purposes, are as usual relegated to the corresponding Synoptical Volume; the volumes of the Accounts of the Operations \&c. being exclusively devoted to the details of the principal triangulation, excépting in so far that what has been done in the way of secondary and minor triangulation in each series, is described in the Introduction to the series.

It is now desirable to give first a summary, and afterwards a general explanation, of the information and numerical data which the present volume furnishes for each chain of triangles. Summarised they are as follows:-

1. Introduction.
2. Alphabetically arranged List of Stations.
3. Numerically arranged List of Stations.
4. The Description of Stations.
5. The Observed Angles, with the Weights of the Concluded Results.
6. The Reduction of the Polygonal Figures.
7. The Final Values of the Sides and Angles of the Triangles.
8. The computed Latitudes and Longitudes of the Stations and the Azimuths at each Station.
9. The trigonometrically determined Differences of Height of the Stations and the Absolute Height of each Station above the Mean Sea Level.
10. Astronomical Observations of the Azimuth, and their Reduction.

Plate. 'The Diagrams of the several Polygonal Figures contained in the series.

1. The Introduction gives a historical sketch of the progress of the whole of the operations in the field,-both principal and secondary-from year to year, mentions the Officers by whom they were conducted, and the theodolites with which the principal angles were measured, and indicates the work done by each of the Assistants.

2 and 3. It has been found convenient to indicate the Principal Stations by a system of numerals, as well as by their names. Consequently at the commencement of the details of each series two lists are given, in the first of which the stations are arranged alphabetically with the numbers opposite the names, in the second numerically with the names opposite the numbers. Roman numerals have been adopted throughout for the nomenclature of the stations, and they are progressive in order from south to north in the two chains, the first number for each series being unity.
4. The Descriptions of the Stations are based generally on those made originally by the observers and entered on the spot into the angle books, subject to such modifications as are occasionally required to take cognizance of any alterations which have been subsequently effected. They give the names of the district and the sub-division in which the station was situated at the time when its description was written. For information as to the general form and structure of the stations, reference should be made to Section 4 of Chapter I.
5. In the pages which are allotted to the observed horizontal angles, the name of the observer, the distinguishing number and the name of the maker of the theodolite, and the month and year in which the observations were taken, are specified for each station.

In the details of the measures of the angles are given the reference number of the station on which the telescope was set at the commencement of each round of measures, and the reading to which the azimuthal circle was set, after each 'change of zero'; thus the graduations of the circle to which the readings were taken, at every measure of any angle, may be' readily ascertained for an investigation of the law of the graduation error, such as will be found for Troughton and Simms' 18 -inch Theodolite No. 1, in Appendix No. 4 of Volume II.

In the right-hand column of the record are given M, the mean of the several groups of measures on each setting, w and $\frac{1}{w}$, the weight and its reciprocal of the angle as deduced from differences between individual measures and between individual groups, and C, the concluded value of the angle as thus derived from the observations only; for fuller explanations reference must be made to Section 4, Chapter VII, Volume II, to the example at page 342 of the aame volume, and to Section 2 of Chapter II of this volume.

The abstracts of angles are followed by lists of the Sums of Squares of Apparent Errors of Single Observations and Single Zeros, which furnish data for the investigation of the average e.m.s. (theoretical error of mean square) of observation in a single measure of an angle, and the average e.m.s. of graduation plus observation in the mean of the measures on a single zero. Such determinations are made in the first instance for groups of angles measured by the same observer, with the same instrument, and under similar conditions, and then for various combinations of these groups. With data thus obtained, from series of triangles, for seven of the large theodolites which have been chiefly employed in the measurement of the principal angles, the investigation of the influences of Mixed Errors of Observation and Graduation was made which forms the subject of Section 3, Chapter VII, Volume II.
6. The Reductions of the several Polygonal Figures which are contained in each series show how the angles of which each figure is composed were made consistent and harmonious inter se, so as to satisfy all geometrical conditions, with due regard to the respective weights of the angles. Full explanation of the principles and the procedure of these reductions, will be found in Chapter VIII of Volume II, and the for-
mulæ are given in Section 3 of Chapter II of the present volume. The figures are numbered consecutively in each series. Diagrams of the figures are given in the Plates appertaining to each series. The small numerals within each of the obeerved angles correspond to the subscripts to the general symbol, x, which is employed to indicate the error of any angle, the numerical subscript denoting the angle. Thus on referring to the diagram of Figure No. 2 and to the reduction of that figure on page 71, x_{3} is the error of the angle 3, at Station II between Stations I and III. The tabular statements of the reductions give, firstly the observed angles and the reciprocals of their weights; secondly the equations by the solution of which the geometrical conditions of the figure are satisfied,-see equations on page [12]; thirdly the equations between the 'indeterminate factors'; fourthly the values of the indeterminate factors; fifthly the values of the angular errors; and sixthly the summation of the products of the square of each error and its weight-the value of which summation is made a minimum, in order that the values to be obtained for the several angular errors may be the most probable of each of the many values by which the geometrical conditions of the figure may be satisfied. In the group of equations between the indeterminate factors, the coefficient of the p th factor in the q th line is the same as that of the q th factor in the p th line; thus if a diagonal line be drawn from the coefficient of the first term in the first line to that of the last term in the last line, the coefficients which are symmetrically disposed on opposite sides of this line will be identical with each other. Consequently only the coefficients on and above the diagonal have been given; the absence of those below is indicated by an asterisk.
8. The Tabular statement of the Triangles. The first two columns of this table give the number adopted for each triangle to designate its place in the series; this number is entered in the first column if the triangle appertains to the chains of single triangles forming the two circuits whose closing errors are eliminated by the Final Reduction; it is entered in the second column for the non-circuit triangles exterior to the chains. The triangles which enter the circuits are shown in the Reduction Charts (at the end of this volume) in firm lines, with their distinguishing numbers written in the centre; those which do not enter the circuits are shown in dotted lines, and their numbers are indicated by numerals of a smaller size than the former, commencing with 49 for the Jodhpore and 40 for the Eastern Sind Meridional Series, 48 and 39 being the numbers of the last of the circuit triangles in the respective series. The columns in the table which contain the corrections to the observed angles give, first the correction for the error of the angle, with reference merely to the triangle or polygonal figure to which it belongs, as obtained from the primary reductions; and secondly the further correction which has to be applied either for the apportionment of circuit error, should the angle appertain to one of the circuits, or for the restoration of consistency in the polygonal figure after the application of the circuit errors, should it appertain to a non-circuit triangle Finally, the corrected plane angles and the lengths of the sides are given, as computed by the rules of Plane Trigonometry, in accordance with Legendre's theorem; see Section 4 of Chapter II.
9. The Table of the Latitudes and Longitudes of the Stations and the Azimuths and Lengths of the Sides. The principles on which the calculations of the Geodetic Co-ordinates and Azimuths have been made and the method of computation, are fully explained in Sections 2 and 4 of Chapter IX of Volume II, and the formulæ are quoted in Section 5 of Chapter II of the present volume. All Azimuths are referred to the south point and are measured right round the horizon by the west.
10. The Determinations of the Differences of Height of the several stations have been obtained from the measurements of the vertical angles, as explained in Section 6 of Chapter II of this volume. It has not
been considered necessary to give the individual measures of these angles, as has been done for the horizontal angles, because this portion of the operations is less exact and important. But the mean of the whole of the measures of each vertical angle, the calculated mean value of the amount of refraction in each angle and of the coefficient of refraction, the hour of observation, the heights of the signal and of the observer's telescope above the summits of the stations, the differences of height of the said summits and the absolute heights above the mean-sea level, are given. The errors generated trigonometrically between the initial and terminal obligatory stations of each series, have been duly dispersed by the method of simple proportion over the intermediate trigonometrical values, as explained in Section 7 of Chapter II of the present volume.

It may be here stated that all trigonometrically determined heights invariably refer to the upper surfaces of the central masonry pillars at the principal stations. Spirit-leveled values on the other hand sometimes refer to the upper surface and sometimes to the basement of the pillar, whichever the leveling-staff was set upon; a description of the exact point of reference then becomes necessary.
11. Finally come the details and reductions of the Astronomical Observations which bave been taken, at certain stations in each series, for the determination of the Azimuth of one of the surrounding stations, or of a referring mark, the angle between which and a contiguous station has been measured. The methods of observing and of reducing the observations are fully described in Chapter XII of Volume II. For reasons which are explained in the first section of that chapter, the results have not been used in the general reduction of the triangulation, further than to give a more exact mean value of the fundamental astronomical azimuth (hat Kalianpur) than the one obtained by the observations on the spot. At the end of the details of the determination of' each azimuth, the difference between the observed value and the value obtained by calculation through the triangulation from the fundamental azimuth is given. These differences may be of much value in future investigatious of the Figure of the Earth and of the influence of local attraction.

Full details regarding the Unit of the Linear Measures, the Base-lines, the Initial Elements of Latidue, Longitude and Azimuth, and the Elements of the Figure of the Earth which have been adopted in the calculations, will be met with in Volumes I and II. In this place it is only necessary to state that:-
(1). The Unit of Length is the Indian Standard 10 -feet Bar A, the relations between which and the principal European Standards of Length are given at page 28 of Volume I.
(2). The adopted Elements of the Figure of the Earth—assumed to be spheroidal-are given at page [15] of this volume.
(3). The Longitudes depend on an astronomically determined value of the Longitude of the Madras Observatory, East of the Royal Observatory at Greenwich, which was deduced about the year 1815. The Longitude of the Madras Observatory has however been recently re-determined, by the Electro-Telegraphic method, by observations which were made at Greenwich, Mokattam (in Egypt), Suez, Aden, Bombay and at certain stations of the triangulation in India, and with the following preliminary results :-

Longitude of Mokattam	$\begin{array}{ccc} \mathrm{h} & \mathrm{~m} & \mathrm{~g} \\ 2 & 5 & 6 \cdot 32 \end{array}$	reenwich	Supplied by SirG. Airy, from observations taken in connection with Transit of Venus in 1874.
Increase for Suez	- 5 6.917	\}	
" Aden	- $4942 \cdot 656$	\}	By the operations of this Survey; see the
" , Bombay	$15^{51} 19.983$		Annual Report for 1876-77.
Madras	- $2943 \cdot 540$)	
Longitude of Madras	52059.416	„	

This value of the Longitude of the Madras Observatory is equivalent to $80^{\circ} 14^{\prime} 51^{\prime \prime}$; and as the originally adopted value, on which the longitudes of the whole of the stations of this Survey are based, is $80^{\circ} 17^{\prime} 21^{\prime \prime}$ see page 135 of Volume II-the following precept may be accepted with considerable confidence :-

All the values of longitude in this volume require a constant correction, probably of - $\mathbf{2}^{\prime} \mathbf{3 0}{ }^{\prime \prime}$.

The orthography of Indian names in the present volume is in accordance with the provincial lists of spellings constructed under the immediate orders of the Government of India. The newly authorised spellings were adopted for all names and other words contained in these lists; but for words for which there was no specific authority, the spellings have been framed in accordance with the methods followed in the preparation of the published lists, reference being made in the present instance more particularly to the Gazetted Lists for Rajputana and for Bombay. As a general rule the pronunciations of the vowels are as follows:-a has a variable sound as in woman, rural, paltry ; $a^{\text {as }}$ in tartan ; i as in bit ; i as in ravine; u as in bull; u as in rural ; o as in note; e as a in say; $a u$ as ou in cloud; $a i$ as i in ride. Final vowels and those in well-known terminals are unaccented. When the popular spelling of a name has been accepted by Government, its correct transliteration is given in parenthesis where the name occurs for the first time.

It now only remains for me to state that the Introductory Chapters forming Part I of this volume are the work of Mr. W. H. Cole, m.A., Deputy Superintendent. The Introductions to both series were written by Major M. W. Rogers, r.e., Deputy Superintendent. The reduction of the Jodhpore Meridional Series was effected chiefly with the aid of Baboos Gunga Pershad, Gopal Chandra Sarcar and Kedar Nath, and that of the Eastern Sind with the aid of Baboos Gunga Pershad and Mizaji Lal. The volume like its predecessors has been printed at the Trigonometrical Branch Office at Dehra; Mr. Peychers and Baboo Gunga Pershad have rendered valuable service in the examination of the press proofs generally, and Mr. Peychers more particularly in regard to the numerical and mathematical details which require the utmost care in supervision through the press, and in this respect from his natural aptitude and experience his assistance has been most valuable.

[^0]
ERRATA Et ADDENDA.

THE JODHPORE MERIDIONAL SERIES.

VOCABULARY OF CERTAIN NATIVE WORDS MADE USE OF IN THIS VOLUME.

Obthograpiy EMPLOYBD.			Corrbct Orthograpiy.			Mranimg.
Amír.	...	\ldots	Amír	...		Title of the rulers of Sind.
Bajri	Bájri	...		A kind of grain, millet.
Bhati Rajput	Bhatti Rajput	...		A clan of Rájpúts, a warrior caste of India.
Chunam	\ldots	...	Chúna	Lime employed in preparing mortar.
Darbár	Darbár	Government.
Draen	\ldots	-...	Dráin	...		Tracts of shifting sand.
Jágír	\ldots	...	Jágír	Land given by Government as a reward for services.
Jain	\ldots	...	Jain	A sect of Hindus.
Játs	\ldots	...	Játs	...	\ldots	Ditto.
Kacha	\ldots	...	Kachchá	Built of clay only; or of stone or unburnt brick and clay.
Mahárája	\ldots	...	Mahárája	\ldots	...	A king or ruler.
Maharáwal	\ldots	...	Maháráwal	Ditto.
Mot	Moth	A kind of grain, pulse.
Pargana	Pargana	A sub-division of a district.
Phog	Phog	\ldots	...	A shrub of the Calligonum species.
Rao	\ldots	...	Ráo	A chief.
Sardár	Sardár	A chief or headman.
Tahsíl	...	\ldots	Tahsíl	\ldots	...	Portion of a district subject to a Revenue Collector.
Taluk Taluka $\}$	\ldots	\ldots	$\left.\begin{array}{l} \text { Taälluk } \\ \text { Taälluka } \end{array}\right\}$	A sub-division of a district.
Thakur	\ldots	\ldots	Thákur	Title of a Rajpút chief.
Thána	Tháná	A small police sub-division.
Vishnu	Vishnu	...		One of the three principal Hindu deities.

ogntueow, Google
PART I, INTRODUCTORY.
THE FINAL REDUCTIONS
OF THE
JODHPORE MERIDIONAL SERIESAND OF THE
EASTERN SIND MERIDIONAL SERIES
OF THE
NORTH-WEST QUADRILATERAL.
ogitiecoby, Google

CHAPTER I.

ACCOUNT OF THE TRIANGULATION OF THE JODHPORE AND EASTERN SIND MERIDIONAL SERIES.

1.

The Triangulation included in this Volume.
The Jodhpore and Eastern Sind Meridional Series form two of the internal chains of that section of the triangulation of India, designated the North-West Quadrilateral, which embraces all the principal triangulation between the parallels of 24° and 34° and the meridians of 67° and 78°.

These two series had not been commenced at the time, 1868, the Simultaneous Reduction of the North-West Quadrilateral was undertaken; and although they formed part of the scheme for the triangulation of India, it was considered undesirable to await their execution, for reasons which are fully stated in Section 7 of Chapter I of Vol. II of the Account of the Operations of the Great Trigonometrical Survey of India. It thus happens that while they are on a par with the most refined work of the Survey, they have had to be separately reduced to accord with the rest of the triangulation of the North-West Quadrilateral.

2.

The Observers and the Instruments employed on the Triangulation.

The Jodhpore Series, meridian 721 ${ }^{\circ}$

This Series emanates from the side Súnda-Bonik of the Karáchi Longitudinal Series and closes on the side Kaimsir-Kanda of the Sutlej Series. It was commenced by Lieutenant (now Major) M. W. Rogers, R.E., in 1872-73, who advanced the principal chain a
distance of 95 miles, fixing 12 stations forming a quadrilateral and two single polygons. Lieutenant Rogers having proceeded on furlough, the charge of the party was transferred to Lieutenant (now Major) J. Hill, R.E., who carried the chain of principal triangles a further distance of 90 miles by a series of consecutive polygonal figures. Captain Rogers returned from furlough and relieved Captain Hill of the charge of the party on the 20th November 1874, and during that and the following field season he succeeded in completing the Series. The chain is double throughout. It comprises 3 quadrilaterals, 8 single polygons, and 2 double polygons, and is 310 miles long. The instrument employed was Barrow's 24-inch Theodolite No. 2, of which a description will be found in Appendix No. 2 of Vol. II.

The Eastern Sind Series, meridian 70°.
Operations were commenced on this Series during the field season of 1875-76. While Captain Rogers was bringing the Jodhpore Meridional Series to a conclusion, he detached one of his assistants to commence the selection of stations on the meridian of 70°, starting from the Karáchi Longitudinal Series. The side Rojhra-Sandohar was selected as a base; and the neighbouring stations of Fulrár and Chánga having been destroyed, new ones were built on their sites and employed in constructing a hexagon about Sandohar. When he himself had brought the Jodhpore Series to a termination on the 3rd January 1876, he marched to the proposed northern terminus of the Eastern Sind Meridional Series to commence preliminary operations from that end. In the neighbourhood where the Series was to have closed to the north, several stations of the Great Indus Series had been washed away by the river, and Captain Rogers was obliged to adopt the side Dáowála-Máchka west of the meridian of 70° and to work on to this meridian. Only preliminary operations were carried on this season, the chain being laid out for 110 miles at its southern end and for 24 miles at the northern end. In the field season of 1876-77 the final observations were commenced and the Series was carried forward a distance of 125 miles from its southern terminus. During the next season the party was employed in Baluchistan; and the season following, war having broken out between India and Afghanistan, Captain Rogers was attached to the Force operating in the latter country from the south. Towards the end of 1879 Captain Rogers returned from Afghanistan but not in time to effect a full season's work on the Eastern Sind Meridional Series. He however advanced it 64 miles, and there then remained only so much as could be easily completed during one field season.

In April, 1880, Captain Rogers went to England on furlough, when the party proceeded to Mussooree, and during the recess season was placed temporarily under Mr. J. B. N. Hennessey, in addition to his other duties. At the end of the recess, having equipped the party for the field, Mr. Hennessey transferred it to Colonel Branfill, who met it in Sind on the 6th November, 1880. The remainder of the chain of principal triangles was then completed in about two and a half months. The Serics is double throughout, comprising 3 quadrilaterals, 7 single polygons and 2 double polygons. The instrument employed by Captain Rogers was Barrow's 24 -inch Theodolite No. 2, and that by Colonel Branfill was Troughton and Simms' 24 -inch Theodolite No. 1.

3.

The Dependency of the Triangulation on the North-West Quadrilateral for the fixed data.
Both the Jodhpore and Eastern Sind Meridional Series emanate from the Karachi Longitudinal Series; the former closing on the Sutlej Series, and the latter on the Great Indus. All these three appertain to the North-West Quadrilateral which, as already stated, had been finally reduced before the two chains were executed. The only connection between the chains, other than that through triangulation which stood finally reduced, is by a secondary series, and therefore their reduction consists of two independent operations. The fixed data for each were the length and position of the side of origin and the same elements of the closing side.

4.

The Construction of the Principal Stations.

The Jodhpore Meridional Series.
The principal stations of this Series are nearly all situated on hills; they consist of circular masonry pillars from 3 to 4 feet in diameter, for the large theodolite to rest on, are generally surrounded by platforms of stones and earth, or sand, of sufficient size to support the observatory tent. Several of the stations fell on sand hills which did not afford a satisfactory foundation for the pillars; piles were then driven into the sand and the foundation laid on them, the pillars being built so that their surfaces were nearly flush with the hill top. Owing to their elevated positions the pillars rarely had to be raised to a height of more than 3 or 4 feet; they contain two or more marks the upper of which is generally flush with the surface. Over the upper mark a rectangular protecting pillar, bearing a sufficiently accurate mark for Topographical and Revenue Survey purposes-as shewn at page 74 of Vol. II of the Account of the Operations, \&c.-was erected after the completion of the observations, and the station was then further protected by a pile of stones and earth.

The Eastern Sind Meridional Series.

The great majority of the stations of this Series are situated on sand hills and their construction is as follows :-A solid, circular pillar of masonry for the theodolite to stand on, isolated by means of an annular wall, was built up from a depth of 3 feet to the level of the hill top; in this pillar were placed two or more mark-stones vertically over one another, the upper one being in the surface of the pillar. The remaining stations are tower stations: they consist of either a solid or perforated pillar surrounded by a solid tower of sun-dried bricks set in mud for the accommodation of the observatory tent. The solid pillars have marks at the top, at the bottom and intermediately, while the perforated pillars have a mark in
the floor and another below it in the foundation, access to the mark in the ground floor being obtained by a vaulted passage through the tower and pillar. The pillars themselves were constructed in rectangular blocks of masonry surmounting one another, each succeeding block being contracted so as to leave a plinth at its base; the uppermost block, for the theodolite to stand on, is circular, $3 \frac{1}{\frac{1}{2}}$ feet in diameter, and isolated from the tower. The upper mark-stones where the pillars were solid, were in all cases protected by rectangular pyramidal pillars erected over them after the completion of the observations, and bearing a sufficiently accurate mark for Topographical and Revenue Survey purposes.

CHAPTER II.

THE MEASUREMENT OF THE ANGLES AND THE GENERAL PRINCIPLES FOLLOWED IN THE REDUCTION OF THE TRIANGOLATION.

1.

The Measurement of the Horizontal Angles and their Record.
In Chapter IV of Vol. II full particulars have been given of the methods of observing both horizontal and the vertical angles which have been in practice since the year 1823. It will not be necessary therefore to do more here than briefly indicate the procedure, in order that the reader may be enabled to understand the details of the observations.

The method of observing horizontal angles was that introduced by Colonel Everest, and had for its object the giving of readings at equal intervals round the azimuthal circle, with a view to the cancellation of periodic errors of graduation. When the instrument was set up for use, and had been properly centred over the station mark and levelled, either one of the surrounding stations, or a referring mark specially set up for the purpose, was adopted as what is called the zero-station, or the station for which the readings of the instrument are obligatory. The telescope being directed to this station, the index was made to read $0^{\circ} 0^{\prime}$. The remaining stations were then observed to in succession, two or more rounds of observations being taken. When these were completed the telescope was turned over in altitude and brought round in azimuth to point to the zero-station: the index would then read $180^{\circ} 0^{\prime}$. With this zero-reading another set of observations, similar to the last, was taken. A single measure on each of the two zero-settings constitute a pair of collimated observations, the face of the vertical circle being to the left of the observer at one setting and to his right at the other. The instrument was next shifted in azimuth, so as to bring the index to another arbitrary reading while the telescope pointed to the zero-station, and observations were again taken on F. L., face left, and F. R., face right; and so on. These arbitrary shifts were through arcs of 10° for theodolites with 3 microscopes and $7^{\circ} 12^{\prime}$ for 5 -microscope theodolites. In 1860, in order to secure a greater change of position of the axis in its socket, and so avoid the
occurrence of certain constant errors which might be prejudicial in a long chain of triangles, Colonel Waugh decided that the arc between the microscopes should be added to each shift.

The system of zero-settings employed in the Jodhpore and Eastern Sind Meridional Series was as follows:-

$$
\frac{\circ^{\circ} \circ^{\prime}}{180^{\circ} \circ^{\prime}}, \frac{79^{\circ} 12^{\prime}}{259^{\circ} 12^{\prime}}, \frac{158^{\circ} 24^{\prime}}{33^{\circ} 24^{\circ}}, \frac{237^{\circ} 36^{\prime}}{57^{\circ} 36^{\prime}} \text { and } \frac{316^{\circ} 48^{\prime}}{136^{\circ} 48^{\prime}}
$$

The minimum number of rounds on each zero was three; but when differences shewed themselves in successive measures of an angle, greater than it was considered the instrument ought to give, the observations were repeated.

The several measures of each angle, with the name of the observer and instrument employed and the date of the observations, are given in Part II of this volume, commencing for the Jodhpore Series at page 14 and for the Eastern Sind Series at page 131. Against each single measure is a letter in italics, shewing whether the signal observed to was l, a lamp, or h, a heliotrope; sometimes a direct measurement of an angle was not obtained owing to the temporary invisibility of one of the signals, but the value of the angle was deduced from the measure of the double angle given by the omission of the signal in the round, and from a direct measure of the other angle ; in this case the measure is preceded by the letter d.

Below the individual measures are their means from which M the general mean is obtained. The several measures and zero means are then treated as described in the following Section, and give C the concluded angle, together with v, its relative weight to the other angles measured under similar circumstances, and $\frac{1}{w}$, the reciprocal.

2.

The Deduction of an Angle from its several Measures and its Weight.
It has been stated that the number of measures of an angle on the same zero is not always constant, but is occasionally increased at the discretion of the observer. Of old the custom was to take the general mean of all the zero-means as the most probable value of the angle resulting from the several measures; but, for reasons which are explained in Chapter VII of Vol. II, this practice has been departed from, and the following procedure has been adopted in deducing the value and the weight of each angle in the present volume.

Let $d^{\prime}, d^{\prime \prime}, d^{\prime \prime \prime}, \& c$. , be the differences between the successive single measures and the mean of the measures on the zero to which they respectively belong, n_{1}, n_{2}, n_{3}, \&c., the number of measures on each zero, the sum of all which is $=N$, and $D_{1}, D_{2}, D_{3}, \& c$., the algebraical excess of the successive zero means, Z in number, over the arithmetical mean, M, of all the zeros.

Now put

$$
\begin{aligned}
& o^{2}=\frac{d^{2}+d^{\prime \prime 2}+d^{\prime \prime 3}}{N-1}+\ldots \\
& g^{2}=\frac{D_{1}{ }^{2}+D_{2}{ }^{2}+D_{3}^{2}+\ldots}{Z-1}
\end{aligned}
$$

and let

$$
\mathrm{W}_{1}=\frac{1}{g^{2}+\frac{o^{2}}{n_{1}}}, \quad \mathrm{~W}_{2}=\frac{1}{g^{2}+\frac{o^{2}}{n_{2}}}, \quad \mathrm{~W}_{3}=\frac{1}{g^{2}+\frac{o^{2}}{n_{3}}}, \ldots
$$

Then the resulting angle C, usually called the 'Concluded Angle',

$$
=M+\frac{w_{1} D_{1}+w_{2} D_{2}+w_{3} D_{3}+\ldots}{w_{1}+w_{2}+w_{3}+\ldots}
$$

Here 0^{*} and g are taken as preliminary approximations to the theoretical error of mean square of observation and graduation, o being the e.m.s. of observation and g that of graduation in a single measure of an angle; these quantities being known, the weights, w_{1}, w_{2}, \ldots, of the successive zero-means are ascertained, whereby these means are readily combined to give the value of the Concluded Angle, as in the last equation.

Let w be the weight of the angle thus deduced; then we may put,

$$
w=w_{1}+w_{2}+w_{3}+\ldots
$$

and if the preliminary values of o and g, as obtained from the observations, are absolutely true, then w will be the reciprocal of the square of the e.m.s. of the concluded angle.

It must be here observed that the values of e.m.s. thus obtained immediately from the observations, cannot be considered to be in the same terms when the instruments and circumstances under which the observations are taken are different. The values are only to be regarded as preliminary, applicable in any combination of angles measured with the same instrument and under similar circumstances, but requiring to be multiplied by factors of the nature of moduli before they can be employed in a combination of angles measured with different instruments and under different circumstances. This subject is fully treated of in Section 5 of Chapter VII of Volume II, to which reference can be made if desired. It need not be entered on here for the angles of the Jodhpore Meridional Series having been observed with the same instrument and under the same circumstances needed no modulus to equalize the weights; and although on the Eastern Sind Meridional Series two instruments

[^1]were employed, one of them was used for such a small portion of the triangulation as to afford too few data for determining a modulus, and being both 24 -inch theodolites of practically equal capabilities it was the less desirable to attempt to deduce any; hence the weights of this Series were also assumed to be in the same terms.

The record of the measures of the angles is followed by a list of the "Sums of Squares of Apparent Errors of Single Observations and of Apparent Errors of Single Zeros," furnishing the requisite data for the investigation-by which it is followed-of the average ' error of mean square,' of observation only, in a single measure, and that of graduation plus observation in the mean of the several measures on a single zero; these are determined for certain groups of the angles in which all the measures have been made by the same observer with the same instrument and under the same conditions, and also for groups formed by various other combinations of the conditions. With the data thus obtained for each of the series, investigations of the influence of "Mixed Errors of Observation and Graduation", similar to those which are given in Chapter VII of Vol. II, may be made.

3.

Preliminary Reductions of the Groups of Angles contained in independent Trigonometrical Figures.

So long as chains of triangles are treated as independent of one another, the angles naturally separate themselves into as many groups as there are single triangles, and combinations of triangles into single polygonal figures and net-works. Each triangle is subject to the geometrical condition that the three angles are equal to 180° plus the spherical excess, and each group of triangles to additional geometrical conditions, such as that the angles at any central point should together equal 360°, and that the value of any side as calculated through any portion of the figure back to itself should be unaltered.

The formula which has been employed for calculating the spherical excess of the triangles in this volume is

$$
\epsilon=a b \sin C \times \frac{\operatorname{cosec} \mathrm{r}^{\prime \prime}}{2 r^{2}}
$$

in which ϵ is the spherical excess in seconds, a, b and C two sides of the triangle and the included angle, and r the radius of curvature for the oblique section of which the azimuth is 45°, that is, $r=\frac{2 \rho \nu}{\rho+\nu}, \rho$ being the radius of curvature to the meridian and ν the normal on the axis minor for the mean latitude of the triangle.

[^2]The geometrical conditions connecting groups of angles divide themselves under three heads, triangular, central and side. The first is, as before stated, that the three angles of a triangle must equal 180° + the spherical excess, the second that all the angles meeting at a point and completely surrounding it must equal 360°, or when an angle is measured as a whole and also in parts, the whole should equal the parts, and the third springs from the condition that the value of any side carried through the triangulation back on itself should reproduce itself. The excesses or deficiencies which manifest themselves in these comparisons either become the right hand members of the equations amongst the angular errors furnished by the conditions, or they furnish the means of obtaining them.

The number of the equations for each independent trigonometrical figure is given by the formula

$$
N-2 S+4
$$

in which N is the number of angles and S the number of stations.
In order to express the equations, denote the observed angles by $X_{1}, X_{2}, X_{3}, \ldots$ the corresponding angular errors by $x_{1}, x_{2}, x_{3}, \ldots$ and the absolute terms of the equations by e with subscripts denoting the equations to which they appertain. The triangular and central equations will then take the form.

$$
x_{1}+x_{2}+\ldots=e
$$

The side equations may be expressed in either of the two following forms, it is immaterial which, so far as the accuracy of the results is concerned; but the second entails least labour in calculation, and for that reason is preferred :-

If $a_{1}=\cot X_{1}, a_{2}=\cot X_{2}, \& c$., the side equations will be represented by

$$
\begin{align*}
a_{1} x_{1}-a_{2} x_{2}+a_{3} x_{3}-a_{4} x_{4}+\ldots & =\frac{\operatorname{cosec} 1^{\prime \prime}}{M} \times \log \frac{\sin X_{1} \cdot \sin X_{3}}{\sin X_{2} \cdot \sin X_{4} \ldots} \tag{1}\\
& =e
\end{align*}
$$

M being the modulus of common logarithms; or if

$$
\begin{aligned}
& a_{1}=\text { tabular difference of } \log \cdot \sin X_{1} \text { for a change of } \mathrm{I}^{\prime \prime} \\
& a_{2}=\quad \# \quad, \quad \log \cdot \sin X_{2} \quad "
\end{aligned}
$$

and so on

$$
\begin{aligned}
a_{1} x_{1}-a_{2} x_{2}+a_{3} x_{3}-a_{4} x_{4}+\ldots & =\log \cdot \frac{\sin X_{1} \cdot \sin X_{3} \ldots}{\sin X_{2} \cdot \sin X_{4} \ldots} \quad(2) \\
& =e
\end{aligned}
$$

These geometrical conditions have to be satisfied in such a manner, that the angles
shall receive the most probable of the several series of corrections which present themselves. This is done by the method of minimum squares, which is now so well known that nothing need be said regarding it further than that it requires the following expression shall be made a minimum,

$$
U=\frac{x_{1}{ }^{2}}{u_{1}}+\frac{x_{2}{ }^{2}}{u_{2}}+\ldots+\frac{x_{t}^{2}}{u_{t}}
$$

in which $u_{1}, u_{2}, \ldots u_{t}$ are the reciprocals of the weights, $w_{1}, w_{2}, \ldots w_{t}$, of the observed angles.
The following equations-taken from Section 5, Chapter VIII, Vol. II-express first the geometrical conditions, secondly their relations with the indeterminate factors, $\lambda_{a}, \lambda_{b}, \ldots \lambda_{n}$, by the introduction of which \dot{U} is made a minimum, and thirdly the most probable values of the angular errors in terms of the geometrical conditions and the indeterminate factors.

The geometrical equations of condition, n in number between t unknown quantities are

$$
\begin{aligned}
& a_{1} x_{1}+a_{2} x_{2}+\cdots \cdot .+a_{t} x_{t}=e_{a} \\
& b_{1} x_{1}+b_{2} x_{2}+. . .+b_{t} x_{t}=e_{b} \\
& n_{1} x_{1}+n_{2} x_{2}+\cdots . .+n_{t} x_{t}=e_{n}
\end{aligned}
$$

The equations between the indeterminate factors are

$$
\begin{aligned}
& {[a a . u] \lambda_{a}+[a b . u] \lambda_{b}+} \\
& {\left[\begin{array}{lll}
{[b b . u] \lambda_{a}+[b b . u] \lambda_{b}+} & \cdot & +[a n . u] \lambda_{n}=e_{a} \\
\cdot \cdot & +[b n . u] \lambda_{n}=e_{b} \\
{[a n . u] \lambda_{a}+[b n . u] \lambda_{b}+} & \cdot & \cdot \\
\cdot & \cdot & +[n n . u] \lambda_{n}=e_{n}
\end{array}\right.}
\end{aligned}
$$

in which the brackets [] indicate summations, thus

$$
[a a . u]=a_{1} a_{1} \cdot u_{1}+a_{2} a_{2} \cdot u_{2}+\ldots . .+a_{t} a_{t} \cdot u_{t}
$$

The resulting values of the angular errors are

$$
\begin{gathered}
x_{1}=u_{1}\left(a_{1} \lambda_{a}+b_{1} \lambda_{b}+\cdots \cdots+n_{1} \lambda_{n}\right) \\
x_{2}=u_{2}\left(a_{2} \lambda_{a}+b_{2} \lambda_{b}+\cdots \cdot \cdot+n_{2} \lambda_{n}\right) \\
\cdot \\
x_{t}=u_{t}\left(a_{t} \lambda_{a}+b_{t} \lambda_{b}+\cdots \cdot \cdot+n_{t} \lambda_{n}\right)
\end{gathered}
$$

and the value of the minimum, U, is

$$
\lambda_{a} e_{a}+\lambda_{b} e_{b}+\ldots+\lambda_{n} e_{n} .
$$

Abstracts of the reductions of the figures will be found in Part II for the Jodhpore

Meridional Series on pages 69 to 84 and for the Eastern Sind Meridional Series on pages 181 to 195. In these abstracts are given for each figure the observed angles with their reciprocal weights, the equations to be satisfied, the resulting equations between the indeterminate factors, the values of these factors and the values of the angular errors obtained; finally the value of the minimum-is also noted.

4.
 Calculation of the Sides of the Triangles.

The values of the angular errors having thus been computed are applied to the observed angles with contrary signs; then the angles of every triangle are reduced to plane angles by the subtraction of one-third of the spherical excess of the triangle from each, and the sides of the triangles are obtained in the ordinary manner. The angular corrections furnished by the figural reductions, besides being the most probable, in so far as the conditions to which they have been subjected are concerned, render each figure or net of triangles consistent, so that the ratio of any one side to any other side is the same by whatever route it is calculated.

5.

Geodetic Elements of Stations and Sides.

The lengths of the sides of triangles and the dimensions of the Figure of the Earth being known, it will be evident that if the latitude of any one station and the azimuth of any side of the triangulation from it to a second station are given, the difference in latitude and longitude between it and the second station, and the back azimuth of the connecting side, may be computed.

Now the origin of co-ordinates which has been adopted for the Indian triangulation is Kalianpur, Station I of the North-West Quadrilateral, the initial elements at which are

Latitude North	24	7	11.26
Longitude E. of Greenwich	77	41	44.75
Azimuth of Station 29 (Súrantál)	190	27	5.10

as explained in Chapter XI of Vol. II.
But as the positions of all the stations of the North-West Quadrilateral are regarded as having been finally fixed in the Simultaneous Reduction of that figure, the elements of
any of them may be adopted in place of those of Kaliannpur, whenever it happens to be convenient to do so. Thus, as the Jodhpore and Eastern Sind Meridional Series are based on sides of the Karachi Longitudinal Series, one of the Series of the North-West Quadrilateral, the elements of those sides have been adopted as the initial elements of the two series, instead of falling back on Kalianpur.

The formulæ which have been employed on the successive calculations of latitude, longitude and reverse azimuth are given below.

If \mathbf{A} and \mathbf{B} be two stations on the earth's surface, and the latitude and longitude of \mathbf{A}, and the azimuth of \mathbf{B} at A be λ, L and A respectively, the distance between A and B being \boldsymbol{c}, and if
$\Delta \lambda$ denote the difference of latitude between A and B
ΔL " " longitude "
B ", azimuth of A at B
$\Delta \boldsymbol{A}=B-(\pi+A)$
e " the excentricity of the spheroid
ρ " the radius of curvature to the meridian at λ
ν " the normal to the meridian at λ terminated by the minor axis,
then

$$
\begin{aligned}
& \Delta \lambda=\left\{\begin{array}{l}
-\frac{c}{\rho} \cos A \operatorname{cosec} 1^{\prime \prime} \\
-\frac{1}{1.2} \frac{c^{2}}{\rho \cdot \nu} \sin ^{2} A \tan \lambda \operatorname{cosec} 1^{\prime \prime} \\
-\frac{3}{4} \frac{c^{2}}{\rho \cdot \nu} \frac{e^{2}}{1-e^{2}} \cos ^{2} A \sin 2 \lambda \operatorname{cosec} 1^{\prime \prime} \\
+\frac{1}{1.2 .3} \frac{c^{3}}{\rho \cdot \nu^{2}} \sin ^{2} A \cos A\left(1+3 \tan ^{2} \lambda\right) \operatorname{cosec} 1^{\prime \prime},
\end{array}\right. \\
& \Delta L=\left\{\begin{array}{l}
-\frac{c}{\nu} \frac{\sin A}{\cos \lambda} \operatorname{cosec} 1^{\prime \prime} \\
+\frac{1}{1.2} \frac{c^{2}}{\nu^{2}} \frac{\sin 2 A \tan \lambda \operatorname{cosec} 1^{\prime \prime}}{\cos \lambda} \\
-\frac{1}{1.2 .3} \frac{c^{3}}{\nu^{3}} \frac{(1+3 \tan 2 \lambda) \sin 2 A \cos A}{\cos \lambda} \operatorname{cosec} 1^{\prime \prime} \\
+\frac{1}{1.2 .3} \frac{c^{3}}{\nu^{3}} \frac{2 \sin ^{3} A \tan \lambda}{\cos \lambda} \operatorname{cosec} 1^{\prime \prime}
\end{array}\right.
\end{aligned}
$$

and

$$
B=\pi+A+\left\{\begin{array}{l}
-\frac{c}{\nu} \sin A \tan \lambda \operatorname{cosec} \mathrm{I}^{\prime \prime} \\
+\frac{\mathrm{I}}{4} \frac{c^{2}}{\nu^{2}}\left\{1+2 \tan ^{2} \lambda+\frac{e^{2} \cos ^{2} \lambda}{1-e^{2}}\right\} \sin 2 A \operatorname{cosec} \mathrm{I}^{\prime \prime} \\
-\frac{c^{3}}{\nu^{3}}\left(\frac{5}{6}+\tan ^{2} \lambda\right) \frac{\tan \lambda}{2} \sin 2 A \cos A \operatorname{cosec} \mathrm{I}^{\prime \prime} \\
+\frac{1}{2.3} \frac{c^{3}}{\nu^{3}} \sin ^{3} A \tan \lambda\left(1+2 \tan ^{2} \lambda\right) \operatorname{cosec} 1^{\prime \prime}
\end{array}\right.
$$

For the derivation of these formulæ, and also for the manner in which they have been arranged for calculation, see Chapter IX of Volume II, also the Auxiliary Tables to facilitate the calculations of the Survey Department of India.

The values of the elements of the Figure of the Earth which have been employed in the calculations are those known as "Everest's Constants, 1st set", and are:-

$$
\begin{aligned}
& \text { Semi-axis major, } a=20,922,932 \text { feet, } \\
& \text { Log }=7 \text { 7320 } 62254 \\
& \text { Semi-axis minor, } b=20,853,375 \text { feet, } \\
& \text { " }=7.31917634 \\
& \text { Ellipticity, } \quad c=\frac{a-b}{a}=\frac{1}{300.80} \quad „=\overline{3.52171968} \\
& e^{2}=\frac{a^{2}-b^{2}}{a^{2}}=0.0066378 \\
& 1-e^{2}=0.9933622 \\
& n=\overline{3} \cdot \mathbf{8 2 2} 02718 \\
& »=T \cdot 99710761
\end{aligned}
$$

from which ρ and ν are found by the well known formulm.

6.

Reduction of the Vertical Angles for the determination of Differences of Height and Co-efficients of Refraction.
The relative heights of the principal stations of this Survey are determined in all instances by measuring the reciprocal vertical angles. The heights so obtained are controlled,
wherever possible, by connecting the stations of the triangulation with those of lines of Spirit Levels, which are executed by this Survey, and occasionally with Tidal Stations on the coasts of the Peninsula, at which direct determinations of the mean sea level have been made. The formula that was employed for many years in the calculation of differences of height, is due to Colonel Everest, and is as follows :-

If h be the difference of height of two stations \mathbf{A} and \mathbf{B}, D^{\prime} the depression of \mathbf{B} at \mathbf{A} and \boldsymbol{D} that of \mathbf{A} at $\mathbf{B}, \boldsymbol{H}$ the height of \mathbf{A} above mean sea level, \boldsymbol{c} the distance between \mathbf{A} and \mathbf{B} at that level, and r the radius of curvature corresponding to the mean latitude of \mathbf{A} and \mathbf{B}, then the angle subtended at the lower station by the excess of height of the higher, or the so-called subtended angle, is $\frac{1}{2}\left(D \sim D^{\prime}\right)$ and the height of \mathbf{B} above or below A is given by the expression

$$
h=c\left(1+\frac{H}{r}\right) \frac{\sin \frac{1}{8}\left(D-D^{\prime}\right)}{\cos D}
$$

according as the result is plus or minus. If either of the angles is an elevation instead of a depression its value must be employed with the opposite sign to that here given.

In order to use this formula it is first necessary to correct the observed angles for the heights of the observing instrument and observed signal. A much less laborious process is to employ the uncorrected vertical angles, and then reduce the result thus obtained to the levels of the stations by an algebraical combination of the heights of the instruments and signals. This procedure is as follows:-

If i_{a}, i_{b} be the heights in feet of the theodolites at \mathbf{A} and \mathbf{B} respectively
$s_{a}, s_{b} \quad$ signals \quad,
D_{a}, D_{b} the observed vertical angles, both assumed to be depressions,
and we put

$$
\delta=\delta_{a}-s_{b}+i_{a}-i_{b}
$$

then

$$
h=c\left(1+\frac{H}{r}\right) \frac{\sin \frac{1}{8}\left(D_{b}-D_{a}\right)}{\cos D_{b}}+\frac{\delta}{2}
$$

This formula, though not absolutely rigorous, holds good for all cases that have hitherto occurred or are likely to occur in this Survey.

For r, the radius of curvature, the same formula is employed as in the calculation of spherical excess, see page [10], ρ and ν being here taken for the mean latitude of the stations.

In the preceding formulæ it is assumed that the reciprocal angles are equally affected
by refraction, and in order that this may be as nearly the case as possible, the vertical angles are generally measured between the hours of 1 and $\mathbf{3}$ p. м., when the amount of refraction is usually a minimum.

The reciprocal angles are also employed to determine the coefficient of refraction, to be used in reducing unreciprocated vertical angles; for, putting C for the arc between the stations A and B, or the contained arc as it is usually called, and ϕ_{a}, ϕ_{b} for the refraction at the respective stations, we have

$$
C=D_{a}+\phi_{a}+D_{b}+\phi_{b}-\beta
$$

in which expression

$$
\beta=\frac{i_{a}-8_{a}+i_{b}}{c \sin \mathrm{I}^{\prime \prime}}-8_{b} .
$$

Thus, the mean refraction, ϕ, is given by the expression

$$
\phi=\frac{1}{2}\left\{C-\left(D_{a}+D_{b}\right)+\beta\right\}
$$

and $\frac{\phi}{C}$ gives the terrestrial refraction in decimals of contained arc-or in other words the coefficient of refraction-for each pair of reciprocated observations. From the several values of the coefficient thus determined, those which are deemed most suitable are selected for employment in the reduction of vertical angles to secondary points, at which reciprocal observations have not been taken.

The formula for calculating the contained arc is

$$
C^{\prime \prime}=\frac{c}{r} \operatorname{cosec} \mathrm{I}^{\prime \prime}
$$

Abstracts of the calculations of differences of height as well as the final heights for the Jodhpore Meridional Series will be found on pages 97 to 106, and for the Eastern Sind Meridional Series on pages 207 to 215 . In these abstracts the stations are entered in pairs as reciprocally observed, and there are given for each station the astronomical date and mean time of observation, the mean of the observed angles, preceded by a letter shewing whether it is a depression, D, or an elevation E, and the number of observations of which it is the mean. Then follow in succession the height in feet of the signal observed to and of the instrument employed, the contained arc between each pair of stations, the terrestrial refraction expressed in seconds and also in decimals of contained arc, and the resulting difference of height of the deduced station by each deduction, the height thus deduced, and the mean of several deductions. Lastly the final values of height-determined as explained in the next section-are given followed by the height of the pillar or tower above ground level.

7.

The Final Values of Height.

The tide-gauge stations on the coast and the lines of spirit-levels connected with them and traversing the continent of India afford a great system of heights, which being determined with the highest attainable accuracy are considered absolute. The reciprocal vertical angles of the chains or series of triangles of the Great Trigonometrical Survey provide another very extensive system of relative heights; but from the irregularities of refraction and other causes these relative heights are less reliable than differences obtained by spirit levelling. The two systems are connected at numerous points, and where discrepancies appear, they are treated as errors in the trigonometrical heights and eliminated from them by dispersion. After this has been done the trigonometrical heights are considered as absolute also. No lines of spirit leveling having been undertaken which cross or approach the two series under report the final heights of these series have been determined by dispersing over each the discrepancy between the relative excess in height of its terminal over its initial stations as exhibited by the triangulation and the excess determined at the time of the final reduction of the North-West Quadrilateral. The initial stations of both series lie in the Karachi Longitudinal Series; the terminals of the Jodhpore being in the Sutlej, and of the Eastern Sind in the Great Indus Series.

8.

The Determinations of Azimuth by Astronomical Observations.

It has been the practice in this Survey to determine azimuths at certain stations in the course of the execution of each chain of triangles. It used to be customary to select stations for this purpose in meridional series at about I° apart, and in longitudinal series at shorter intervals. Of late the choice of stations has also been governed by the nature of the surrounding country, those localities only being accepted where there was reason to expect that the results would be least influenced by local attraction. These independent observations of azimuth will be valuable hereafter, in investigations of the Figure of the Earth and of local attraction. But for reasons which have already been explained at page 142 of Vol. II, it would not, as a rule, be proper to employ them in the general reduction of the triangulation. It happens however that the observations have been reduced each year pari passi with the preliminary reductions of the triangulation-figure by figure, or series by series-which precede the final simultaneous reductions. The observations and their reductions are therefore given in the volumes which treat of the triangulation; as they have more in common with it than with the astronomical observations for the determinations of latitude and differential longitudes.

The observations for azimuth consist of measures of the angle between a circumpolar star, when near either elongation, and some station-either directly or through the medium
of a referring mark-which are made in accordance with the system followed in observing the horizontal angles as regards the changes of zero, but with a larger number of repetitions on each zero, as the observations are individually liable to greater error.

The time of each intersection of the star being carefully noted, the difference of the momentary azimuth, δA, from the value at elongation is subsequently calculated and applied to the observed angle between the referring mark and the star. Thus a series of determinations of the angle between the referring mark and the star's position at elongation is obtained, from each of which and the known value of the azimuth of the star at elongation a determination of the azimuth of the referring mark is deduced.

The formula employed for the calculation has been

$$
\delta A^{*}=\frac{\left(2 \sin ^{2} \frac{1}{2} \delta P \operatorname{cosec} \mathrm{I}^{\prime \prime}\right) \tan A \cos ^{2} a}{1-\left(2 \sin ^{2} a \sin ^{2} \frac{1}{2} \delta P\right) \pm(\cot P \sin \delta P)}
$$

in which \boldsymbol{A} is the azimuth of the star at elongation, P the corresponding hour angle, a the north polar distance of the star, and $\delta \boldsymbol{A}$ the difference in azimuth for the time $\delta \boldsymbol{P}$ before and after elongation. The last term of the denominator is positive when the star is below and negative when above the position of maximum elongation.

At each station where the azimuth of a referring mark is observed, the angle between the referring mark and one of the contiguous stations of the triangulation is also observed, just as any other horizontal angle; and the several measures will be found in the Abstract of the Observed Angles at the observing station.

Abstracts of the azimuthal observations made on each series will be found for the Jodhpore Meridional Series on pages 107 to 115 and for the Eastern Sind Meridional Series on pages 216 to 227, in which are given, besides all necessary information regarding the observations themselves, such details of the calculations as will enable them to be followed up to the final result, viz., the difference between the Astronomical and Geodetical azimuths. Sometimes the whole of the observations on a pair of zeros could not be completed on one night; in such cases the remainder were taken on a subsequent night, and the change of the star's place was duly allowed for in the reductions.

9.

The Final Reduction of the Triangulation. Preliminary Sketch.
So far the triangulation has only been made to fulfil those geometrical conditions, which apply to single triangles, polygonal figures and net-works, or all such conditions as

[^3]exist until a chain closes on a side of known length and position or two or more chains unite together to form a circuit; it now becomes necessary to apply such conditions as will make the closing points of each chain take the positions already assigned them by the general reduction of the North-West Quadrilateral.

Before proceeding to indicate the forms of equations resulting from the conditions requisite for this adjustment it may be as well to anticipate a possible objection in their application. As all errors are to be dispersed by the method of minimum squares, which assumes the independency of all the quantities under investigation, it might be imagined that we must now again revert to the observed angles, as the angles which have been corrected for figural conditions cannot be considered independent. It has however been shewn in Appendix No. 8 of Vol. II, that the observed angles may be corrected in accordance with a part only of the conditions which govern them; and that when new conditions present themselves the corrected angles may be employed for finding other corrections; so that final corrections can be obtained by employing the angles after they have received any number of partial corrections, provided that the conditions which have already been satisfied are maintained when the further corrections, required to satisfy additional conditions, are calculated.

All preliminary calculations therefore stand good, and consequently equations due to new conditions may be obtained by employing the corrected, instead of reverting to the observed, values of the angles. But when we are seeking for final corrections, we must treat the corrected angles in such a manner as to preserve all the conditions already satisfied. These have however in general been so numerous and entangled as to make an exact solution of the problem impossible. Consequently all central and side conditions of the different polygonal figures and net-works composing the chains have been excluded, by omitting from the simultaneous reductions all angles appertaining to polygonal figures and net-works over and above what were needed to form continuous chains of single triangles, and increasing the weights of the angles of the retained triangles. By this means the entanglement has been greatly diminished, and the number of figural equations reduced to one for each triangle, of the simple form

$$
x+y+z=0
$$

which permits of the elimination of one of the unknown quantities in each triangle, and thus enables all the triangular equations to be dispensed with. Thus the number of equations to be solved was eventually reduced to the number of new conditions to be satisfied or in other words to the number of what are here called circuit equations, the term having reference to all the closing errors of the chains of triangles, whether occurring internally at the ends of the circuits or externally on the base-lines.

In the present case there was not the same excuse for neglecting the central and side equations, as each reduction only involved one chain of triangles; yet as each is double throughout, the introduction of all the equations would have largely added to the labor without any corresponding advantage. Hence the original plan was followed, except that Mr. J. B. N. Hennessey, who was at the time in charge of the Computing Office, decided that
the weights of all the angles in each chain of selected triangles should be considered equal or taken as unity.

After the completion of the reductions, the angles appertaining to the portions of the polygonal figures and net-works, which had been excluded, were corrected in such a manner as to restore the consistency of each figure, without altering the values of the angles already fixed.

10.

The Final Reduction of the Triangulation. Formation of the Circuit Equations.

The Final Reduction of each of the two series, the Jodhpore and Eastern Sind Meridional, was an independent operation; but the process was the same for each and may be generally described as follows:-

The triangles presented for simultaneous reduction in each case consist only of a single chain, and are numbered consecutively from south to north. The angle opposite the flank side of each triangle is known as X, that opposite the side of continuation as Y and that opposite the base as Z, each being further distinguished by a subscript, which is the number of the triangle : x, y and z with corresponding subscripts are the symbols employed to represent the errors of the angles, or, in other words, the unknown fallible quantities of which the most probable values that will satisfy the equations have to be found. These equations are respectively termed Linear and Geodetic, the former taking cognizance of the errors in the sides of the triangles, which are met with at the termination of the chain, and the latter expressing the errors in latitude, longitude and azimuth at the closing station.

It is unnecessary here to repeat the deduction of the analytical expressions for the circuit equations. This has already been demonstrated in Volumes II, VI and VII of the Account of the Operations of the Great Trigonometrical Survey of India, to which reference can be made if necessary ; it will be sufficient now to give the expressions themselves.

I. Linear Equations.

Denoting for brevity the tabular difference (t. d.) of $\log \sin Y$ for $1^{\prime \prime}$ by β, and of \log $\sin Z$ by γ, and by \boldsymbol{E} the error in the logarithmic value of the closing side of the chain, then

$$
E=\beta_{1} y_{1}-\gamma_{1} z_{1}+\beta_{2} y_{2}-\gamma_{2} z_{2}+\ldots+\beta_{m} y_{m}-\gamma_{m} z_{m}
$$

m being the number of triangles in the chain. As in this equation E as well β and γ represent quantities in the 7th place of decimals, it is convenient to treat them as if both sides of the equation were multiplied by 10^{7}, by which means E, β and γ become respectively the number of units in the 7th place of decimals.

If we employ brackets to denote summation the equation may be briefly written

$$
E={ }_{1}^{m}[\beta y-\gamma z] .
$$

II. Geodetic Equations.

The diagram in the margin represents the commencement of a chain of triangles in which station I is assumed to be the origin of geodetic co-ordinates, and 2,3,. . . stations on the most direct route-indicated by the dotted line running parallel to the sides on one flank of the chain-which connects I with any station in advance. The side c is the side of origin of the chain, and its azimuth at I the fundamental azimuth of the chain.

The following symbols are required to denote the differences of latitude, longitude and azimuth, the length of side, and the forward and back azimuths from station to station along the right flank of the chain :-

For the side 1 to 2; $\quad \Delta \lambda_{1}, \Delta L_{1}, \Delta A_{1}, c_{1}, A_{1}$ and B_{1}
" $\quad n$ to $n+1 ; \Delta \lambda_{n}, \Delta L_{n}, \Delta A_{n}, c_{n}, A_{n}$ and B_{n}.
The errors in latitude, longitude and azimuth at the closing station, the $(n+1) t h$, are denoted by $d \lambda_{n+1}, \quad d L_{n+1}, \quad d B_{n}$.

Now writing μ and ϕ for certain functions of $\Delta \lambda, \Delta L, \Delta A$ and A as exhibited in the Table of Substitutions which follows, we have a general expression for each of the geodetic equations in which \boldsymbol{E} represents the error in latitude, longitude or azimuth, as the case may be, at the closing station, and β and γ have the same signification as in the linear equation, while a stands for t.d. $\log \sin X$ for a change of $1^{\prime \prime}:$ -

$$
\begin{array}{rlrl}
E= & +\left(\mu_{1} \beta_{1}-\phi_{1}\right) y_{1} & +\left(-\mu_{1} \gamma_{1}-\phi_{1}\right) z_{1} \\
& +\left\{\left(\mu_{2}-\mu_{1}\right) a_{2}+\mu_{2} \beta_{2}+\phi_{1}\right\} y_{2}+\left\{\left(\mu_{2}-\mu_{1}\right) a_{2}-\mu_{1} \gamma_{2}+\phi_{2}\right\} z_{2} \\
& +\left\{\left(\mu_{3}-\mu_{2}\right) a_{3}+\mu_{3} \beta_{3}+\phi_{2}\right\} y_{3}+\left\{\left(\mu_{3}-\mu_{2}\right) a_{3}-\mu_{2} \gamma_{3}+\phi_{3}\right\} z_{3} \\
& +\left(\mu_{3} \beta_{4}-\phi_{3}\right) y_{4} & +\left(-\mu_{3} \gamma_{4}-\phi_{3}\right) z_{4} \\
& +. . .
\end{array}
$$

in which the $\mu \mathrm{s}$ and $\phi \mathrm{s}$ take their subscripts from the flank numbers of the stations and α β and γ from the triangles.

The general forms for the coefficients of y and z are:-
First.-If the p th triangle have no side in the line of traverse, but only an angle at the station l,

$$
\left(\mu_{l} \beta_{p}-\phi_{l}\right) y_{p}+\left(-\mu_{l} \gamma_{p}-\phi_{l}\right) z_{p}
$$

Secondly.-If the q th triangle have a side in the traverse between the stations l and $l+\mathrm{I}$,

$$
\left\{\left(\mu_{l+\mathrm{x}}-\mu_{i}\right) a_{q}+\mu_{l+\mathrm{x}} \beta_{q}+\phi_{l}\right\} y_{q}+\left\{\left(\mu_{l+\mathrm{i}}-\mu_{i}\right) a_{q}-\mu_{l} \gamma_{q}+\phi_{l+1}\right\} z_{q}
$$

Exceptions will appear to present themselves at the commencement and end of chains owing to the non-existence of some of the coefficients. In all instances however it will be found that ϕ_{l} enters the coefficients of all the errors at station l, and μ_{l} enters the coefficients of the other angles of the same triangles, with a plus sign if looking from station l the angle is the left-hand one of the triangle, and a minus sign if the right-hand.

The substitutions for μ and ϕ to render the general equation applicable to either latitude, longitude or azimuth are given in the following table.

Table of Substitutions for μ and ϕ.

The values of the absolute terms, E, for the geodetic equations are the differences between the values of latitude, longitude and azimuth at the closing station, as obtained by the calculation along the traverse, and the final values as given by the Reduction of the North-West Quadrilateral ; and if the subscripts f and v denote the final and traverse values at the closing station

$$
\begin{aligned}
& E_{\lambda}=\lambda_{v}-\lambda_{f} \\
& E_{L}=L_{v}-L_{f} \\
& E_{\Delta}=B_{v}-B_{f}
\end{aligned}
$$

When the linear and geodetic equations have been obtained in the manner here described, it will be found that the numerical values of the coefficients are much larger in the former than in the latter, and that those in latitude and longitude are least of all. Although this cannot produce any effect on the final results it may increase the labour of the calculations. It has therefore been sometimes thought desirable to introduce factors which roughly equalize the coefficients. Such factors were employed for the Eastern Sind Series; they were

for the azimuth equation	1
") latitude and longitude equations	10	
", linear equation	0.1

11.

Final Reduction of the Triangulation. The Solution of the Equations between the Indeterminate Factors.

If we assume that the number of triangles entering the reduction is t and that they furnish n circuit equations, the latter may now be briefly written in order thus:-

$$
\begin{aligned}
& { }_{1}{ }_{1} y_{1}+{ }_{1} \mathrm{c}_{1} z_{1}+\cdots \cdot \cdot+{ }_{1}{ }^{b} y_{t}+{ }_{1}{ }_{1} z_{t}={ }_{1} E \\
& { }_{2}{ }^{\mathrm{b}} y_{1} y_{1}+{ }_{2} \mathrm{c}_{1} z_{1}+\cdots \cdot \cdot+{ }_{2}{ }^{\mathrm{b}} y_{t}+{ }_{2}{ }_{2} \mathrm{c}_{\mathrm{t}} z_{t}={ }_{2} E \\
& { }_{n}{ }_{1} y_{1}+{ }_{n} \mathrm{c}_{1} z_{1}+\cdots \cdot \cdot+{ }_{n}{ }^{\mathrm{b}} y_{t}+{ }_{n}{ }^{\mathrm{c}} z_{t}={ }_{n} E
\end{aligned}
$$

in which equations the left-hand subscript in 'old face' type corresponds to the number of the equation and the right-hand subscript in ordinary type gives the number of the triangle.

Since the weights of the angles are all taken as equal, the minimum which governs the solution of the foregoing equations will, when x has been eliminated from it, become

$$
U=\left\{\left(y_{1}+z_{1}\right)^{2}+y_{1}^{2}+z_{1}^{2}\right\}+\cdots \cdot+\left\{\left(y_{t}+z_{t}\right)^{2}+y_{t}{ }^{2}+z_{t}^{2}\right\}
$$

The symbols employed for the indeterminate factors are ${ }_{1} \Lambda,{ }_{2} \Lambda,{ }_{3} \Lambda$, \&c., and the equations between them are*

$$
\begin{aligned}
& { }_{1}^{t}\left[{ }_{1}{ }_{1} \boldsymbol{B B}+{ }_{1} c_{1} \mathbb{C}\right]_{1} \Lambda+{ }_{1}^{t}\left[{ }_{1}{ }_{2} \boldsymbol{B B}+{ }_{1} c_{2} \mathbb{C}\right]_{2} \Lambda+\ldots .+_{1}^{t}\left[{ }_{1}{ }_{n} \boldsymbol{B}+{ }_{1 c}{ }_{n} \mathfrak{C}\right]_{n} \Lambda={ }_{1} E
\end{aligned}
$$

in which

$$
\mathfrak{B}=\frac{1}{3}(2 b-c) \text { and } \mathbb{C}=\frac{1}{3}(2 c-\mathfrak{b}) . \dagger
$$

These equations having been solved, the values of the angular errors are given by the formulæ

$$
\begin{gathered}
y_{p}={ }_{1} \mathfrak{B}_{p} \Lambda+{ }_{2} \mathfrak{B}_{p} \Lambda+\cdots \cdots+{ }_{n} \boldsymbol{\mathbf { B } _ { p } \Lambda}, \\
z_{p}={ }_{1} \mathbb{C}_{p_{1} \Lambda} \Lambda+{ }_{2} \mathfrak{C}_{p 2} \Lambda+\cdots \cdot \cdot+{ }_{n} \mathbb{C}_{p_{n} \Lambda} \Lambda \\
x_{p}=-\left(y_{p}+z_{p}\right) .
\end{gathered}
$$

* In these equations, although the corresponding coefficients on opposite sides of the diagonal appear to differ, their values are in reality identical in each term of the summation. Both forms, however, have been made use of as a check on the calculations; and for a like reason the diagonal coefficients have been obtained also by the formula

$$
\frac{2}{3}_{1}^{t}\left[\left(b^{2}-b c+c^{2}\right)\right]
$$

+ As the factor $\frac{1}{3}$ enters all the coefficients of all the equations, its omisaion from the actual calculations can have no effect on the final values of the angular errors x, y and z; it was accordingly omitted.

CHAPTER III.

the details of the final reductions.

1.

Preliminary Remarks.

The general principles followed in the reduction of the triangulation, as described in the preceding chapter, apply equally to both the Jodhpore and Eastern Sind Meridional Series ; but in the present chapter which deals with the details of the reductions, it will be necessary, as the two series are entirely independent, to keep these details apart, while it will be convenient to include them in the same sections. The same preamble for each section will be made to apply to both reductions, the details themselves being headed by the name of the series to which they belong.

2.

The Figural Reductions antecedent to the Final Simultaneous Reduction of each Series.
The Jodhpore Meridional Series comprises 3 quadrilaterals, 8 single polygons and 2 double polygons, containing 225 observed angles connected together by 76 Triangular, 12 Central and 15 Side equations of condition.

The Eastern Sind Meridional Series comprises 3 quadrilaterals, 7 single polygons and 2 double polygons, containing 198 observed angles connected together by 67 Triangular, 11 Central and 14 Side equations of condition.

The figural conditions and reductions are given for each series immediately after the Abstracts of the Observed Angles : a diagram of each figure is also given in the Plate fol-
lowing the details of each series. These together afford the means of readily following the calculations apportaining to each figure.

3.

The Description of the Reduction Charts.

The respective Reduction Charts at the end of this volume exhibit the whole of the Principal Triangulation in each series. The triangulation in each case consists of polygonal figures from which only a single chain of triangles was selected for treatment simultaneously. The fixed data for the final reduction of the two series are the lengths and positions of the emanation-sides in the Karáchi Longitudinal and the termination-sides in the Sutlej and Great Indus Series, between which they respectively depend. These sides are shewn on the charts by double lines, terminated by black circles with white centres.

The so-called circuit triangles-the errors of whose angles are the unknown quantities in each reduction-are indicated by continuous lines. The non-circuit triangles, or those which are excluded from the simultaneous reduction, have their sides indicated by broken lines.

Along the flank on the right-hand side, looking north, of each chain, a dotted line runs parallel to the sides of the triangles; this is the line of the traverse.

The principal stations are indicated on the charts by small circles, with the names and the serial numbers by which it has been found convenient to distinguish them for reference in the course of the reductions. These numbers are in Roman character and are progressive from south to north.

All the principal stations which fall on the lines of traverse have an additional number in block type assigned to them, called their traverse number, these numbers commence from the initial station.

The circuit triangles are numbered in the Jodhpore Meridional Series from 1 to 48, commencing from the side Súnda-Bonik, and the non-circuit triangles are numbered in succession in smaller type from 49 to 76. In the Eastern Sind Meridional Scries the circuit triangles are numbered from 1 to 39, commencing from the side Rojhra-Sandohar, and the non-circuit triangles are numbered from 40 to 67 in smaller type. In each of the circuit triangles one of the angles is marked y and another $z ; y$ and z are the symbols for the errors of the 'angles of continuation', while x is the symbol for the errors of the flank angles; but as x has been eliminated throughout by the substitution for it of $-(y+z)$, it is not indicated on the charts. The addition of the number of any triangle as a subscript to either of these symbols, particularizes the angle in each instance.

The polygonal figures or net-works are distinguished by figural numbers as Fig. 1, Fig. 2, and these distinctions are continued in the diagrams and reductions of figures.

4.

General Outline of the Formation of the Linear and Geodetic Equations of Condition.

The Jodhpore Meridional Series.

The triangulation having first been made consistent so far as all figural conditions were concerned, the linear calculations were commenced from the side Súnda-Bonik of the Karachi Longitudinal Series, and carried northwards, through the circuit triangles only, until they closed on the side Kaimsir-Kanda of the Sutlej Series. The calculations of geodetic latitudes, longitudes and azimuths were then carried along the eastern flank of the chain, commencing and terminating with the linear calculations. The errors which form the absolute terms of the equations, are the differences between the two sets of linear and geodetic values of the side Kaimsir-Kanda and at the station Kanda, as obtained by the calculations just described and as already given finally by the Simultaneous Reduction of the North-West Quadrilateral. Thus there are four equations which may be symbolized as follows, if we employ S to denote the sum of the terms on the right-hand side of the linear equation on page [21] and of the geodetic equation on page [22] with the subscript c to denote the linear, λ the latitudinal, L the longitudinal, and \boldsymbol{A} the azimuthal equations; while \boldsymbol{E} with the corresponding subscript denotes the absolute term :-
(1) ${ }_{c} \mathrm{~S}={ }_{c} E$,
(2) ${ }_{\lambda} S={ }_{\lambda} E$,
(3) ${ }_{L} S={ }_{L} E$,
(4) ${ }_{4} \mathrm{~S}={ }_{4} E$.

The Eastern Sind Meridional Series.

This series having in like manner been first made consistent so far as the figural conditions were concerned, the linear calculations were commenced from the side RojhraSandohar of the Karáchi Longitudinal Series and closed on the side Dáowála-Máchka of the Great Indus Series, the geodetic calculations being carried along the eastern flank. The errors are the differences between two sets of values of the closing side DáowálaMáchka and at the closing station Dáowála, as given by the Simultaneous Reduction of the North-West Quadrilateral and as obtained by the calculations carried through the series. The equations may be symbolized as before.

5.

Formation of the Coefficients of the Unknown Quantities.

On page [24] the equations of condition are represented by a form of which the following may be taken as a general illustration:-

$$
{ }^{b_{1}} y_{1}+{ }_{m}^{c_{1}} z_{1}+{ }_{m}{ }_{2} y_{2}+{ }_{m} c_{2} z_{2}+\cdots . .={ }_{m} E
$$

the left-hand subscript denoting the equation number and the right-hand subscript the number of the triangle to which the errors appertain, and \bar{y} and c being the coefficient of y and z respectively.

For the Linear Equation we shall have generally, see page [21],

$$
\begin{aligned}
& \mathfrak{b}_{p}=+\beta_{p}=+ \text { t.d. } \log \sin \boldsymbol{Y} \text { for } \mathbf{1}^{\prime \prime} \\
& \mathfrak{c}_{p}=-\gamma_{p}=- \text { t.d. } \log \sin Z \quad \prime \prime
\end{aligned}
$$

For the Geodetic Equations we shall have, see page [23],

$$
\begin{aligned}
& \mathfrak{b}_{p}=+\left(\mu_{l} \beta_{p}-\phi_{l}\right), \\
& \mathfrak{c}_{p}=-\left(\mu_{l} \gamma_{p}+\phi_{l}\right),
\end{aligned}
$$

or

$$
\begin{aligned}
& \boldsymbol{b}_{p}=+\left\{\left(\mu_{l+1}-\mu_{l}\right) a_{p}+\mu_{l+1} \beta_{p}+\phi_{l}\right\}, \\
& \mathbf{c}_{p}=+\left\{\left(\mu_{l+1}-\mu_{l}\right) a_{p}-\mu_{l} \gamma_{p}+\phi_{l+1}\right\},
\end{aligned}
$$

the former being applicable to any, the p th, triangle when it has only the angle X in the traverse at station l, and the latter when it has the side opposite X in the traverse and lying between the stations l and $l+1$.

Exceptions to the General Expressions for band c.

The Jodhpore Meridional Series.
Equation I has no exceptional coefficients; but in Equations 2, 3 and 4

$$
\mathfrak{b}_{47}=-\mu_{23} a_{47}+\phi_{23}, \quad \mathfrak{c}_{47}=-\mu_{23}\left(a_{47}+\gamma_{47}\right),
$$

with the exception of c_{47} in Equation 4 in Azimuth, which needs the addition of unity to carry the calculations as far as the side Kanda-Randu, and the same equation has two extra coefficients

$$
b_{48}=-\mathrm{I} \text { and } \mathrm{c}_{48}=-\mathrm{I}
$$

to carry the calculations to the closing side Kanda-Kaimsir.

The Eastern Sind Meridional Series.

Equation I has no exceptional coefficients, but in Equations 2, 3 and 4

$$
\mathbf{b}_{38}=-\mu_{19} a_{38}+\phi_{19}, \quad \mathbf{t}_{38}=-\mu_{19}\left(a_{38}+\gamma_{38}\right),
$$

with the exception of r_{38} in Equation 4 in Azimuth, which needs the addition of unity to carry the calculations as far as the side Dáowala-Kubba; and the same equation has two extra coefficients

$$
b_{39}=-1 \text { and } c_{39}=-1,
$$

to carry the calculations to the closing side Dáowala-Máchka.

6.

Synoptical Exhibition of the several Equations of Condition.
For the sake of brevity let us put ${ }_{m} \mathrm{k}_{p}$ for ${ }_{m}{ }^{\mathrm{b}}{ }_{p} y_{p}+{ }_{m} \mathrm{r}_{p} z_{p}$ or, in other words, for the sum of the errors y and z of the angles Y and Z in any, the p th, triangle, respectively multiplied by their coefficients \mathfrak{b} and \mathfrak{c} in any, the m th, equation of condition; and further, let us put ${ }_{m} \mathrm{k} \int_{p}$ to represent the sum of the terms ${ }_{m} \mathrm{k}$ for a series of triangles of which the first term is ${ }_{m} \mathrm{k}_{\mathrm{p}}$ and the last ${ }_{m} \mathbf{k}_{q}$.

The equations will then be expressed as follows:-

The Jodhpore Meridional Series.

(1). Linear. $\quad \mathbf{i k}_{1}^{48} \cdot=\quad \mathbf{E}$,
(2). Latitude. ${ }_{2} \mathrm{k}^{47} \cdot \overrightarrow{=}{ }_{2} E$,
(3). Longitude. ${ }_{3} \mathrm{k}^{47} \cdot \overrightarrow{=}{ }_{3} E$,
(4). Azimuth. $\left.{ }_{4} \mathrm{k}\right|_{1} ^{48} \cdot \cdot={ }_{4} \boldsymbol{E}$.

The Eastern Sind Meridional Series.
(1). Linear. ${ }_{1} \mathrm{k}^{39} \cdot \cdot={ }_{1} E$,
(2). Latitude. $\left.{ }_{2} \mathbf{k}\right|^{38} \cdot \quad=\quad={ }_{2} \boldsymbol{E}$,
(3). Longitude. $\left.{ }_{3} \mathrm{k}\right|^{38} \cdot \quad={ }_{3} E$,
(4). Azimuth. $\left.{ }_{4} \mathrm{k}\right|_{1} ^{39} \cdot \quad={ }_{4} E$.

7.

The Numerical Values of the Fixed Data on which the Separate Reductions of the Jodhpore and Eastern Sind Meridional Series are based.

Both series emanate from the Karáchi Longitudinal Series; the Jodhpore closes on the Sutlej Series and the Eastern Sind on the Great Indus Series. The fixed data furnished by these series are given in Vols. III and IV of the Account of the Operations \&c.; but for the geodetic elements a third place of decimals has been obtained by reference to the calculations of the North-West Quadrilateral. The data are as follows :-

The Jodhpore Meridional Series.

Vol. III, page 47 ${ }^{\text {b }}$.
Station of origin Bonik or XLI ; side of origin Bonik or XLI to Súnda or XLIV.
At Bonik.

Latitude North	25°	3^{\prime}		1"•496,
Longitude East of	Greenwich	72	54		-852,
Azimuth of Súnda	55	4		-670,
Distance	Lo	Feet	5	541	1461,0.

Vol. IV, page 9-h.
Closing station Kanda or XXI; closing side Kanda or XXI to Kaimsir or XIX.
At Kanda.

Latitude North	\ldots	\ldots	\ldots	29°	27^{\prime}	$41^{\prime \prime} \cdot 523$,
Longitude East of Greenwich	\ldots	\ldots	7^{2}	22	$12 \cdot 292$,	
Azimuth of Kaimsir	\ldots	\ldots		\ldots	73	26
Distance \quad,	\ldots	\ldots	$34 \cdot 581$,			
Dog Feet	$4 \cdot 8021262,6$.					

The Eastern Sind Meridional Series.

Vol. III, page 49 b.
Station of origin Rojhra or LXXV; side of origin Rojhra or LXXV to Sandohar or LXXVIII.

At Rojhra.

Latitude North	\ldots	24°	57^{\prime}	26"'278,
Longitude East of Greenwich		70	16	$45 \cdot 080$,
Azimuth of Sandoha	...	\ldots	...	III	55	$37 \cdot 085$
Distance	...			Feet		13162,0

Vol. III, page 63_d.
Closing station Dáowála or LXII; closing side Dáowála or LXII to Máchka or LIX.

At Dáowála.

Latitude North	 $28{ }^{\circ}$	20'	$12^{\prime \prime} \cdot 867$,
Longitude East of G	wich	...	69	52	$57^{\cdot 861,}$
Azimuth of Máchka	87	1	$26 \cdot 701$,
Distance	Log Feet		80782,8.

8.

The Sides and Angles of the Circuit Triangles.
The values of the Figurally Corrected Angles, and the logarithms of the Side-lengths, computed (in feet) with these angles in terms of the fixed sides of origins furnished by the Karachi Longitudinal Series, are exhibited in the following table. The given angles are the corrected plane angles, obtained by deducting the sum of the spherical excess and the figural error from the observed angles. Should it be desired to trace the formation of any corrected plane angle, reference must be made to the Abstract of the Observed Angles and to the final data of the Sides and Angles of the Triangles, which are given for each Series in Part II of this volume. The final data will be found to contain three columns of angular corrections, which are respectively headed by the words 'Figure', 'Circuit' and 'Non-Circuit', -'figure' being here taken to include single triangles as well as polygons and net-works; the corrections in the first column are what have been applied, with the spherical excess, to the observed angles, in order to obtain the figurally corrected plane angles; those in the second column are what have been derived from the Simultaneous Reduction; and those in the third column are what have been computed to satisfy the geometrical conditions of figures containing noncircuit triangles, which had to be adjusted to the fixed circuit triangles; the application of the correction in the second or the third column, as the case may be, to the figurally corrected plane angle gives the finally corrected plane angle.

In order that it may be readily ascertained-without reference to the Reduction Chartwhether any angle is a 'flank angle' or an 'angle of continuation', a column is inserted in
the table which gives the symbolic error of the angle, either x, y, or z, but without the numerical subscript, as that may be inferred from the number of the triangle in the contiguous column. And since the stations on the right-hand flank of each chain are those at which the angles are the data for the formation of the values of the forward azimuth, and the sidelengths are the distances which were employed in the calculations of latitude, longitude and back azimuth-see the next section-these stations are indicated by numbers in block type, shewing by their sequence the order in which the geodetic calculations were performed, as well as by their Serial-numbers.

The logarithm of the side* opposite any angle is given in the same horizontal line as the angle.

The Jodhpore Meridional Series.

Sides and Angles of the Circuit Triangles.

		Station Numbers		$\begin{gathered} \text { Corrected Plane } \\ \text { Angle } \end{gathered}$		Logarithm of side-length in Feet			Station Numbers		$\begin{gathered} \text { Corrected Plane } \\ \text { Angle } \end{gathered}$		Logarithm of side-length in Feet
		Serial							Serial	总			
1	${ }_{x}$	$\begin{aligned} & \text { XLIV } \dagger \\ & \text { XLI } \dagger \\ & \text { I } \end{aligned}$	1	' "	"		7	$y$$x$$z$	$\begin{aligned} & \text { VI } \\ & \text { VIII } \\ & \text { VIII } \end{aligned}$	4	- '	$\begin{array}{r} \cdot 988 \\ \cdot 988 \\ \cdot 988 \end{array}$	$\begin{aligned} & 50322902,7 \\ & 5^{\circ} 0838972,8 \\ & 5^{\prime} 13^{81} 1654,0 \end{aligned}$
				$674616 \cdot 374$	1.546	5•2394300,3					$484230 \cdot 539$ $574749 \cdot 880$ 7329 39․ 581		
				$385834 \cdot 012$	I-545	5.0716169,6							
				7315 9.614	1-546	5.2541461,0							
2	"	XLI \dagger	1	$42 \begin{array}{llll}18.916\end{array}$	-896	5-0802170,3	8	"	V1IVIIX	4		$\begin{array}{r} \cdot 994 \\ \cdot 994 \\ \cdot 993 \end{array}$	$\begin{aligned} & 5^{\circ} 1596831,5 \\ & 5^{\circ} \circ 763658,2 \\ & 5^{\circ} 0322902,7 \end{aligned}$
		I		325738.418	-895	4.9901710,1							
		II	2	10512.666	-896	5.2394300,3				5			
3	"	$\stackrel{\text { I }}{\text { II }}$	2	$\begin{array}{llll}62 & 5 & 14.311 \\ 65 & 1\end{array}$	1.152	5.1262122,9	9	"	${ }_{\text {VIII }}^{\text {X }}$	6		$\begin{array}{r} \cdot \\ \cdot \\ \cdot 920 \\ \cdot 919 \\ \cdot 920 \end{array}$	$\begin{aligned} & 5.0955752,0 \\ & 4.9764150,2 \\ & 5 \cdot 1596831,5 \end{aligned}$
		III		$651614 \cdot 201$ 5238 5	$1 \cdot 153$ $1 \cdot 152$	$\begin{aligned} & 51381524,5 \\ & 50802170,3 \end{aligned}$			VIII				
4	"		2	811427.158			10	"	VIII	6	$\begin{aligned} & 541718 \cdot 500 \\ & 532747 \cdot 666 \\ & 721453 \cdot 834 \end{aligned}$	$\begin{array}{r} \cdot 839 \\ \cdot 838 \\ \cdot 839 \end{array}$	$\begin{aligned} & 5^{\circ} \mathrm{O262998,0} \\ & 5^{\circ} \mathrm{O2173433,0} \\ & 5^{\circ} 0955752,0 \end{aligned}$
		III		80 58 8646	1.448				XII				
		V	3	$48 \quad 646 \cdot 808$	I 447	5'1262122,9			XI				
5	"	V	3	55224.543	1.406	5•1672445,4	11	"	XI	6		$\begin{aligned} & \cdot 613 \\ & -612 \\ & .613 \end{aligned}$	$\begin{aligned} & 4.9804863,8 \\ & 44^{4} 9330120,5 \\ & 5.0262998,0 \end{aligned}$
		III		$43 \quad 543.054$	$1 \cdot 405$	5.0882237,0			XII				
		VII	4	815152.403	I-406	5.2492743,0			XIII				
	"	III	4	595837×349	$1 \cdot 259$	5.1381654,0	12	"	XII	7	$\left.\begin{array}{\|cc\|} 5552 & 6 \cdot 311 \\ 554431 \cdot 893 \\ 68 & 2321 \cdot 796 \end{array} \right\rvert\,$	$\begin{aligned} & .530 \\ & .530 \\ & .531 \end{aligned}$	4.9300395,0 4.9293894,0 $4.9804863,8$
6		VII		$521410 \cdot 360$	I. 259	$5.986603,6$			$\underset{\mathbf{X I I I}}{ }$				
		VI		$674712 \cdot 291$	1-260	5'1672445,4			XV				

[^4]

		Station Numbers		Corrected Plane Angle		Logarithm of side-length in Feet			Station Numbers		Corrected Plane Angle		Logarithm of side-length in Feet
		Serial	号						Serial	䓓			
41	$y$$x$$z$	XLVIII$\mathbf{L}$$\mathbf{L I}$	21	-1"	"		45	$y$$x$$z$	$\begin{aligned} & \text { LIV } \\ & \text { LV } \\ & \text { LVII } \end{aligned}$	22	$\left.\begin{array}{ccc} \circ & \prime & \prime \prime \\ 45 & 15 & 20 \\ 60 & 2 & 25 \\ 60 & 35 \\ 74 & 42 & 13 \end{array}\right)$	"	$\begin{aligned} & 4^{\cdot 6059389,0} \\ & 4.6922322,3 \\ & 4.7388607,5 \end{aligned}$
				$722835 \cdot 609$	- 352	4*9075724,8						- 151	
				$534255 \cdot 525$	- 351	4.8345912,9						-151	
				$534828 \cdot 866$	-351	4.8351057,4				23		-151	
42	"	$\begin{aligned} & \text { LI } \\ & \mathbf{L} \\ & \mathbf{L I I I I} \end{aligned}$	21	6113.915	-311	4.8610759,6	46	"	LV LVII LIX	23	$\begin{aligned} & 564915 \cdot 965 \\ & 535655 \cdot 257 \\ & 691348 \cdot 778 \end{aligned}$	$\begin{array}{r} \cdot 093 \\ \cdot 093 \\ \cdot 093 \end{array}$	$\begin{aligned} & 4.557829 \mathrm{I}, 3 \\ & 4 \cdot 542796 \mathrm{r}, 7 \\ & 4 \cdot 6059389,0 \end{aligned}$
				$421017 \cdot 234$	- 310	47461320,9							
				$764838 \cdot 851$	-311	49075724,8							
43	"	$\begin{aligned} & \text { LIII } \\ & \text { LIV } \end{aligned}$	21	632213.301	- 272	4.83332 17.7	47	"	LVII	23		$\begin{array}{r} \cdot 154 \\ \cdot 154 \\ \cdot 153 \end{array}$	$\begin{aligned} & 4 \cdot 7375477,8 \\ & 4 \cdot 7819679,9 \\ & 4 \cdot 5578291,3 \end{aligned}$
				$441654 \cdot 664$	$\cdot 272$	4.7259946,3			LIX				
			22	$722052 \cdot 035$	$\cdot 273$	4-8610759,6			XXI*				
44	"	$\begin{aligned} & \text { LIII } \\ & \text { LIV } \\ & \text { LV } \end{aligned}$	22	$522256 \cdot 280$	- 218	4.7388607,5	48	"	LIX		7352 44-873	- 210	4.8021139,2
				$474158 \cdot 303$	$\cdot 217$	4.7090919,8			XXI*		$501350 \cdot 356$	- 210	47052510,1
				$7955 \quad 5 \cdot 417$	-218	4-8333217,7			XIX*		5553 24*771	- 210	47375477,8

The Eastern Sind Meridional Series.
Sides and Angles of the Circuit Triangles.

		Station Numbers		Corrected Plane Angle		Logarithm of side-length in Feet			Station Numbers		Corrected Plane Angle		Logarithm of side-length in Feet
		Serial	$\begin{aligned} & \text { o } \\ & \stackrel{\rightharpoonup}{\phi} \\ & \text { H } \end{aligned}$						Serial				
1	$y$$\infty$$z$	$\begin{aligned} & \text { LXXV } \dagger \\ & \mathbf{L X X V I I I} \dagger \end{aligned}$	1	- 1 "	"		7	$y$$x$$z$	$\frac{X}{I X}$	4	$\begin{array}{ccc} 0 & 1 & \prime \\ 82 & 32 & 9 \\ 43 & 6 & 929 \\ 43 & 6 & 322 \\ 54 & 21 & 16 \cdot 649 \end{array}$	$\begin{array}{r} 399 \\ \cdot 398 \\ \cdot 398 \end{array}$	$\begin{aligned} & 4.9775212,5 \\ & 4.8158867,0 \\ & 4.8911147,1 \end{aligned}$
				$602536 \cdot 142$	- 689	5.0107629,1							
				$683956 \cdot 059$	-689	5.0405510,9							
				$505427 \cdot 799$	-689	4.9613162,0							
2	"	$\begin{aligned} & \text { LXXVIII } \dagger \\ & \mathbf{V} \\ & \text { IV } \end{aligned}$	2	6639 1-865	-651	5.0220231,3	8	"	$\underset{\text { XIX }}{\text { XI }}$	5	49 4117.487	$\cdot 407$$\cdot 407$$\cdot 407$	$\begin{aligned} & 4 \cdot 8637686,8 \\ & 4 \cdot 8530204,8 \\ & 4 \cdot 9775212,5 \end{aligned}$
				495329.779	- 650	$4.9426942,5$					48 351-359		
				$632728 \cdot 356$	-650	$50107629,1$					821451-154		
3	"	IV	2	$543056 \cdot 859$	- 582	4-9506968,5	9	"	XI	5	$\begin{array}{\|cc\|}6041 & 0 \cdot 605 \\ 673127 \cdot 620 \\ 514731.775\end{array}$	$\begin{array}{r} \cdot 432 \\ \cdot 432 \\ \cdot 43 \mathrm{I} \end{array}$	$\begin{aligned} & 4 \cdot 9089527,3 \\ & 4 \cdot 9341636,6 \\ & 4 \cdot 8637686,8 \end{aligned}$
		V VII		$514921 \cdot 859$ 73	. 582	$409354045,2$			XII				
		VII		7339 41*282	$\cdot 583$	$50220231,3$			XIV				
4	"	V	2	$45296 \cdot 174$	- 459	4.8445767,8	10	"	XII	5	$\left.\begin{array}{cccc} 57 & 3 & 26 \cdot 471 \\ 62 & 44 & 33^{\circ} & 923 \\ 60 & 11 & 59 & 606 \end{array} \right\rvert\,$	$\begin{array}{r} \cdot \\ \cdot \\ \cdot 445 \\ \cdot 446 \end{array}$	$\begin{aligned} & 4 \cdot 8944242,1 \\ & 4 \cdot 9194326,2 \\ & 4 \cdot 9089527,3 \end{aligned}$
		VII		$685656 \cdot 008$	$\cdot 460$	4.9614489,2			XIV				
		VIII	3	$653357 \cdot 8 \mathrm{I} 8$	- 459	49506968,5			XV				
5	"	VIII	3	71 47 47*024	- 320	4*8870788,9	11	"	XV	6	55 49 $56 \cdot 225$ 64 1 $50 \cdot 61$ 60 8 13.714	$\begin{array}{r} \cdot 416 \\ \cdot 416 \\ \cdot 416 \end{array}$	$\begin{aligned} & 4 \cdot 8740090,7 \\ & 4 \cdot 9100682,1 \\ & 4 \cdot 8944242,1 \end{aligned}$
		VII		4843 50.218	- 319	$4.7853734,8$			XIV				
		\mathbf{X}	4	$592822 \cdot 758$	$\cdot 320$	$4 \cdot 8445767,8$			XVII	7			
6	"	VII	4	$\begin{array}{llll}58 & 5 & 33.733\end{array}$	$\cdot 428$	4.8911147,	12	"	XIV	7	$56831 \cdot 166$	336	4.8308845,6
		X		$643921 \cdot 248$	$\cdot 428$	$49183059,1$			XVII		$57211 \cdot 570$	337	$4.8368912,3$
		IX		5715 5*019	-427	$4: 8870788,9$			XVI		$663027 \cdot 264$	- 337	4:8740090,7

* Stations XIX and XXI appertain to the Sutlej Series.
† Stations LXXV and LXXVIII appertain to the Karáchi Longitudinal Series.

Notr.-Stations LIX and LXII appertain to the Great Indus Series.

9.

Preliminary Latitudes, Longitudes, and Azimuths of the Stations on the Line of the Traverse.

The following table gives the Geodetic Latitudes, Longitudes, and Azimuths, which have been obtained for all the stations and sides on the line of the traverse by applying the values of the difference of latitude, longitude, and azimuth-computed by the formulæ of Section 5 of the preceding chapter-first to the elements of the station of origin which are given on pages [31] and [32] and then to the deduced elements of every subsequent station in the order of succession which is indicated by the Traverse-numbers. Each station is thus regarded, first as the 'Deduced Station B' and afterwards as the ' Fixed Station A'.

In order to ascertain the differential values given by the geodetic calculations on which the tabulated elements are built up, we have for any, the ath, side on the flank of the chain

$$
\begin{gathered}
\Delta \lambda_{a}=\left(\lambda_{a+1}-\lambda_{a}\right) ; \quad \Delta L_{a}=\left(L_{a+1}-L_{a}\right) ; \\
\Delta A_{a}=B_{a}-\left(\pi+A_{a}\right) ;
\end{gathered}
$$

where \boldsymbol{A}_{a} stands for the forward azimuth at 'fixed station' \boldsymbol{A}_{a} of 'deduced station' \boldsymbol{B}_{a}, and B_{a} for the back azimuth of \boldsymbol{A}_{a} at B_{a}.

The three differential values depend on the length c_{a} and forward azimuth \boldsymbol{A}_{a} of the side a, and also on the latitude λ_{a}. The logarithmic length is given in the preceding section, on the same horizontal line as the angle at the serial station which enters, in the table, between the stations numbered in block type a and $(a+1)$. The forward azimuth of the side a may be deduced by adding all the spherical angles at a, as given in the table, to the back azimuth \boldsymbol{B}_{a-1}. Thus the logarithmic length of flank-side 4 in the Jodhpore Meridional Series is $5 \cdot 0763658,2$ which occurs in Triangle No. 8 on the same line as Serial Station VIII, entering between the flank stations 4 and 5 ; and the forward azimuth of this side is equal to the back azimuth of 3 at 4 and the sum of the spherical angles at 4, which occur in Triangles Nos. 5, 6, 7 and 8, the respective values of which are $81^{\circ} 51^{\prime} 53^{\prime \prime} \cdot 809,52^{\circ} 14^{\prime} 11^{\prime \prime} \cdot 619,57^{\circ} 47^{\prime} 50^{\prime \prime} \cdot 868$ and $78^{\circ} 52^{\prime} 36^{\prime \prime} \cdot 919$, together amounting to $270^{\circ} 46^{\prime} 33^{\prime \prime} \cdot 215$.

The Jodhpore Meridional Series.
Geodetic Elements of the Traverse Stations.

Fixed Station \mathbf{A}				Deduced Station B									
	Aximuth of B			무융	Latitude North			Longitude East of Greenwich			Azimuth of A		
		,	"		-	,	"	-	,	"	-	1	"
1	136	4	11•039	2	25	15	28.459	72	42	2.971	315	58	56-892
2	207	30	44.414	3		35	48-287	72	53	$43 \cdot 884$	27	35	45•364
3	130	44	59.568	4	25	48	59.547	72	36	48-017	310	37	38-920
4	221	24	12.135	5		3	44.632		51	12•776		30	30•400
5	147	1	24.992	6		16	51.325	72	41	46-339	326	57	15'157
6	207	19	57*791	7		29	19.000		48	55'906	27	23	8.690
7	136	48	$59 \cdot 639$	8	26	39	52.735	72	37	$53 \cdot 447$	316	44	3.258
8	201	3	35.5CI	9		50	25.979	72	42	25.309	21	5	$37 \cdot 877$
9	146	25	11.894	10	26	59	39 130	72	35	35*230	326	22	6.249
10	150	45	18.001	11	27	6	$54 \cdot 046$	72	31	3.044	330	43	14.200*
11	193	5	$38 \cdot 202$	12	27	16	$28 \cdot 856$	72	33	32-681	13	6	$46 \cdot 589$
12	206	0	$0 \cdot 751$	13		25	$36 \cdot 824$	72	38	32.258	26	2	18.388
13	154	46	31-129	14		38	$21 \cdot 665$	72	31	47•578	334	43	24.061
14	182	20	3•732	15		49	41•047		32	18•732	2	20	$18 \cdot 230$
15	173	48	43'123	16	28	0	15.339	72	31	1•244	353	48	$6 \cdot 845$
16	167	15	42•086	17	28	15	$18 \cdot 795$	72	27	10.566	347	13	$53 \cdot 328$
17	222	18	$14 * 443$	18		29	$40 \cdot 832$	72	41	59*428	42	25	$16 \cdot 867$
18	156	36	$44 \cdot 873$	19	28	42	51•016	72	35	31-696	336	33	39 242
19	200	42	51.881	20	28	56	$36 \cdot 587$	72	41	$26 \cdot 683$	20	45	43.054
20	118	27	52.034	21	29	1	54.718		30	18-012	298	22	27*981
21	170	10	43•799	22	29	10	33^{-811}		28	35*615	350	9	53•993
22	155	28	5•330	23		17	57-168	72	24	44*732	335	26	$12 \cdot 559$
23	167	7	$38 \cdot 689$	XXI*		27	41.351		22	12.171	347	6	$23 \cdot 842$

* This Station appertains to the Sutlej Series.

The Eastern Sind Meridional Series.
Geodetic Elements of the Traverse Stations.

Fired Station 1		Deduced Station B			
	Aximuth of B		Latitude North	Longitude East of Greenwich	Aximuth of \boldsymbol{A}
	\bigcirc		-	- ,	- 1
1	$\begin{array}{lll}172 & 21 & 13.916\end{array}$	2	$\begin{array}{lll}25 & 15 & 24.179\end{array}$	$\begin{array}{lll}70 & 14 & 5 \% 949\end{array}$	$\begin{array}{lll}352 & 20 & 6 \cdot 395\end{array}$
2	$\begin{array}{llll}190 & 26 & 34 \cdot 386\end{array}$	3	$\begin{array}{llll}25 & 30 & 15.594\end{array}$	$\begin{array}{lll}70 & 17 & 7.000\end{array}$	$\begin{array}{ll}10 & 27 \\ 51\end{array}$
3	$\begin{array}{llll}147 & 49 & 37 \cdot 611\end{array}$	4	$\begin{array}{llll}25 & 38 & 46 \cdot 993\end{array}$	$\begin{array}{llll}70 & 11 & 11.984\end{array}$	$\begin{array}{llll}327 & 47 & 4.351\end{array}$
4	$\begin{array}{lll}174 & 26 & 59\end{array}$	5	25 $\quad 49 \quad 32 \cdot 234$	$\begin{array}{lll}70 & 10 & 2.703\end{array}$	$\begin{array}{lll}354 & 26 & 29.349\end{array}$
5	$\begin{array}{llll}221 & 26 & 33 \cdot 130\end{array}$	6	$\begin{array}{llll}25 & 59 & 48 \cdot 684\end{array}$	$\begin{array}{lll}70 & 20 & 5 \cdot 343\end{array}$	$\begin{array}{llll}41 & 30 & 56.471\end{array}$
6	$\begin{array}{llll}157 & 32 & 53 \cdot 164\end{array}$	7	$\begin{array}{llll}26 & 12 & 12.776\end{array}$	$\begin{array}{lll}70 & 14 & 24.431\end{array}$	$\begin{array}{llll}337 & 30 & 23.182\end{array}$
7	$\begin{array}{lll}192 & 27 & 0.446\end{array}$	8	$\begin{array}{llll}26 & 23 & 35 \cdot 752\end{array}$	$\begin{array}{llll}70 & 17 & 11\end{array} 8872$	$\begin{array}{lll}12 & 28 & 14.630\end{array}$
8	$\begin{array}{llll}155 & 55 & 36 \cdot 365\end{array}$	9	$\begin{array}{lll}26 & 34 & 4.253\end{array}$	$\begin{array}{llll}70 & 11 & 59.558\end{array}$	$\begin{array}{llll}335 & 53 & 17 & 106\end{array}$
9	$\begin{array}{llll}184 & 45 & 29.056\end{array}$	10	$\begin{array}{llll}26 & 45 & 11\end{array}$	$\begin{array}{llll}70 & 13 & 1.459\end{array}$	$\begin{array}{llll}4 & 45 & 56.831\end{array}$
10	$\begin{array}{llll}185 & 32 & 37 \cdot 641\end{array}$	11	$\begin{array}{lll}26 & 59 & 5 \cdot 157\end{array}$	$\begin{array}{lll}70 & 14 & 317740\end{array}$	$\begin{array}{llll}5 & 33 & 18.444\end{array}$
11	$\begin{array}{ll}175 & 10 \\ 59\end{array}$	12	$\begin{array}{llll}27 & 10 & 31 & 893\end{array}$	$\begin{array}{llll}70 & 13 & 26.831\end{array}$	$\begin{array}{lll}355 & 9 & 36.379\end{array}$
12	$\begin{array}{llll}158 & 31 & 20 \cdot 755\end{array}$	13	$\begin{array}{lll}27 & 22 & 6.796\end{array}$	$\begin{array}{llll}70 & 8 & 20.532\end{array}$	$\begin{array}{lll}338 & 29 & 0.404\end{array}$
13	$\begin{array}{llll}179 & 39 & 46 \cdot 947\end{array}$	14	$\begin{array}{llll}27 & 32 & 45\end{array}$	$\begin{array}{lll}70 & 8 & 16.314\end{array}$	$\begin{array}{lll}359 & 39 & 45.002\end{array}$
14	$\begin{array}{llll}178 & 48 & 28.772\end{array}$	15	$\begin{array}{llll}27 & 42 & 24.009\end{array}$	$\begin{array}{lll}70 & 8 & 2.800\end{array}$	$\begin{array}{llll}358 & 48 & 22.505\end{array}$
15	$\begin{array}{llll}156 & 9 & 11 & 876\end{array}$	16	$\begin{array}{llll}27 & 54 & 35 \cdot 662\end{array}$	70 I 58.661	$336 \quad 6 \quad 21 \cdot 999$
16	$\begin{array}{llll}180 & 53 & 50 & 326\end{array}$	17	$\begin{array}{llll}28 & 2 & 23.887\end{array}$	$\begin{array}{llll}70 & 2 & 6.927\end{array}$	- 53 54.203
17	$13513 \quad 20.411$	18	$\begin{array}{lll}28 & 6 & 33.563\end{array}$	$69 \quad 57 \quad 27.418$	$\begin{array}{llll}315 & 11 & 8: 868\end{array}$
18	$\begin{array}{lll}167 & 51 & 25\end{array}$	19	$\begin{array}{llll}28 & 12 & 34 & 031\end{array}$	$\begin{array}{llll}69 & 55 & 59 & 856\end{array}$	$\begin{array}{llll}347 & 50 & 43.830\end{array}$
19	$\begin{array}{lll}160 & 39 & 0.725\end{array}$	LXII*	$\begin{array}{lll}28 & 20 & 12.444\end{array}$	$\begin{array}{llll}69 & 52 \quad 57-889\end{array}$	340

* This Station appertains to the Great Indus Series.

10.

Numerical Values of the Absolute Terms in the Primary Equations of Condition.
The Lengths and Azimuths of the sides of the triangles, and the Latitudes and Longitudes of the Stations on the traverse flank of each chain, having been computed-as set forth in the two preceding sections-the values of the several Absolute Terms in the Primary Equations of Condition are indicated by the discrepancies between the computed values as here obtained at the junctions with the Sutlej and Great Indus Series and the corresponding values given in Volumes III and IV, and quoted in Section 7 of this Volume. The closing linear discrepancies are expressed logarithmically and the 7th place of decimals is treated as unity.

The Absolute Terms will now be particularised.

The Jodhpore Meridional Series.

Equation 1, Linear. Between the sides Súnda-Bonik and Kaimsir-Kanda.
Log. computed length Kaimsir-Kanda by Triangle No. 48 $48 \mathbf{8 0 2 1 1 3 9 , 2}$
Log. final value; see page [31] $\underline{48}^{8021262,6}$
${ }_{1} E=-123.4$
Logarithmic Error - -0000123,4

Equations 2 to 4, Geodetic. Terminal Station, Kanda. Terminal side, Kaimsir-Kanda.

	Latitude.	Longitude.	Azimuth.
	-	- ,	- ,
Computed values	$292741 \cdot 351$	722212.171	$732631 \cdot 365$
Final values; see page [31]	2927 41*523	722212.292	$732634 \cdot 58$ I
Errors	$E=-0.172$	${ }_{3} E=-0 \cdot 121$	${ }_{4} E=-3.216$

The Eastern Sind Meridional Series.

Equation 1, Linear. Between the sides Rojhra-Sandohar and Dáowála-Máchka.
Log. computed length Dáowála-Máchka by Triangle No. 39 477780708,6
Log. final value; see page [32] $4 \cdot 7780782,8$
${ }_{1} E=-74 \cdot 2 \quad$ Logarithmic Error - •0000074,2

Equations 2 to 4, Geodetic. Terminal Station, Dáowála. Terminal side, Dáowála-Máchka.

	Latitude.	Longitude.	Azimuth.
	- , "	- ,	- , "
Computed values	282012.444	695257.889	$87 \quad 127.640$
Final values; see page [32]	$28 \quad 2012 \cdot 867$	695257.861	87 1 26.701
Errors	${ }_{2} E=-0.423$	${ }_{3} E=+0.028$	${ }_{4} E=+0.939$

These absolute terms when multiplied by the equalizing factors given on page [24] become

$$
{ }^{s} E=-7.42, \quad{ }_{2} E=-4.23, \quad{ }_{3} E=+0 \cdot 28, \quad{ }_{4} E=+0 \cdot 939
$$

11.

Numerical Values of the $\mu 8$ and ϕs.
The table of substitutions at page [23] shews the general form of the factors μ and ϕ. The numerical values are tabulated in this section : they were constructed in the opposite order to that in which they are now recorded, commencing at the closing of the chain.*

On reference to the equation on page [22] it will be observed that the $\mu \mathrm{s}$ are factors of the tab. log. differences of sine, a, β or γ. In the side equations it has been found convenient to multiply a, β and γ by 10^{7}, or in other words to treat the 7th place of decimals as unity. It is convenient to do the same in the geodetic equations and to divide the $\mu \mathrm{s}$ by 10^{7}, because the latter are large integral quantities containing more significant figures than are required: after division the last two places of decimals can be omitted. In the following tables $\mu \times \frac{1}{10^{7}}$ is accordingly given.

[^5]
The Jodhpore Meridional Series.

Numerical Values of the $\mu 8$ and $\phi 8$.

	Letitude		Longitude		Aximuth	
	${ }_{\lambda} \mu \times \frac{1}{10^{7}}$	${ }_{\lambda} \boldsymbol{\phi}$	${ }_{2} \mu \times \frac{1}{10^{7}}$	${ }_{2} \boldsymbol{\phi}$	${ }_{4} \mu \times \frac{1}{10^{7}}$	${ }_{4} \boldsymbol{\phi}$
1	+ ${ }^{\circ} 00356$	$+\cdot 0077$	-.00044	+ $\cdot 0866$	-.00020	+ 1.0394
2	339	45	27	829	13	1.0378
3	311	76	44	763	20	1*0350
4	293	31	20	721	10	1-0332
5	273	70	40	675	19	1.0312
6	255	45	27	633	13	1.0294
7	237	64	37	592	17	1.0276
8	223	36	22	555	10	1.0260
9	208	48	28	521	13	1•0245
10	196	30	19	491	09	1.0231
11	195	19	12	467	-6	1-0220
12	181	26	16	436	08	1-0206
13	169	39	23	406	11	1-0192
14	151	21	13	364	07	1-0173
15	135	23	14	327	07	1•OI 56
16	121	20	12	292	06	1-0140
17	100	12	07	242	04	1-0117
18	080	50	27	195	13	1.0095
19	062	34	18	151	09	$1 \cdot 0074$
20	043	49	27	106	13	1-0052
21	036	21	11	086	05	I•0042
22	024	16	09	057	04	$1 \cdot 0028$
23	014	07	04	032	02	1•0016

The Eastern Sind Meridional Series.
Numerical Values of the $\mu 8$ and $\phi 8$.

	Latitude		Longitude		Aximuth	
	${ }_{\lambda} \mu \times \frac{1}{10^{7}}$	${ }_{\lambda} \boldsymbol{\phi}$	${ }_{2} \mu \times \frac{1}{10^{5}}$	${ }_{2} \phi$	${ }_{4} \mu \times \frac{1}{10^{7}}$	${ }_{4} \phi$
1	+ $\cdot 00281$	+ $\cdot 0060$	--00033	+ $\cdot 0654$	-.00015	+1•0293
2	256	52	29	597	13	$1 \cdot 0269$
3	235	60	33	549	15	$1 \cdot 0248$
4	223	45	25	522	12	1•0237
5	208	42	23	488	11	1-0222
6	194	69	37	456	17	1-0208
7	177	54	30	416	14	1-0191
8	161	62	33	380	15	$1 \cdot 0174$
9	146	49	26	345	12	$1 \cdot 0159$
10	131	52	28	309	13	1-0143
11	112	56	30	265	14	$1 \cdot 0123$
12	096	52	28	228	13	1•0106
13	080	40	21	190	10	1-0089
14	066	40	21	155	10	$1 \cdot 0073$
15	052	40	21	123	10	$1 \cdot 0058$
16	035	23	12	084	06	I•0040
17	025	23	13	059	06	1•0028
18	019	11	06	045	03	1-0021
19	OII	07	04	025	02	$1 \cdot 0012$

12.

Numerical Values of the Coefficients band cof the Unknoon Quantities y and z .
The following table gives the numerical values of the coefficients b and c of the u. known quantities y and z in each equation of condition. Should it be desired to reproduce
any one of these coefficients, as the value of b_{p} in the q th equation, it is first necessary to ascertain by reference to pages [29] and [30], whether the coefficient is one of those of an exceptional form for which symbolical expressions are there given. When not found in this list it will be understood to take one of the general forms on page [29].

Examples.

(1). To find the values of \boldsymbol{b}_{8} and \boldsymbol{f}_{8} in equation I of the Jodhpore Meridional Series.

This is a linear equation, and the forms of the coefficients are normal,

$$
\begin{aligned}
& { }_{1} \mathrm{~b}_{8}=+ \text { t.d. } \log \sin 78^{\circ}{ }_{52^{\prime}} 35^{\prime \prime}=+4 ; \\
& { }_{1} \mathrm{c}_{8}=-\mathrm{t} . \mathrm{d} \cdot \log \sin 47 \quad 2 \quad 4=-19 .
\end{aligned}
$$

(2). To find the values of \boldsymbol{b}_{8} and \mathfrak{f}_{8} in equation 3 of the Jodhpore Meridional Series.

The equation is longitudinal, and the forms of the coefficients are normal,

$$
\begin{aligned}
3^{b_{8}} & =+\left\{\left(\Sigma \mu_{5}-\Sigma \mu_{4}\right) a_{8}+\Sigma \mu_{5} \beta_{8}+\Sigma \phi_{4}\right\} \\
& =+\{-2000 \times \cdot 0000015-4023 \times \cdot 0000004+\cdot 0721\} \\
& =+\cdot 0675 ; \\
{ }_{3} \mathfrak{c}_{8} & =+\left\{\left(\Sigma \mu_{5}-\Sigma \mu_{4}\right) a_{8}-\Sigma \mu_{4} \gamma_{8}+\Sigma \phi_{5}\right\} \\
& =+\{-2000 \times \cdot 0000015+2023 \times \cdot 0000019+\cdot 0675\} \\
& =+\cdot 0683 .
\end{aligned}
$$

(3). To find the values of b_{47} and \boldsymbol{c}_{47} in equation 4 of the Jodhpore Meridional Series.

The equation is azimuthal, and the forms of the coefficients are exceptional, see page [29],

$$
\begin{aligned}
{ }_{4} b_{47} & =-\Delta \mu_{23} a_{47}+\Delta \phi_{23} \\
& =+172 \times \cdot 0000004+1 \cdot 0016 \\
& =+1 \cdot 0017 ; \\
{ }_{4} \mathrm{c}_{47} & =1-\Delta \mu_{23}\left(a_{47}+\gamma_{47}\right) \\
& =1+172 \times(\cdot 0000004+\cdot 0000029) \\
& =1 \cdot 0006 .
\end{aligned}
$$

The Jodhpore Meridional Series.

	Coefficients of y and ε		$\begin{gathered} \text { No. of Circuit } \\ \text { Triangle } \end{gathered}$	Coefficients of y and z		$\begin{gathered} \text { No. of Circuit } \\ \text { Triangle } \end{gathered}$	Coefficients of y and z			Coefficients of y and z	
	b	c		b	1		b	¢		b	c
$18 t$	Equation.	Linear.		Equation	(Continued).	2nd	quation	(Continued).	2nd	Quation	(Continued).
1	+ 8	- 6	31	$+\quad 9$	- 10	11	+0.0286	-0.0223	41	+0.0004	-0.0078
2	24	+ 6	32	5	23	12	-0351	$\cdot 0191$	42	-0018	-0039
8	11	- 16	33	11	13	13	-0589	-0188	43	-0022	-0034
4	3	19	34	22	17	14	-0187	-0415	44	- 0022	-0025
5	14	3	35	18	16	15	- 0209	-0237	45	-0032	-0017
6	12	9	36	I 1	11	16	- 0290	- 0236	46	-0012	-0018
7	19	6	37	19	5	17	-0226	-0280	47	$\cdot 0002$	$\cdot 0044$
8	4	19	38	11	6	18	-0322	- 0147			
9	12	3	39	12	23	19	-0164	-0237	3rd	quation.	Longitude.
10	16	6	40	15	6	20	-0351	- 0097	1	-0.0902	- 0.0839
11	13	7	41	7	16	21	-0098	$\cdot 0505$	2	+ .0856	+ .0858
12	14	9	42	11	5	22	-0344	$\cdot 0072$	3	- .0859	- $\cdot 0785$
13	24	9	43	11	7	23	-0155	-0334	4	$+\cdot 0787$	+ $\cdot 0786$
14	10	17	44	16	4	24	- 0283	- 155	5	-0786	$\cdot 0785$
15	11	9	45	21	5	25	-018I	-0427	6	- -0745	- $\cdot 0703$
16	13	12	46	14	8	26	-0281	- 0157	7	-0759	-0709
17	10	14	47	10	29	27	- 0145	- 0157	8	+ •0675	+ .0683
18	18	6	48	6	14	28	- 0211	- 0202	9	-0674	- 0677
19	7	13				29	-0099	-0131	10	- .0677	- .0617
20	19	4	2nd	Equation.	Latitude.	30	$\cdot 0101$	-0229	11	- 0668	-0614
21	6	25	1	+0.0207	- 0.0290	31	-0089	- 0141	12	+ $\cdot 0566$	+ .0602
22	19	4	2	-0839	+ $\cdot 0205$	32	-0045	$\cdot 0291$	13	-0551	-0599
23	10	17	3	-0328	- $\cdot 0588$	33	- cog 8	-0142	14	- -0577	- .0518
24	16	10	4	- 0087	- 0620	34	- 0208	-0182	15	-0579	-0535
25	10	26	5	- 0446	-0102	35	- 0148	- O1I 8	16	+ $\cdot 0511$	+ .0539
26	20	9	6	-0321	-0295	36	$\cdot 0091$	-0081	17	$\cdot 0515$	-0543
27	11	9	7	-0526	- 0207	37	$\cdot 0083$	$\cdot 0065$	18	- -0524	- 0480
28	15	14	8	-0109	-0518	38	-0034	$\cdot 0071$	19	+.0493	$+.0502$
29	9	8	9	-0330	$\cdot 0082$	39	- 0076	- 0102	20	- 0490	- $\cdot 0462$
30	8	17	10	-0362	-0198	40	-0090	$\cdot 0017$	21	$\cdot 0474$	-0436

The Jodhpore Meridional Series.

	Coeflciente of y and z			Coefficiente of y and z			Coeffliente of y and E			Coofflients of y and z	
	b	c		b	c		b	c		b	c
3 r	Equation	Continued)		Equation	-(Continued)	4th	Equation	(Continued).	4th	Equation	(Continued).
22	+0.0432	+0.0436	41	- 0094	-0.0068	11	-1.0311	- 1.0285	30	+1.0152	+1.0153
23	- -0452	- . 0409	42	-0098	-0080	12	+1.0263	$+1.0281$	31	-1.0145	-1.0134
24	+ 0393	+ 0415	43	+ ${ }^{00881}$	+ 0070	13	1.0256	$1 \cdot 028$	32	+1.0141	+1.0134
25	-0398	-0428	44	- -0071	- .0053	14	-1.0270	- 1.0242	33	-1.0121	-1.0112
26	- -0391	- .0352	45	+ $\cdot 0056$	+ -0042	15	1.0271	1.0251	34	1.0125	$1 \cdot 011$
27	-0379	-0352	46	- -003	- .0029	16	+1.0240	+ 1.0255	35	+1.0089	+ 1.0097
28	+ - 0342	+ -0345	47	+ $\cdot 003$	+ -0011	17	1.0242	1.0256	36	$1 \cdot 0091$	$1 \cdot 0095$
29	- . 0340	- .0316				18	-1.0247	- 1.0226	37	-1.0091	- 1.0070
30	+ -0319	+ .0318	4th	uation.	Azimuth	19	+1.0232	+ 1.0237	38	$1 \cdot 0084$	$1 \cdot 0069$
31	- - 0303	- . 0280	1	-1.0410	- 1•0382	20	-1.0232	-1.0218	39	+1.0057	+ 1.0071
32	+ $\cdot 0295$	+ .0276	2	+1.0386	+1.0390	21	1•0224	1-0205	40	$1 \cdot 0056$	0062
33	- . 0250	- . 0233	3	-1.0393	- 1.035	22	+1.0203	+ $1 \cdot 0206$	41	- I•0046	- 1.0033
34	-0257	-0230	4	+1.0360	+1.0363	23	-1.0214	- I•0193	42	$1 \cdot 0048$	$1 \cdot 0039$
35	+ $\cdot 0185$	+ .0198	5	1•0358	$1 \cdot 0360$	24	+1•0186	+ 1.0197	43	+1•0039	+ 1.0034
36	$\cdot 0188$	-0194	6	-1.0344	- 1.0323	25	1-0187	$1 \cdot 0203$	44	-1.0035	- 1.0026
37	- -0186	- .0142	7	1.0351	1.0326	26	-1.0186	- 1.0167	45	+1.0027	+ 1.0021
38	-0171	-0140	8	+1.0312	+ 1.0318	27	1.0180	1.0167	46	-1.0018	- 1.0015
39	+ 0115	+ .0144	9	1.0311	1.0313	28	+1•0163	+ 1.0165	47	+1•0017	+ 1.0006
40	. 0114	-0127	10	-1.0315	-1.0286	29	-1.0162	- 1.0150	48	-1.0000	- 1-0000

The Eastern Sind Meridional Series.

	Coefficients of \boldsymbol{y} and \boldsymbol{z}			Coofficients of y and z			Coefficients of y and z			Coefficients of y and z	
	b	c		b	c		b	c		b	c
1st	Equation.	Linear.	1st	Equation	(Continued).	2nd	Equation	-(Continued).	$3 r d$	Equation	(Continued).
1	+ 12	- 17	31	$+\quad 17$	- 2	20	+0.0236	-0.0199	10	+0.0426	+0.0470
2	9	10	32	- 1	17	21	-0056	-0168	11	-0422	-0468
3	15	6	33	+ 26	+ 5	22	-0111	-0138	12	- . 0458	- .0389
4	21	9	34	20	- 2	23	-0082	-0129	13	-0431	-0359
5	7	12	35	12	20	24	-0166	-0099	14	+.0330	$+.0376$
6	13	14	36	14	7	25	-0104	-0096	15	-0350	-0401
7	3	16	37	11	10	26	-0024	-0183	16	- -0379	- .0319
8	18	3	38	21	19	27	-0059	-0093	17	+ - 0349	+ .0377
9	11	17	39	2	29	28	-0032	-0088	18	- -0351	- .0303
10	13	12				29	-0002	-0102	19	-0354	-0295
11	14	12	2nd	Equation.	Latitude.	80	$\cdot 0074$	-004I	20	+ .0257	+ .0317
12	14	9	1	+0.0347	-0.0446	31	-0037	-0030	21	- 0295	- .0235
13	5	19	2	-0178	-0308	82	- .0009	-0066	22	+.0246	$+.0276$
14	24	1	3	-0332	-0206	33	+ $\cdot 0042$	-0010	23	- . 0267	- . 0206
15	14	15	4	$\cdot 0529$	-0187	34	-0049	- 0006	24	+.0200	+ .0232
16	13	10	5	-0193	-0260	35	-0012	-0049	25	-. 0228	- .0175
17	2	27	6	-0245	-0357	36	-0014	-0018	26	+.0188	+ . 0208
18	+ 15	2	7	-0074	-0348	37	-0005	-0018	27	--0187	- .0138
19	16	5	8	-0332	-0104	38	- 0005	-0023	28	+ .0147	+ .0155
20	17	19	9	-0187	-0396				29	-. 0140	- $\cdot 0098$
21	10	10	10	- 0280	-0195	$3 r d$	Equation.	Longitude.	30	+ .0114	+ .0111
22	8	15	11	-0300	-0196	1	+0.0622	+0.0656	31	-.0104	- . 0082
23	14	8	12	-0194	-0213	2	-.0623	- . 0568	32	+.0085	+ .0079
24	16	13	13	-003.5	-0390	3	-0641	-0580	33	- -0093	- . 0066
25	18	7	14	-0413	+ .0017	4	+ -0525	+ -0572	34	+ . 0059	+ .0060
26	1	25	15	-0254	- - 0205	5	-0546	-0577	35	- -0052	- . 0033
27	15	8	16	-0141	-0195	6	- -0555	- . 0487	36	+ $\cdot 0042$	+ .0032
28	4	15	17	-.0009	-0374	7	+ 0.0519	+ .0532	37	- . 0029	- . 0021
29	8	12	18	+.0145	-0078	8	- .0529	- -048I	38	+ .0026	+ . 0008
30	16	8	19	-0158	-0118	9	$\cdot 0513$	-0449			

The Eastern Sind Meridional Series.

	Coefficiente of \boldsymbol{y} and \boldsymbol{z}			Coefficients of y and z			Coefficients of y and z			Coefficients of y and z	
	b	c		b	c		b	c		b	c
4th Equation. Azimuth.			4th Equation-(Continued).			4th Equation-(Continued).			4th Equation-(Continued).		
1	+1.0279	+ 1.0297	11	+1•0191	+ 1.0214	21	-1•0137	- 1-0109	81	- 1.0050	- I•0039
2	-1.0281	- I.0256	12	-1.0211	- 1.0178	22	+1.0114	+ 1.0128	32	+1.0041	+ 1.0038
3	1-0289	1-0261	13	1•0198	$1 \cdot 0164$	23	-1.0124	- 1•0096	33	-1.0044	- 1.0031
4	+1•0235	+ 1.0258	14	+1.0152	+1.0172	24	+1•0093	+1.0109	34	+ I•0028	+1.0028
5	1-0248	1-0263	15	1-0159	$1 \cdot 0184$	25	-1.0107	- 1.0082	35	- 1-0025	-1.0015
6	-1.0253	- 1.0220	16	-1.0175	- I.0147	26	+1.0088	+ 1-0098	36	+1.0020	+ 1.0016
7	+1.0236	+ 1.0243	17	+1.0160	+ 1.0173	27	- 1.0088	- 1•0065	87	-1.0014	- I•0010
8	-1.0242	- 1.0219	18	-1.0163	- I.0140	28	+1•0069	+1.0073	38	+1.0012	+1.0004
9	1-0234	1-0203	19	1-0164	1-0136	29	-1.0066	- 1.0046	39	-1.0000	- 1.0000
10	+1.0194	+1.0215	20	+1.0119	+1.0148	30	+1•0053	+ 1.0053			

13.

The Coefficients of the Indeterminate Factors in the Values of the Unknown Quantities.
On reference to the equations on page [12] it will be seen that the general expression for the error x_{p} of any angle X_{p} appertaining to a trigonometrical figure, is, when the weight is unity,

$$
x_{p}=\left(a_{p} \lambda_{a}+b_{p} \lambda_{b}+\cdots \cdot+n_{p} \lambda_{n}\right)
$$

so that the coefficients of λ_{a}, λ_{b}, . . . λ_{n}, the indeterminate factors, are the coefficients of x_{p} in the several absolute geometrical equations to which the indeterminate factors are respectively related. But one of the three unknown quantities appertaining to every triangle having been eliminated, as a preliminary to the simultaneous reduction of each
series, the coefficients of the Indeterminate Factors take a more complex form which is given on page [25]. The expressions are :-

$$
\begin{aligned}
& y_{p}={ }_{1} \mathfrak{B}_{p} \Lambda+{ }_{2} \mathfrak{B B}_{p} \Lambda+\cdots \cdot \cdot+{ }_{n} \boldsymbol{B _ { p }} \Lambda, \\
& z_{p}={ }_{1} \mathbb{C}_{p 1} \Lambda+{ }_{2} \mathbb{C}_{p} \Lambda+\cdots \cdot \cdot+{ }_{n} \mathbb{C}_{p} \Lambda,
\end{aligned}
$$

where, see note to page [25],

$$
\begin{aligned}
& { }_{1} \mathbb{C}_{p}=\left({ }_{1} \mathbf{c}_{p}-{ }_{1} \mathfrak{b}_{p}\right) ; \quad{ }_{2} \mathfrak{C}_{p}=\left({ }_{2}{ }_{2} \mathfrak{C}_{p}-{ }_{2}{ }_{2}{ }_{p}\right) \text {; . . }
\end{aligned}
$$

the left-hand subscripts indicating the number of any one of the equations into which the errors y and z of any, the p th, triangle happen to enter.

The values of \dot{b}_{p} and \boldsymbol{c}_{p} for each equation into which the y_{p} and z_{p} enter, are given in the table in the preceding section.

Examples.
From the Jodhpore Meridional Series.

$$
\begin{aligned}
& { }_{2} \mathfrak{B B}_{6}=\left(2{ }_{2}{ }^{b_{6}}-{ }_{2} \mathfrak{C}_{6}\right)=(2 \times+0.032 \mathrm{I}+0.0295)=+0.0937 \\
& { }_{2} \mathbb{C}_{6}=\left(2{ }_{2} \mathfrak{C}_{6}-{ }_{2}{ }^{b_{6}}\right)=(2 \times-0.0295-0.0321)=-0.091 \mathrm{II} .
\end{aligned}
$$

The following tables give the values of the significant coefficients $3 \mathbb{3}$ and \mathbb{C} of the In determinate Factors ${ }_{1} \Lambda,{ }_{2} \Lambda, \ldots$ for the y and z of every triangle for each series.

The Jodhpore Meridional Series.

	$3{ }^{3}$	\mathbb{C}		38	\mathfrak{e}		$3{ }^{3}$	\mathfrak{C}		$3{ }^{3}$	\mathfrak{C}
1st Equation. Linear.			1st Equation-(Continued).			1st Equation-(Continued).			1st Equation-(Continued).		
1	+ 22	- 20	9	+ 27	- 18	17	+ 34	3^{8}	25	$+46$	- 62
2	42	12	10	38	28	18	42	30	26	49	38
8	38	43	11	33	27	19	27	33	27	31	29
4	25	41	12	37	32	20	42	27	28	44	43
5	31	20	13	57	42	21	37	56	29	26	25
6	33	30	14	37	44	22	42	27	30	33	42
7	44	31	15	31	29	23	37	44	31	28	29
8	27	42	16	38	37	24	42	36	32	33	51

The Jodhpore Meridional Series.

	33	$\mathfrak{C l}$		$\boldsymbol{3}$	\mathfrak{C}		33	\mathfrak{C}		43	\mathfrak{C}
1st Equation-(Continued).			2nd Equation-(Continued).			2nd Equation-(Continued).			3rd Equation-(Continued).		
33	+ 35	- 37	13	$+0.1366 \mid-0.0965$		43	$+0.0078$	-0.0090	24	+0.0371	+0.0437
34	61	56	14	-0789	$\cdot 1017$	44	-0069	$\cdot 0072$	25	-0368	-0458
35	52	50	15	-0655	-0683	45	-0081	-0066	26	- . 0430	- .0313
36	33	33	16	-08ı6	-0762	46	-0042	- 0048	27	-0406	-0325
37	43	29	17	-0732	-0786	47	- 0048	-0090	28	+ . 0339	+ . 0348
38	28	23	18	-0791	-0616				29	-.0364	- . 0292
39	47	58	19	-0565	-0638	3rd Equation. Longitude.			30	+ .0320	+ .0317
40	36	27	20	-0799	-0545	1	-0.0965	-0.0776	31	-.0326	- . 0257
41	30	39	21	-0701	-1108	2	+ .0854	+ . 0860	32	+.0314	+ . 0257
42	27	21	22	-0760	-0488	3	-0933	- -0711	33	-. 0267	- . 0216
43	29	25	23	-0644	-0823	4	+ -0788	$+$	34	-0284	-0203
44	36	24	24	-0721	-0593	5	-0787	-0784	35	$+\cdot 0172$	+ .0211
45	47	31	25	-0789	-1035	6	- .0787	- .066ı	36	-0182	-0200
46	36	30	26	-0719	-0595	7	. 0809	-0659	37	- . 0230	- . 0098
47	49	68	27	-0447	-0459	8		+	38	-0202	- 0109
48	26	34	28	-0624	-0615	9	$+\quad .0667$.0671	.068	39	+ $\cdot 0086$	+ .0173
			29	-0329	-0361	10	- -0737	- 055	40	- 0101	-0140
2nd	uation.	Latitude.	30	-043I	-0559	11	. 0722	. 0560	41	- -0120	- . 0042
1	+0.0704	-0.0787	31	-0319	-0371	12	+.0530	+ .0638	42	$\cdot 0116$	-0062
2	-1473	-0429	32	-0381	-0627	13	- 0	. 0647	43	+ -0092	+ .0059
8	- 1244	- 1504	33	-0338	-0382	14	-. 0636	- . 0459	44	- .0089	- .0035
4	. 0794	-1327	34	-0598	$\cdot 0572$	15	. 0623	- 0491	45	+ $\cdot 0070$	+ .0028
5	-0994	-0650	35	-0414	-0384	16	+ . 0483	+ $\cdot 0.067$	46	- .0045	- $\cdot 0021$
6	-0937	-0911	36	-0263	-0253	17	-0487	.0571	47	+ $\cdot 0055$	-0011
7	- 1259	-0940	37	-0231	-0213	18	-.0568	- . 0436			
8	-0736	- 1145	38	-0139	-0176	19	+ $\cdot 048$	+ .0511	4th Equation.		Azimuth.
9	-0742	-0494	39	-0254	-0280	20	-.0518	- -0434	1	-1•0438	- 1•0354
10	-0922	-0758	40	-0197	- 0124	21	-0512	-0398	2	+1.0382	+ 1.0394
11	-0795	-0732	41	-0086	-0160	22	+ $\cdot 0428$	+ . 0440	3	- 1.0429	- 1•0321
12	-0893	-0733	42	-0075	-0096	23	- . 0495	- -0366	4	+1.0357	+ 1.0366

The Jodhpore Meridional Series.

	38	\mathfrak{H}		33	$\mathfrak{d r}$		31	\mathfrak{C}		38	$\mathfrak{d r}$
4th	quation	(Continued).	4th	quation	(Continued).		Equation-	(Continued).		Equation	(Continued).
5	+1.0356	+ 1 03662	16	+1.0225	+ 1.0270	27	-I•0193	- I•0154	38	-I•0099	- I•0054
6	-1.0365	- 1.0302	17	$1 \cdot 0228$	$1 \cdot 0270$	28	+1.0161	$+1 \cdot 0167$	39	+ I.0043	+1.0085
7	$1 \cdot 0376$	1-0301	18	-1.0268	- 1.0205	29	-1.0174	- 1.0138	40	1-0050	1-0068
8	+1.0306	+ 1.0324	19	+1.0227	+ 1.0242	30	+1.0151	+1.0154	41	- 1.0059	- 1.0020
9	1-0309	1.0315	20	-1.0246	- 1.0204	31	-1.0156	- 1.0123	42	1-0057	1-0030
10	-1.0344	- 1.0257	21	1-0243	1-0186	32	+1.0148	+1.0127	43	+1.0044	+1.0029
11	1-0337	1-0259	22	+1.0200	+1.0209	33	-1.0130	- 1.0103	44	-1.0044	-1.0017
12.	+1.0245	+ 1.0299	23	-1.0235	- 1.0172	34	1-0139	1-0097	45	+1•0033	+1.0015
13	1-0231	1-0306	24	+1.0175	+ 1.0208	35	+ $\mathrm{I} \cdot 008 \mathrm{I}$	+ 1.0105	46	-1.0021	- 1.0012
14	-1.0298	- 1.0214	25	1•0171	1.0219	36	I•0087	1•0099	47	+1.0028	+ 0.9995
15	1-0291	1-0231	26	-1.0205	- 1.0148	37	-1.0112	- I•0049	48	-1.0000	- 1.0000

The Eastern Sind Meridional Series.

	38	\mathfrak{C}		313	\mathfrak{C}		38	\boldsymbol{C}		36	$\mathfrak{C l}$
$18 t$	Equation.	Linear.		Equation	(Continued).	$18 t$	Equation	(Continued).		Equation	(Continued).
1	+ 41	- 46	11	$+40$	- 3^{8}	21	$+30$	- 30	31	+ 3^{6}	21
2	28	29	12	37	32	22	31	3^{8}	32	15	33
3	36	27	13	29	43	23	36	30	33	47	16
4	51	39	14	49	26	24	45	42	34	42	24
5	26	31	15	43	44	25	43	32	35	44	52
6	40	41	16	36	33	26	27	51	36	35	28
7	22	35	17	23	52	27	38	31	37	32	31
8	39	24	18	32	19	28	23	34	38	61	59
9	39	45	19	37	26	29	28	32	39	33	60
10	3^{8}	37	20	53	55	30	40	32			

The Eastern Sind Meridional Series.

	33	\mathfrak{d}		33	$\mathfrak{d r}$		$3{ }^{3}$	\mathfrak{C}		33	(1)
2nd	quation.	Latitude.	2nd	Equation	-(Continued).	$3 r d$	Equation	(Continued).		Equation	(Continued).
1	+0.1140	-0.1239	31	+0.0104	-0.0097	21	-0.0355	-0.0175	11	+1•0168	+ 1.0237
2	-0664	-0794	32	-0048	-0123	22	+.0216	+ .0306	12	-1.0244	- I.0145
3	-0870	-0744	33	-0094	-0062	23	- . 0328	- -0145	13	1•0232	1-0130
4	-1245	-0903	34	-0104	- 0061	24	+ -0168	+ . 0264	14	+1.0132	+1.0192
5	-0646	-0713	35	$\cdot 0073$	-0110	25	- -0281	- . 0122	15	1-0134	1-0209
6	-0847	-0959	36	- 0046	-0050	26	+.0168	+ . 0228	16	-1.0203	- I•0119
7	-0496	-0770	37	-0028	-0041	27	- . 0236	- . 0089	17	+1.0147	+ I.0186
8	-0768	-0540	38	$\cdot \mathrm{CO} 33$	$\cdot 0051$	28	+ -0139	+ .0163	18	-1.0186	-1.0117
9	-0770	-0979				29	- -0182	- -0056	19	1-0192	1-0108
10	-0755	-0670	$3 r d$	Equation.	Longitude.	30	+.0117	+ .0108	20	+1.0090	+ 1.0177
11	-0796	-0692	1	+0.0588	+0.0690	31	-.0126	- -0060	21	-1.0165	- I•0081
12	-0601	-0620	2	- .0678	- .0513	32	+ -0091	+ $\cdot 0073$	22	+1.0100	+1.0142
13	-0460	-0815	3	-0702	-0519	33	- . 0120	- -0039	23	-1.0152	- 1•0068
14	-0809	-0379	4	+ $\cdot 0478$	+ .0619	34	+ .0058	+ .0061	24	+1.0077	+ 1.0125
15	-0713	-0664	5	$\cdot 0515$	-0608	35	- .0071	-.0014	25	-1.0132	- I•0057
16	-0477	-0531	6	- -0623	- . 0419	36	+ $\cdot 0052$	+ . 0022	26	+1.0078	+ 1.0108
17	-0356	-0739	7	+.0506	+ -0545	87	-.0037	- .0013	27	-1.0111	- 1•0042
18	-0368	-0301	8	- -0577	- -0433	38	+ •0044	-0010	28	+1•0065	+ 1.0077
19	-0434	-0394	9	-0577	-0385				29	- 1.0086	- 1.0026
20	-0671	-0634	10	+.0382	$+.0514$	4th	quation.	Azimuth.	30	+1.0053	+ 1.0053
21	-0280	-0392	11	-0376	-0514	1	+1.0261	+ 1.0315	31	-1.0061	- 1.0028
22	-0360	-0387	12	- -0527	- .0320	2	-1.0306	- 1.0231	32	+1.0044	$+1 \cdot 0035$
23	-0293	-0340	13	-0503	-0287	3	1.0317	1•0233	33	-1.0057	- 1•0018
24	-0431	-0364	14	+.0284	+ .0422	4	+1.0212	$+1 \cdot 0281$	84	+1.0028	+ 1.0028
25	-0304	-0296	15	-0299	-0452	5	1-0233	1-0278	35	-1.0035	- I•0005
26	-023I	-0390	16	- -0439	- . 0259	6	-1.0286	- 1.0187	36	+1.0024	+1.0012
27	-0211	-0245	17	+.032I	+ . 0405	7	+1.0229	+ 1.0250	37	-1.0018	- 1.0006
28	- or 52	-0208	18	-.0399	- .0255	8	-1.0265	- 1.0196	88	+1.0020	+ 0.9996
29	-0106	-0206	19	$\cdot 0413$	-0236	9	1-0265	1-0172	39	-1.0000	- I.0000
30	-0189	-0156	20	+ .0197	+ .0377	10	+1.0173	$+1.0236$			

14.

The Equations between the Indeterminate Factors, and their Solution.

In the equations between the Indeterminate Factors, the coefficients of the factors are summations of terms of the form ($\mathbf{b 1 3}+\mathfrak{c} \mathbb{C}$), such as are exhibited in the equations on page [25].

In the equations appertaining to the Eastern Sind Meridional Series Equalizing Factors were employed, see page [24]; these factors were not applied directly to the bs and cs, as such a proceeding was unnecessary, but they were introduced at once into the coefficients themselves.

The manner in which this has been done will appear if the geometrical equations of condition on page [12] are multiplied in succession by the equalizing factors $f_{a}, f_{b}, f_{c}, \& c$., and $\lambda_{a}^{\prime}, \lambda_{b}^{\prime}, \lambda_{c}^{\prime}$ are put for the corresponding Indeterminate Factors. The equations between the latter will then be

$$
\begin{gathered}
f_{a} f_{a}[a a . u] \lambda_{a}^{\prime}+f_{a} f_{b}[a b . u] \lambda_{b}^{\prime}+\cdots \cdot+f_{a} f_{n}[a n . u] \lambda_{n}^{\prime}=f_{a} e_{a}, \\
f_{a} f_{b}[a b . u] \lambda_{a}^{\prime}+f_{b} f_{b}[b b . u] \lambda_{b}^{\prime}+\cdots \cdot+f_{b} f_{n}[b n . u] \lambda_{n}^{\prime}=f_{b} e_{b}, \\
\cdot \\
f_{a} f_{n}[a n . u] \lambda_{a}^{\prime}+f_{b} f_{n}[b n . u] \lambda_{b}^{\prime}+\cdots \cdot+f_{n} f_{n}[n n . u] \lambda_{n}^{\prime}=f_{n} e_{n} ; \\
\cdots \\
\text { in which } \lambda_{a}^{\prime}=\frac{\lambda_{a}}{f_{a}}, \lambda_{b}^{\prime}=\frac{\lambda_{b}}{f_{b}}, \cdots \cdot \lambda_{n}^{\prime}=\frac{\lambda_{n}}{f_{n}} .
\end{gathered}
$$

From this it appears that after the solution of the equations appertaining to the Eastern Sind Meridional Series, the resulting values of the Indeterminate Factors had to be multiplied by the corresponding equalizing factors before they could be employed in the formulæ on page [25] for obtaining the values of the errors y and z.

The coefficients of the Indeterminate Factors, and the Absolute Terms, in each of the 4 equations which were presented for simultaneous solution by either series are here given in a tabular form.

The tables following the groups of equations between the Indeterminate Factors, give the first of each group of equations between certain of the indeterminate factors which remained after the other factors had been eliminated. These are the equations which were used in obtaining the numerical values of the factors by successive substitutions backwards from the last to the first.

The Jodhpore Meridional Series.
The Equations between the Indeterminate Factors expressed in Natural Numbers.

$\underset{\text { Equation of }}{\text { Equ }}$	The Indetriminate Factors and their Cogppicients				$\underset{\substack{\text { Terms }}}{\substack{\text { Thbsolute }}}$
	${ }_{1}{ }^{1}$	${ }_{2}{ }^{1}$	$3^{\text {i }}$	4^{\wedge}	
1	+ $46834^{\circ} \mathrm{O}$	+ 72.2865	-4.8070	- 59.4742	- 123.4
2	+ 72.2865	+ 0.1553	+ 0.0015	+ 0.1318	- 0.172
3	- 4.8070	+ 0.0015	+ 0.2159	+ 3.9612	- 0.121
4	- 59.4742	+ 0.1318	+ 3.9612	+ 99.6618	- 3.216

The Equations between the Indeterminate Factors after the Successive Eliminations.

$\underset{\substack{\text { No. of } \\ \text { Equation }}}{\text {. }}$	Thi Indeterminate Factors and their Coepticients				$\underset{\text { Terms }}{\substack{\text { Thelents }}}$
	${ }_{1}$	${ }_{2}{ }^{1}$	3^{Λ}	4^{Λ}	
1	+ 46834.0	+ 72.2865	-4.8070	- 59.4742	- 123.4
2		+ 0.0437	+ 0.0089	+ 0.2236	+ 0.0185
3			+0.2136	+ 3.9096	- 0.1375
4				+ 26.8833	- 0.9507

The Eastern Sind Meridional Series.
The Equations between the Indeterminate Factors expressed in Natural Numbers, before the application of the Equalizing Factors.

No. of Equation	The Indeterminate Factors and their Coeppicients				The Absolute Terms
	${ }_{1} \boldsymbol{\Lambda}$	${ }_{2} \mathbf{\Lambda}$	$3^{\boldsymbol{\Lambda}}$	4^{Λ}	
1	$+38716$.	+ 45.3001	-8.7746	-109 1557	-74.2
2	+ 45.3001	+ 0.08076	-0.005415	+ 0.07154	- 0.423
3	- 8.7746	-0.005415	$+0.09630$	+ 2.331265	$+0.028$
4	- 109.1557	+ 0.07154	+ $2 \cdot 331265$	+ 80.11747	+ 0.939

The Equations between the Indeterminate Factors expressed in Natural Numbers, after the application of the Equalizing Factors.

No. of Equation	The Indeterminate Factors and their Coeppicients				The Absolute 'terms
	${ }_{1} \mathbf{\Lambda}$	${ }_{2} \mathbf{\Lambda}$	3^{Λ}	4^{Λ}	
1	$+387 \cdot 16$	$+453001$	- 8.7746	- 10.9156	$-7 \cdot 42$
2	$+45.3001$	$+8.076$	- 0.5415	$+0.7154$	-4.23
3	- 8.7746	-0.5415	$+9.630$	$+23.3127$	$+0.28$
4	- 10.9156	$+0.7154$	$+23.3127$	$+80 \cdot 1175$	+0.939

The Equations between the Indeterminate Factors after the Successive Eliminations.

No. of Equation	The Indeterminate Factors and their Cogfpicients				The Absoluts Terms
	${ }_{1} \mathbf{\Lambda}$	${ }_{2} \mathbf{\Lambda}$	$3^{\mathbf{\Lambda}}$	4^{1}	
1	$+387 \cdot 16$	$+453001$	-8.7746	-10.9156	$-7 \cdot 42$
2		+ $2 \cdot 7756$	$+0.4852$	+ 1.9926	- 3.3618
3			$+9.3463$	$+22.7170$	$+0.6995$
4				$+23 \cdot 1635$	$+1.4430$

The following table gives the values of the factors to 4 places of decimals as deduced from the solution of the equations.

The Jodhpore Meridional Series.
Numerical Values of the Indeterminate Factors.

Faotor	Numerical Value
${ }_{1} \boldsymbol{\Lambda}$	-0.0036
${ }_{2} \boldsymbol{\Lambda}$	$+0.604 \mathbf{1}$
${ }_{3} \boldsymbol{\Lambda}$	+0.0042
${ }_{4} \boldsymbol{\Lambda}$	-0.0354

The Eastern Sind Meridional Series.
Numerical Values of the Indeterminate Factors.

Factor	Numerical Value	Numerical Value \times Equalizing Factors
${ }_{1}$ \}	$+0.1262$	$+0.0126$
${ }_{2} \Lambda$	- 1.2425	- 12.425
3^{Λ}	0.0766	-0.766
4^{Λ}	$+0.0623$	$+0.0623$

15.

The Angular Errors x, y and z.
The following table gives the values of the errors of the angles of every circuit triangle, the errors y and z having first been deduced for any, the p th, triangle by the formula

$$
\begin{aligned}
& y_{p}={ }_{1} \mathfrak{B}_{p} \Lambda+{ }_{2} \mathfrak{B}_{p} \boldsymbol{\Lambda} \Lambda+. \cdot \\
& z_{p}={ }_{1} \mathbb{C}_{p_{1} \Lambda} \Lambda+{ }_{2} \mathbb{C}_{p 2} \Lambda+. .
\end{aligned}
$$

the error x_{p} was simply determined by finding the value of its equivalent, $-\left(y_{p}+z_{p}\right)$.
The Jodhpore Meridional Series.
The Angular Errors.

The Eastern Sind Meridional Series.
The Angular Errors.

16.

Arbitrary Corrections.

The values of the angular errors were first obtained to 4 places of decimals and then reduced to 3 places by rejecting the 4 th and increasing the 3rd place if the 4th was not less than 5. This introduced certain closing errors in the Eastern Sind Meridional Series only, to eliminate which small arbitrary corrections had to be made : these are shewn in the following table :-

The Eastrrn Sind Meridional			
y		z	
No. of Triangle	Correction	No. of Triangle	Correction
37	$\begin{gathered} \prime \prime \\ -0.001 \end{gathered}$	9	11 +0.001
...	...	25	- 001
...	...	31	-001
...	...	34	-001

17.

The Final Results of the Simultaneous Reduction of each Series.

The errors recorded in Section 15 were severally applied with changed signs to the values of the figurally corrected angles which are given in Section 8, and corresponding corrections were obtained to the logarithmic lengths of the sides of the circuit triangles in that section. The corrections to the sides and angles were then introduced into the several geodetic calculations from which the values of latitude, longitude and azimuth for the stations on the line of the traverse had been obtained, as given in Section 9.

After all the corrections had been applied the residual differences were as follows :-

The Jodhpore Meridional Series.

At Kanda.

| Latitude North \ldots | \ldots | \ldots | $+0 \cdot 001$ |
| :--- | :---: | :---: | :---: | :---: |
| Longitude East of Greenwich ... | \ldots | + | $\cdot 01$ |
| Azimuth of Kaimsir | \ldots | + | $\cdot 01$ |
| Distance in the 7th place of logs. | \ldots | + | $\cdot 3$ |

The Eastern Sind Meridional Series.

At Dáowála.

| Latitude North $\quad .$. | \ldots | \ldots | +0.002 |
| :--- | :---: | :--- | :--- | :--- |
| Longitude East of Greenwich ... | \ldots | - | $\cdot 002$ |
| Azimuth of Máchka | \ldots | - | $\cdot 003$ |
| Distance in the 7th place of logs. | \ldots | - | $\cdot 2$ |

CHAPTER IV.

THE NON-CIRCUIT TRIANGLES AND THEIR FINAL FIGURAL ADJUSTMENTS.

Only a single chain of triangles having been selected for the Final Reduction of the Jodhpore and Eastern Sind Meridional Series, it followed that when each reduction was completed, the remaining or Non-circuit triangles had to be brought into accord with the reduced or Circuit triangles, all the elements of the latter being maintained unaltered. The only conditions thus required to be satisfied were the following :-

1. That at any station falling within the circuit at which angles had been measured completely round the horizon, the sum of the Non-circuit angles + the sum of the Circuit angles should be equal to 360°.
2. That the ratios of sides common both to Circuit and Non-circuit triangles, must be the same by the latter as by the former.
3. That the algebraical sum of the corrections to the angles of each Non-circuit triangle should $=0$.
In certain cases it happened that a Non-circuit triangle had two sides and the included angle already determined by the Circuit triangles, and the unknown quantities were the errors of the other two angles. Conditions 2 and 3 furnished two equations for determining these two unknown quantities, and the equations were solved as ordinary algebraical simultaneous equations.

In the pages of tabular matter which follow, are given, separately for each Series, the data of the Non-circuit triangles similar to those of the Circuit triangles shewn on pages [33] to [36], and in the same terms with them; these are followed by the "Final Figural Adjustments" of the groups. In connection with the sides and angles are shewn first the Figure to which each Non-circuit triangle belongs, secondly, the number of the triangle, and thirdly the Figural numbers of the angles employed in the Preliminary Reductions and again made use of here, as shewn on the Plates at the end of the numerical details of each Series. In the column giving the number of the station, the numerals corresponding to those stations of which the positions stand fixed by the Final Reduction are printed in Roman type, the rest in Italic type.

In the abstracts of the final adjustments, each group of triangles is designated by the figure to which it appertains and by the numbers of triangles it includes. The constants furnished by the Final Reduction are given, with a reference to the page from which they are taken; these are followed by the equations of condition which have to be satisfied. Lastly are shewn the adopted angular errors. They are so designated because they differ occasionally, but only in the last place of decimals, from those which actually resulted from the calculations; slight arbitrary corrections having been applied in order to make the logarithmic values of common sides agree where the number of places of decimals employed in the calculations had not sufficed to do so.

The Jodhpore Meridional Series. Sides and Angles of the Non-Circuit Triangles.

			Number of Station	Corrected Plane Angle		Logarithm of Side-length in Feet				Number of Station	Corrected Plane Angle		Logarithm of Side-length in Feet
1	49	$\begin{gathered} 2+3 \\ 4 \\ 1 \end{gathered}$	$\begin{aligned} & \mathrm{XLI} \\ & \mathbf{X L I V} \\ & \mathrm{II} \end{aligned}$	$\begin{array}{ccc} \circ & \prime \prime \\ 80 \quad 59 & \prime \prime \\ 30 & 27 & 7 \cdot 281 \\ 68 & 32 & 58 \cdot 716 \end{array}$	$\begin{aligned} & 1 \cdot 368 \\ & 1 \cdot 367 \\ & 1 \cdot 367 \end{aligned}$	$\begin{aligned} & 5 \cdot 2799380,6 \\ & 4^{*} \cdot 9901710,8 \\ & 5 \cdot 254146 \mathrm{I}, \mathrm{O} \end{aligned}$	9	63	12 10 11	XXXIII XXXII XXXIV		$\begin{array}{\|l\|} \prime \prime \\ \cdot 176 \\ \cdot 177 \\ \cdot 176 \end{array}$	$\begin{aligned} & 4 \cdot 6592209,2 \\ & 4 \cdot 8429244,1 \\ & 4.6920244,3 \end{aligned}$
2	50	$\begin{aligned} & 18 \\ & 16 \\ & 17 \end{aligned}$	$\stackrel{\text { I }}{\text { III }}$	$\begin{aligned} & 524050 \cdot 026 \\ & 822227 \cdot 324 \\ & 445642 \cdot 650 \end{aligned}$	$\begin{aligned} & 1.663 \\ & 1.663 \\ & 1.662 \end{aligned}$	$\begin{aligned} & 5 \cdot 1895968,2 \\ & 5 \cdot 2852253,8 \\ & 5 \cdot 13^{81} 524,5 \end{aligned}$	10	64	5 4 6	$\begin{aligned} & \operatorname{XXXV} \\ & \mathbf{X X X V I} \\ & \boldsymbol{X X X V I I I} \end{aligned}$	$\left.\begin{array}{ccc} 73 & 44 & 28 \cdot 461 \\ 49 & 28 & 9 \\ 56 & 97 & 347 \\ 56 & 22 & 192 \end{array} \right\rvert\,$	- 286 .285 .285	$\begin{aligned} & 4 \cdot 8688079,7 \\ & 4 \cdot 7673799,7 \\ & 4 \cdot 8090846,2 \end{aligned}$
"	51	$\begin{aligned} & 15 \\ & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & I V \\ & \text { III } \\ & \text { VI } \end{aligned}$	$\begin{array}{lll} 46 & 5 & 17 \cdot 394 \\ 71 & 15 & 46 \cdot 349 \\ 62 & 38 & 56 \cdot 257 \end{array}$	1.450 1451 1450	$\begin{aligned} & 5 \cdot 0986603,9 \\ & 5 \cdot 2174330,0 \\ & 5 \cdot 1895968,2 \end{aligned}$	"	65	8 7 8	XXXVIII XXXVI XL	$\begin{array}{ccc} 62 & 5 & 32 \cdot 652 \\ 47 & 20 & 17 \cdot 511 \\ 70 & 34 & 9 \cdot 837 \end{array}$	$\begin{aligned} & 297 \\ & \cdot 297 \\ & \cdot 297 \end{aligned}$	4-8405821,0 4.7607793,5 4•8688079,7
3	52	$\begin{aligned} & 18 \\ & 16 \\ & 17 \end{aligned}$	VI VIII IX	$\begin{aligned} & 475111 \cdot 303 \\ & 723655 \cdot 187 \\ & 593153 \cdot 510 \end{aligned}$	$\begin{array}{r} 952 \\ .953 \\ 953 \end{array}$	$\begin{aligned} & 5 \cdot 0185048,0 \\ & 5 \cdot 1281303,5 \\ & 5 \cdot 0838972,8 \end{aligned}$	"	66	10 11 12	$\begin{aligned} & \text { XXXVII } \\ & X L X X I X \\ & X X X I X \end{aligned}$	8943 $56 \cdot 808$ 53 39 36 $2 \cdot 723$ 67 0.469	711 .511 .510	$\begin{aligned} & 5 \cdot 0649959,4 \\ & 4 \cdot 9710226,0 \\ & 4 \cdot 840582 \mathrm{I}, \mathrm{O} \end{aligned}$
"	53	$\begin{aligned} & 15 \\ & 18 \\ & 14 \end{aligned}$	$\begin{aligned} & I X \\ & \text { VIII } \\ & \mathbf{X I} \end{aligned}$		$\begin{aligned} & 785 \\ & 785 \\ & 785 \\ & 788 \end{aligned}$	$\begin{aligned} & 5^{\circ} 0217343,1 \\ & 5^{\circ} 0521333,3 \\ & 5^{\circ} 0185048,0 \end{aligned}$	"	67	33 31 32	$\underset{X X X I I}{X I}$	$514439 \cdot 077$ 49 111 9 14 8.9685	.642 .641 .642	4•9677159,9 4•9506173,0 5-0649959,4
4	54	$\begin{aligned} & 18 \\ & 16 \\ & 17 \end{aligned}$	XI XIII XIV	$532743 \cdot 865$ $485126 \cdot 240$ $774049 \cdot 895$	$\begin{array}{r} 359 \\ 358 \\ 359 \end{array}$	4-8480958,8 4-8199665,6 4•93301 20,5	"	68	30 28 29	(${ }_{\text {XLII }}^{\text {XXXIX }}$	88444.580 391724.751 515830.669	$\begin{array}{r} 546 \\ .546 \\ .546 \end{array}$	$\begin{aligned} & 5^{\circ} 0712249,1 \\ & 4.8729051,0 \\ & 4.9677159,9 \end{aligned}$
"	55	$\begin{aligned} & 15 \\ & 13 \\ & 14 \end{aligned}$	XIV XIII XVI	$\begin{array}{cccc}67 & 5 & 50 \cdot 466 \\ 49 & 3 & 52 \cdot 442 \\ 63 & 50 & 17\end{array}$	$\begin{array}{r} 304 \\ -303 \\ -304 \end{array}$	$\begin{aligned} & 4 \cdot 8593750,5 \\ & 4 \cdot 7732412,8 \\ & 4 \cdot 8480958,8 \end{aligned}$	11	69	5 4 6	xLIV XLV XLVII	42 3849.459 78	460 .460 460	$\begin{aligned} & 4 \cdot 8360926,4 \\ & 4 \cdot 9957840, \mathrm{I} \\ & 4 \cdot 9393418,5 \end{aligned}$
5	56	$\begin{aligned} & 18 \\ & 16 \\ & 17 \end{aligned}$	XVI XVIII XIX	$\begin{array}{\|ccc\|}55 & 56 & 1.754 \\ 62 & 50 & 44.783 \\ 61 & 13 & 13.463\end{array}$. 239 .239 .239	$\begin{aligned} & 4 \cdot 7539904,9 \\ & 4 \cdot 7850382,9 \\ & 4^{\prime} 778496 \mathrm{r}, 4 \end{aligned}$	"	70	7 9		$\begin{aligned} & 742735 \cdot 792 \\ & 574353.931 \\ & 474830 \cdot 277 \end{aligned}$	-408 407 407	4.9501573,9 4-8934740,2 4-8360926,4
"	57	$\begin{aligned} & 15 \\ & 13 \\ & 14 \end{aligned}$	III XVIII XXI	$\begin{array}{rrr} 63 & 244 \cdot 220 \\ 62 & 51 & 44 \cdot 309 \\ 54 & 5 & 31 \cdot 471 \end{array}$	$\begin{array}{r} 249 \\ -249 \\ -248 \end{array}$	$\begin{aligned} & 4 \cdot 7955835,6 \\ & 4 \cdot 7948741,8 \\ & 4 \cdot 7539904,9 \end{aligned}$	12	71	5 4	$\begin{aligned} & \text { XLIX } \\ & \text { L } \\ & \text { LIII } \end{aligned}$	$\begin{aligned} & 522457.952 \\ & 432852.703 \\ & 43 \\ & 84 \\ & \hline 4 \\ & \hline \end{aligned}$	197 $\cdot 197$ -197	$\begin{aligned} & 4.7306728,7 \\ & 4 \cdot 6693578,0 \\ & 4.8293903,2 \end{aligned}$
6	58	$\begin{gathered} 4+5 \\ 3 \\ 6 \end{gathered}$	$\begin{aligned} & \text { XXI } \\ & \text { XXII } \\ & \text { XXIII } \end{aligned}$	$985557 \cdot 389$ $372548 \cdot 809$ 433^{813}-802	-221 .220 .221	$\begin{aligned} & 4 \cdot 9096312,4 \\ & 4 \cdot 6986876,8 \\ & 4 \cdot 7538358,6 \end{aligned}$	"	72	8 7 8	$\begin{aligned} & L I I \\ & \mathbf{L} \\ & \text { LV } \end{aligned}$	$471816 \cdot 005$ $844251 \cdot 057$ $475852 \cdot 938$.224 .225 .225	$\begin{aligned} & 4 \cdot 7259946,0 \\ & 4 \cdot 8578758,0 \\ & 4.7306728,7 \end{aligned}$
7	59	$\begin{gathered} 4 \\ 2+3 \\ 1 \end{gathered}$	XXIII XXIV XXVI		211 .211 .211	$\begin{aligned} & 4.7751914,5 \\ & 4 \cdot 9508791,0 \\ & 4 \cdot 6832567,7 \end{aligned}$	13	73	18 16 17	$\underset{\text { LVII }}{\text { LIII }}$	604225.770 $372110 \cdot 052$ 815624.178	'110	$\begin{aligned} & 4 \cdot 6539847,5 \\ & 4 \cdot 4963923,8 \\ & 4 \cdot 7090919,8 \end{aligned}$
8	60	$\begin{aligned} & 18 \\ & 16 \\ & 17 \end{aligned}$	XXV XXVII XXVIII	$\begin{aligned} & 594710 \cdot 382 \\ & 663726 \cdot 660 \\ & 533522 \cdot 958 \end{aligned}$	$\begin{array}{r} 276 \\ -276 \\ -276 \end{array}$	$\begin{aligned} & 4 \cdot 8061403,7 \\ & 4 \cdot 8323548,0 \\ & 4 \cdot 7752303,5 \end{aligned}$	"	74	15 13 14	$\begin{aligned} & L V I \\ & L V \\ & L V I I I \end{aligned}$	$\begin{array}{llll} 62 & 9 & 23 \cdot & 151 \\ 60 & 4 & 26 \cdot 534 \\ 57 & 46 & 10 \cdot & 315 \end{array}$	1145 145 145	4.6732240,2 4•6645148,8 4•6539847,5
"	61	$\begin{aligned} & 15 \\ & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & \text { XXVIII } \\ & \mathbf{X X V I I} \\ & \text { XXX } \end{aligned}$	$\begin{aligned} & 733741 \cdot 976 \\ & 531940 \cdot 432 \\ & 53 \\ & 53 \\ & 27 \end{aligned}$	$\begin{array}{r} 311 \\ -311 \\ 311 \end{array}$	$\begin{aligned} & 4 \cdot 8855658,1 \\ & 4 \cdot 8077523,1 \\ & 4 \cdot 8061403,7 \end{aligned}$	"	75	10 12 11	LV LVIII LIX	$\begin{array}{llll} 65 & 47 & 35 \cdot & 551 \\ 44 & 7 & 41 \\ 70 & 210 & 210 \\ 70 & 4 & 43 & 239 \end{array}$	-118 $\cdot 118$ $\cdot 119$	4•6600505,3 4.5427962,7 4.6732240,2
9	62	$\begin{aligned} & 15 \\ & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & \operatorname{XXXX} \\ & \underset{X X X I I I}{ } \end{aligned}$	$\begin{aligned} & 555014 \cdot 894 \\ & 615921.795 \\ & 621123.311 \end{aligned}$	$\begin{array}{r} \cdot 180 \\ \cdot 180 \\ \cdot 180 \end{array}$	$\begin{aligned} & 4 \cdot 6920244,3 \\ & 4 \cdot 7^{201758,6} \\ & 4 \cdot 7209139,3 \end{aligned}$		76	20 19 21	$\begin{aligned} & \text { LVIII } \\ & \text { LIX } \\ & \text { XIX } \end{aligned}$	61 3615 .090 $655715 \cdot 650$ 522629.260	$\begin{array}{r} \cdot 167 \\ \cdot 167 \\ \cdot 167 \end{array}$	$4 \cdot 7052511,1$ $4 \cdot 7215006,6$ $4 \cdot 6600505,3$

Notes.-Stations XLI and XLIV appertain to the Karáchi Longitudinal Series. Station XIX appertains to the Sutlej Series.

The Jodhpore Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 1.

Triangle 49.
Constants (from page 85).

Equations to be satisfied.

> Adopted Errors.

$$
\begin{aligned}
& \begin{array}{lll}
x_{1} & +x_{4} & = \\
36 x_{4} & -9 x_{1} & +{ }_{4 \cdot 1}{ }^{160}
\end{array} \\
& \begin{array}{l}
x_{1}=+{ }^{11.039} \\
\mathbf{x}_{4}=+{ }^{-121}
\end{array}
\end{aligned}
$$

Figure 2.

Figure 3.

- In the tables of the equations between the factors the co-efficients of the terms below the diagonal are omitted for convenience, the co-eficient of the pth term in the q th line being always the same as the co-efficient of the q th term in the p th line.

The Jodhpore Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 3-(Continued).

Equations between the Factors						Values of the Factors	Adopted Errors
$\begin{gathered} \text { No. of } \\ e \end{gathered}$	Value of e	Co-efficients of					
		λ_{1}	λ_{8}	λ_{3}	λ_{4}		
1 2 3 4	$\begin{array}{r} \cdot 000 \\ \cdot 000 \\ -\quad .179 \\ -3.6 \end{array}$	+3	\cdots +3	+1 +1 +2	$\begin{array}{r} +\begin{array}{r} 6 \\ 0 \\ \\ +868 \end{array} \end{array}$	$\lambda_{1}=+\cdot 056$ $\lambda_{2}=+\cdot 047$ $\lambda_{3}=-\cdot 141$ $\lambda_{4}=-\cdot 005$	$\begin{array}{ll}\mathrm{x}_{13}=-\prime \cdot 094 & \mathrm{x}_{16}=-11 \cdot 085 \\ \mathrm{x}_{14}=+\cdot 107 & \mathrm{x}_{17}=+\cdot 115 \\ \mathrm{x}_{16}=-.013 & \mathrm{x}_{18}=-\cdot 030\end{array}$

Figure 4.

Figure 5.

Triangles 56 and 57.
Constants (from page 87).

Equations to be satisfied.
Factor.
$\begin{aligned} \mathbf{x}_{16} & +\quad \mathbf{x}_{17} \\ \mathbf{x}_{13} & +\mathbf{x}_{14} \\ \mathbf{x}_{16} & +\mathbf{x}_{13} \\ 14 \mathrm{X}_{18} & -11 \mathrm{x}_{17}\end{aligned}$

$+x_{18}$	\cdots
$+x_{15}$	\cdots
\ldots	\ldots
$+10 x_{15}$	$-16 x_{14}$

$=e_{1}=\quad \cdot 000$,
$=e_{2}=-000$,
$=e_{8}=-165$,
$=e_{4}=-4 \cdot 6$,
λ_{1}
λ_{2}
λ_{3}
λ_{4}

The Jodhpore Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 5-(Continued).

Equations between the Factors						Values of the Factors	Adopted Errors
$\begin{gathered} \text { No. of } \\ \text { e } \end{gathered}$	Value of e	Co-efficients of					
		λ_{1}	λ_{2}	λ_{3}	λ_{4}		
1 2 3 4	$\cdot 000$ -000 -165 -4.6	+3	\ldots +3 $*$	+1 +1 +2	$\begin{gathered} +\quad 3 \\ -\quad 6 \\ +673 \end{gathered}$	$\lambda_{1}=+.046$ $\lambda_{2}= \pm .026$ $\lambda_{3}=-.119$ $\lambda_{4}=-.007$	$\begin{array}{ll} x_{13}=-" \cdot 093 & x_{16}=-{ }^{\prime \prime} \cdot 072 \\ x_{14}=+\cdot 137 & x_{17}=+\cdot 122 \\ x_{16}=-\cdot 044 & x_{18}=-\cdot 050 \end{array}$

Figure 6.
Triangle 58.

Constants (from page 87).

Figure 7.

Triangle 59.
Constants (from page 88).

Equations to be satisfied.
Adopted Errors.
$\begin{array}{rll}x_{1} & +x_{4} & = \\ 25 x_{4} & - & +2.28 \\ -26 x_{1} & =\end{array}$

Figure 8.

Triangles 60 and 61.
Constants (from page 88).
$\left.\begin{array}{lllllllll}\text { XXV } & \text { to } & \text { XXVII } & \text { Log. feet } & 4.7752348,0 \\ \text { XXVII } & \text { XXX } & \ldots & 4.8855711,7\end{array}\right\} \quad \ldots \quad 16+13 \quad \ldots \quad 119^{\circ} 57^{\prime} 7^{\prime \prime} \cdot 841$
Equations to be satisfied.

The Jodhpore Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 8-(Continued).

Equations between the Factors						Values of the Factors	Adopted Errors
No. of e	Value of e	Co-efficients of					
		λ_{1}	λ_{8}	λ_{3}	λ_{4}		
1 2 3 4	$\cdot 000$ $\cdot 000$ -162 $-9 \cdot 1$	+3	\ldots +3 $*$	+1 +1 +2	$\begin{aligned} & =3 \\ & -10 \\ & \ldots 661 \end{aligned}$	$\lambda_{1}=+.011$ $\lambda_{2}=-.021$ $\lambda_{3}=-.076$ $\lambda_{4}=-.014$	$\begin{array}{ll}x_{13}=-\prime \prime 097 & x_{16}=-1 / 065 \\ x_{14}=+\cdot 203 & x_{17}=+\cdot 221 \\ x_{15}=-\cdot 106 & x_{18}=-\cdot 156\end{array}$

Figure 9.

Figure 10.
Triangles 64 to 68.
Constants (from page 89).

Contained Angles.

XXXV	to	XXXVI	Log. feet	$4 \cdot 8090908, \mathrm{r}$	\ldots	\ldots	$4+7+10$	\ldots	186°	32^{\prime}
$24^{\prime \prime} \cdot 637$										

Factor.
Equations to be satisfied.

x_{4}	+	x_{5}
x_{7}	+	x_{8}
x_{10}	+	x_{11}
x_{31}	+	x_{32}
x_{28}	+	x_{39}
x_{4}	+	x_{7}
x_{12}	+	x_{31}
$7 x_{5}$	$-14 x_{6}$	
$O x_{10}$	$-16 x_{11}$	

$\begin{array}{ll}+ & x_{6} \\ + & x_{9} \\ + & x_{18} \\ + & x_{33} \\ + & x_{30} \\ + & x_{10} \\ + & x_{28} \\ +11 x_{8} \\ +17 & x_{33}\end{array}$
$\begin{array}{ccc}\ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots \\ -7 x_{9} & +16 x_{11} & -29 \mathbf{x}_{12} \\ -4 x_{32} & +\quad \mathbf{x}_{30} & -17 \mathbf{x}_{29}\end{array}$

$$
\begin{aligned}
& =\mathbf{e}_{1}= \\
& =\mathbf{e}_{2}= \\
& =\mathbf{e}_{3}= \\
& =\mathbf{e}_{4}= \\
& =\mathbf{e}_{5}= \\
& =\mathbf{e}_{6}= \\
& =\mathbf{e}_{7}= \\
& =\mathbf{e}_{8}= \\
& =\mathbf{e}_{9}=
\end{aligned}
$$

$$
\begin{array}{lr}
= & \cdot 000, \\
= & +122, \\
= & +\quad \cdot 218, \\
= & -5 \cdot 7, \\
= & -11 \cdot 7,
\end{array}
$$

$$
\begin{aligned}
& \lambda_{1} \\
& \lambda_{2} \\
& \lambda_{3} \\
& \lambda_{4} \\
& \lambda_{5} \\
& \lambda_{6} \\
& \lambda_{7} \\
& \lambda_{8} \\
& \lambda_{9}
\end{aligned}
$$

The Jodhpore Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 10-(Continued).

Equations between the Factors											Values of the Factors	Adopted Errors	
$\left\lvert\, \begin{gathered} \text { No. of } \\ e \end{gathered}\right.$	Value of e	Co-efficients of											
		λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{5}	λ_{6}	λ_{7}	λ_{8}	λ_{9}			
1	-000	+3		+1	...	- 7		$\lambda_{1}=-\cdot 0770$		
2	-000								+ 4		$\lambda_{2}=-0^{4}{ }^{8}$	$\mathrm{x}_{4}=+\prime \cdot 095$ $\mathrm{x}_{5}=-\cdot 137$	$x_{12}=+{ }^{*} .091$ $x_{29}=-.061$
3	- 000						+1	$+1$	- 13	- 16	$\lambda_{s}=-\cdot 2697$	$x_{6}=-137$ $x_{6}=+.042$	$x_{28}=-\cdot 061$ $x_{29}=+.263$
4	- 000							+1 +1	\ldots	a +13	$\lambda_{4}= \pm \cdot 0737$	$x_{6}=+\cdot 042$ $x_{7}=+\cdot 125$	$\mathrm{x}_{29}=+\cdot 263$ $\mathrm{x}_{30}=-{ }^{\text {a }}$ - 202
5	-000							$+1$...	- 16	$\lambda_{5}=-1757$	$x_{7}=+\cdot 125$ $x_{8}=-139$	
$\underset{7}{6}$	+ $+\quad .122$ $+\quad .218$									\bigcirc	$\lambda_{6}=+{ }^{\text {- }} 175$		$\mathrm{x}_{31}=+\cdot 188$ $\mathrm{x}_{38}=+\cdot 177$
8	$\underline{+}{ }^{+218}$								$\begin{array}{r}29 \\ \hline+1512\end{array}$	- ${ }^{\text {a }} 56$	$\lambda_{7}=+.1144$ $\lambda_{8}=-\cdot 0085$	$x_{9}=+\cdot 014$ $x_{10}=-.098$ $x_{10}=+007$	$\mathrm{x}_{38}=+\cdot 177$ $\mathrm{x}_{38}=-\cdot 365$
9	- 11.7								+1512	-250 +851	$\lambda_{8}=-0.0085$ $\lambda_{9}=-\cdot 0258$	$\mathrm{x}_{11}=+\cdot 007$	

Figure 11.

Figure 12.
Triangles 71 and 72.
Constants (from page 90).
Contained Angle.

Equations to be satisfied.
x_{4}
x_{7}
x_{4}
$16 x_{5}$

$$
\begin{array}{ll}
+ & x_{5} \\
+ & x_{8} \\
+ & x_{7} \\
- & 2 x_{6}
\end{array}
$$

$+x_{6}$	\ldots
$+x_{9}$	\ldots
$+\ldots x_{8}$	$-19 x_{9}$

$$
\begin{aligned}
& =\mathbf{e}_{1}=\quad \cdot 000 \\
& =\mathbf{e}_{2}=\quad \cdot 000 \\
& =\mathbf{e}_{3}=+\cdot 229 \\
& =\mathbf{e}_{4}=-7 \cdot 0
\end{aligned}
$$

Factor.

x_{4}	+
x_{7}	x_{5}
x_{4}	+
x_{6}	+
x_{7}	
	$-2 x_{6}$

$-19 x_{9}$

The Jodhpore Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 12-(Contiaued).

Equations between the Factors						Values of the Factors	Adopted Errors
$\begin{gathered} \text { No. of } \\ e \end{gathered}$	Value of e	Co-efficients of					
		λ_{1}	λ_{8}	λ_{3}	λ_{4}		
1 2 8 4	$\cdot 000$.000 $+\quad .229$		\ldots +3 $*$	+1 +1 +2	$\begin{array}{r} +14 \\ 0 \\ \ldots \\ +982 \end{array}$	$\lambda_{1}=-\cdot 017$ $\lambda_{2}=-\cdot 049$ $\lambda_{3}=+\cdot 148$ $\lambda_{3}=-.007$	$\begin{array}{ll}x_{4}=+{ }^{\prime \prime} \cdot 131 & x_{7}=+\prime \prime .098 \\ x_{5}=-128 & x_{8}=-180 \\ x_{6}=-.003 & x_{9}=+.082\end{array}$

Figure 13.

The Eastern Sind Meridional Series. Sides and Angles of the Non-Circuit Triangles.

			Number of Station	Corrected Plane Angle		Logarithm of Side-length in Foot				Number of Station	Corrected Plane Angle		Logarithm of side-length in Feet
1	40	18 16 17	$\underset{\text { LXXXVIII }}{\text { LXXV }}$	$\left\|\begin{array}{ll} 4647 & 48 \cdot 398 \\ 4457 & 21 \cdot 029 \\ 88 & 1450 \cdot 573 \end{array}\right\|$	$\begin{aligned} & 340 \\ & 340 \\ & 340 \\ & 340 \end{aligned}$	$\begin{aligned} & 4 \cdot 8242053,0 \\ & 4 \cdot 8106994,6 \end{aligned}$ $4.9613162,0$	7	54	$\begin{aligned} & 27 \\ & 25 \\ & 26 \end{aligned}$	XXV XXVIII XXVII	$\begin{array}{cccc\|} \circ & 1 & \prime \prime \\ 70 & 10 & 32 \cdot 086 \\ 53 & 38 & 48 \cdot 331 \\ 56 & 10 & 39 & 58 \end{array}$	$\begin{aligned} & 353 \\ & .352 \\ & .352 \end{aligned}$	$\begin{aligned} & 4 \cdot 8990234,6 \\ & 4 \cdot 8315552,2 \\ & 4 \cdot 8450351,1 \end{aligned}$
"	41	15 18 14	I LXXVIII		$\begin{array}{r} \because 254 \\ .255 \\ \cdot 255 \end{array}$	$\begin{aligned} & 4 \cdot 6899733,5 \\ & 4 \cdot 8838948,2 \\ & 4 \cdot 8 \mathbf{2 4 2 0 5 3 , 0} \end{aligned}$	"	55	$\begin{aligned} & 24 \\ & 22 \\ & 23 \end{aligned}$	$\underbrace{\text { XXVII }}_{\text {XXXIII }}$		$\begin{aligned} & 411 \\ & -412 \\ & -412 \end{aligned}$	4•8506760,9 4.9271895, 4•8990234,6
"	42	$\begin{aligned} & 12 \\ & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { II } \\ & \text { LXXVIII } \end{aligned}$	$\begin{array}{\|ccc\|}844638 \cdot 214 \\ 60 & 1 & 9 \cdot 420 \\ 3512 & 12 & 366\end{array}$	$\begin{array}{r} 283 \\ \cdot 283 \\ \cdot 283 \end{array}$	$\begin{aligned} & 4 \cdot 9273813,9 \\ & 4 \cdot 8668031,5 \\ & 4 \cdot 6899733,5 \end{aligned}$	8	56	$\begin{aligned} & 5 \\ & 4 \\ & 6 \end{aligned}$	XXXII XXXIII XXXIV	$\left\|\begin{array}{lll} 43 & 611 \cdot 886 \\ 84 & 68 & 57 \cdot 694 \\ 5^{2} & 14 & 50 \cdot 420 \end{array}\right\|$	$\cdot 385$.386 $\cdot 386$	$\begin{aligned} & 4 \cdot 8140819,1 \\ & 4 \cdot 977560,0 \\ & 4 \cdot 8774508,3 \end{aligned}$
"	43	$\begin{aligned} & 9 \\ & 7 \\ & 8 \end{aligned}$	$\underset{\text { III }}{\text { LXXVIII }}$	$734056 \cdot 177$ $382536 \cdot 389$ $675327 \cdot 434$	364 363 363	$\begin{aligned} & 4 \cdot 9426942,1 \\ & 4.754012,5 \\ & 4.9273^{81} 3,9 \end{aligned}$	"	57	$\begin{aligned} & 7 \\ & 8 \\ & 9 \end{aligned}$	XXXIII XXXIV XXXVI	$\left\|\begin{array}{lll} 74 & 10 & 15 \cdot 058 \\ 52 & 32 & 26 \cdot 562 \\ 53 & 16 & 58 \cdot 380 \end{array}\right\|$	319 319 319	$\begin{aligned} & 4 \cdot 8933367,3 \\ & 4 \cdot 8098613,0 \\ & 4 \cdot 8140819,1 \end{aligned}$
2	44	$\begin{aligned} & 18 \\ & 16 \\ & 17 \end{aligned}$	IV VII VI		$\begin{array}{r} 421 \\ \cdot 422 \\ \cdot 422 \\ \hline 422 \end{array}$	$\begin{aligned} & 4 \cdot 8468089,0 \\ & 4 \cdot 9122897,5 \\ & 4 \cdot 9354045,2 \end{aligned}$	"	58	$\begin{aligned} & 17 \\ & 16 \\ & 18 \end{aligned}$	XXXIV XXXVI XXXVII		- 246 .246 $\cdot 246$	$\begin{aligned} & 4 \cdot 6919156,8 \\ & 4 \cdot 8031478,4 \\ & 4 \cdot 8933367,3 \end{aligned}$
"	45	$\begin{aligned} & 15 \\ & 18 \\ & 14 \end{aligned}$	VI VII IX	$\begin{array}{\|rrr\|}76 & 1 & 33.768 \\ 48 & 3436 \cdot 918 \\ 55 & 23 & 49.314\end{array}$	345 344 344	$\begin{aligned} & 4 \cdot 0183059, \mathrm{I} \\ & 4 \cdot 806338,8 \\ & 4 \cdot 8468089,0 \end{aligned}$	"	59	$\begin{aligned} & 20 \\ & 19 \\ & 21 \end{aligned}$	XXXVII XXXVI XXXVIII		217 .217 .217	$\begin{aligned} & 4 \cdot 7662764,0 \\ & 4 \cdot 8107321,9 \\ & 4 \cdot 6919156,8 \end{aligned}$
8	46	$\begin{gathered} 4+5 \\ 3 \\ 6 \end{gathered}$	$\underset{\text { IX }}{\text { IX }}$	$\begin{aligned} & 924751 \cdot 277 \\ & 411239 \cdot 846 \\ & 455928 \cdot 877 \end{aligned}$	$\begin{array}{r} 437 \\ 437 \\ 437 \\ 437 \end{array}$	$\begin{aligned} & 5 \cdot 0337260,3 \\ & 4 \cdot 8530204,9 \\ & 4 \cdot 891147,1 \end{aligned}$	9	60	18 16 17	XXXV XL $X X X I X$		$\begin{array}{r} 333 \\ \cdot 334 \\ -334 \end{array}$	$\begin{aligned} & 4 \cdot 7729996,7 \\ & 4 \cdot 9233391, \mathrm{I} \\ & 4.8632041,5 \end{aligned}$
4	47	$\begin{aligned} & 18 \\ & 16 \\ & 17 \end{aligned}$	XI XII XIII	$\left\|\begin{array}{ll} 46 & 38 \\ 66 & 46 \cdot 613 \\ 48 & 52 \cdot 687 \\ 66 & 32 \\ 20 & 700 \end{array}\right\|$	424 425 424	$\begin{aligned} & 4 \cdot 8332488,9 \\ & 4 \cdot 935061,8 \\ & 4 \cdot 9341636,6 \end{aligned}$	"	61	$\begin{aligned} & 15 \\ & 18 \\ & 14 \end{aligned}$	XIXIX XL XLI	$\begin{aligned} & 462737 \cdot 215 \\ & 691733.934 \\ & 641748 \cdot 851 \end{aligned}$	-208 209 209	$\begin{aligned} & 4 \cdot 6787084,5 \\ & 4 \cdot 7894287,7 \\ & 4 \cdot 77^{2} 9996,7 \end{aligned}$
"	48	$\begin{aligned} & 15 \\ & 13 \\ & 14 \end{aligned}$	XIII XIV XVI		315 314 314	$\begin{aligned} & 4 \cdot 8368912,5 \\ & 4 \cdot 8249342,2 \\ & 4 \cdot 8332488,9 \end{aligned}$	"	62	$\begin{aligned} & 12 \\ & 10 \\ & 11 \end{aligned}$	XLI XL XLII	$\left.\begin{array}{ccc} 77 & 3 & 55 \cdot 831 \\ 40 & 47 & 31 \cdot 488 \\ 62 & 82 \cdot & 32 \end{array} \right\rvert\,$	 130 -129 -129	$\begin{aligned} & 4 \cdot 7210396,2 \\ & 4 \cdot 5473245,7 \\ & 4 \cdot 6787084,5 \end{aligned}$
5	49	18 16 17	XVI XIX XVIII	$\left\|\begin{array}{llll} 45 & 31 & 59 \cdot 807 \\ 62 & 23 & 3 \cdot 198 \\ 72 & 4 & 56 \cdot 995 \end{array}\right\|$	$\begin{array}{r} 303 \\ -303 \\ -303 \end{array}$	4•7561267,6 4-8501078,9 4•8810459,7	10	63	$\begin{gathered} 4+5 \\ 3 \\ 6 \end{gathered}$	XLII XLIII XLIV	$\left.\begin{array}{\|cc\|} 78 & 28 \\ 43 & 3 \cdot 711 \\ 43 & 10 \\ 50 & 50 \cdot 242 \\ 58 & 6 \cdot 047 \end{array} \right\rvert\,$	$\begin{aligned} & 205 \\ & .205 \\ & \cdot 205 \end{aligned}$	$\begin{aligned} & 4 \cdot 8203503,4 \\ & 4 \cdot 6644544,2 \\ & 4 \cdot 7592824,2 \end{aligned}$
"	50	$\begin{aligned} & 15 \\ & 13 \\ & 14 \end{aligned}$	XPIII XIX XXI		251 .252 .251	4.7675390,0 4.8353101,2 4•7561267,6	11	64	$\begin{aligned} & 5 \\ & 4 \\ & 6 \end{aligned}$	XLV XLVI XLVII	$\left\|\begin{array}{l} 5045 \\ 6642 \cdot 915 \\ 664240 \cdot 783 \\ 622916 \cdot 302 \end{array}\right\|$	$\begin{aligned} & \circ 080 \\ & \circ 080 \\ & \circ 080 \end{aligned}$	$\begin{aligned} & 4 \cdot 4917850,0 \\ & 4.5659412,4 \\ & 4.5506 \mathrm{I} 37,7 \end{aligned}$
6	51	$\begin{gathered} 4+6 \\ \mathbf{3} \\ 6 \end{gathered}$	XXI XXII XXIII		.284 .284 .283	$\begin{aligned} & 4 \cdot 9651280,5 \\ & 4 \cdot 7995097,3 \\ & 4 \cdot 7626348,0 \end{aligned}$	"	65	$\begin{aligned} & 8 \\ & 7 \end{aligned}$	XLVII XLVI XUIX	$\left\|\begin{array}{l} 554949 \cdot 308 \\ 803452 \cdot 762 \\ 43 \\ 4517 \\ \hline 1930 \end{array}\right\|$	$\begin{aligned} & 090 \\ & 0090 \\ & 090 \end{aligned}$	$\begin{aligned} & 4 \cdot 5709725,8 \\ & 4 \cdot 647378,5 \\ & 4 \cdot 4017850,0 \end{aligned}$
7	52	$\begin{aligned} & 15 \\ & 13 \\ & 14 \end{aligned}$	XXIII XXVI XXV		$\begin{aligned} & 308 \\ & 308 \\ & 308 \end{aligned}$	$\begin{aligned} & 4 \cdot 8353369,2 \\ & 4 \cdot 8734298,9 \\ & 4 \cdot 7822440,8 \end{aligned}$	12	66	$\begin{aligned} & 15 \\ & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & \text { XLVIII } \\ & \mathbf{L I} \\ & \boldsymbol{L} \end{aligned}$	$\left\|\begin{array}{cccc} 63 & 42 & 36 & 363 \\ 59 & 11 & 39 & 34 \\ 57 & 5 & 44 & 489 \end{array}\right\|$	$\begin{aligned} & .087 \\ & .087 \\ & .087 \end{aligned}$	$\begin{aligned} & 4 \cdot 5686641,5 \\ & 4 \cdot 5500296,7 \\ & 4 \cdot 5401437,5 \end{aligned}$
"	53	$\begin{aligned} & 10 \\ & 12 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { XXVI } \\ & \text { XXV } \\ & \text { XXVIII } \end{aligned}$	$\begin{aligned} & 661728 \cdot 775 \\ & 50 \\ & 50 \\ & 63 \\ & \hline \end{aligned} 327 \cdot 037 \times 188$	$\begin{array}{r} 290 \\ 290 \\ 2900 \end{array}$	$\begin{aligned} & 4 \cdot 8450351,1 \\ & 4 \cdot 7685410,8 \\ & 4 \cdot 8353369,2 \end{aligned}$	"	67	$\begin{aligned} & 18 \\ & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \boldsymbol{L} \\ & \mathrm{LI} \\ & \mathrm{LXX} \end{aligned}$		$\begin{array}{r} r 135 \\ \cdot 135 \\ \cdot 135 \end{array}$	$\begin{aligned} & 4 \cdot 7085175,8 \\ & 4 \cdot 6867262,2 \\ & 4 \cdot 568641,5 \end{aligned}$

SIOTr8.-Stations LXXV and LXXVIII appertain to the Karachi Longitudinal Series. Station LIX appertains to the Great Indus Series.

Figure 1.

Triangles 40 to 43.

Constants (from page 196).

Equations to be satisfied.
Factor.

Equations between the Factors								Values of the Factors			Adopted Errors	
$\left\lvert\, \begin{gathered} \text { No. of } \\ e \end{gathered}\right.$	Value of e	Co-efficients of										
		λ_{1}	λ_{8}	λ_{3}	λ_{4}	λ_{5}	λ_{6}					
1	- 000	+3	$\ddot{+3}$	$\begin{gathered} \cdots \\ \cdots \\ +3 \end{gathered}$	\ldots	+1	+ 20	$\lambda_{1}=$	$+$	-0642	$\mathrm{x}_{7}=+{ }^{\prime \prime} \cdot 118$	$\mathrm{x}_{13}=+{ }^{\prime \prime} \cdot 232$
2	- 000				...	$+1$	+ 14	$\lambda_{1}=$		- 0242	$\mathrm{x}_{8}=+\cdot 09 \mathrm{l}$	$\mathrm{x}_{14}=+\cdot 265$
3	- 000					$+1$	- 28	$\lambda_{3}=$		$\cdot 2558$	$\mathrm{x}_{9}=-\cdot 209$	$\mathrm{x}_{15}=-\cdot 497$
4	-000		*		+3	$+1$	- 3	$\lambda_{4}=$	-	-0891	$\mathrm{x}_{10}=-.049$	$\mathrm{x}_{16}=+\cdot 272$
5	$+\begin{gathered} \cdot 573 \\ -35 \cdot 7 \end{gathered}$					+4	\ldots	$\lambda_{5}=$	+	- 2074	$\mathrm{x}_{11}=+\cdot 345$	$\mathrm{x}_{17}=+\cdot .064$
6							+2241	$\lambda_{6}=$	-	- 0200	$\mathrm{x}_{12}=-\cdot 296$	$\mathrm{x}_{18}=-33^{6}$

Figure 2.

The Eastern Sind Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 3.

Triangle 46.
Constants (from page 197).

Equations to be satisfied.
$\begin{array}{rll}\mathbf{x}_{3} & +\begin{array}{r}\mathbf{x}_{6} \\ \mathbf{x}_{3}\end{array} & -20 \mathbf{x}_{6}\end{array}$

Adopted Errors.
$\left\lvert\, \begin{aligned} & \mathbf{x}_{3}=+{ }^{\prime \prime} \cdot 143 \\ & \mathbf{x}_{6}=+\quad .562\end{aligned}\right.$

Figure 4.

Figure 5.

Triangles 49 and 50.
Constants (from page 198).

Equations to be satisfied.
Factor.

INTRODUCTORY.
The Eastern Sind Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 5-(Continued).

Equations between the Factors						Values of the Factors	Adopted Errors
$\begin{gathered} \text { No. of } \\ \text { e } \end{gathered}$	Value of e	Co-efficients of					
		λ_{1}	λ_{2}	λ_{3}	λ_{4}		
1 2 3 4	$\cdot 000$ $-\quad .000$ -1743^{6}	+3	\cdots +3 $*$	+1 +1 +2	+14 $-\quad 1$ \ldots +971	$\lambda_{1}=+\cdot 2321$ $\lambda_{2}=+.1251$ $\lambda_{3}=-.3966$ $\lambda_{4}=-.0214$	$\begin{array}{ll}\mathrm{x}_{13}=-\prime \prime 271 & x_{16}=-\prime \prime 165 \\ \mathbf{x}_{14}=+\cdot 467 & x_{17}=+\cdot 382 \\ x_{15}=-\cdot 196 & x_{18}=-\cdot 217\end{array}$

Figure 6.
Triangle 51.
Constants (from page 199).

Equations to be satisfied.
Adopted Errors.
X_{3}
$24 X_{3}$
$\begin{array}{ll}+x_{6} & =e_{1}=+{ }^{2}=27 \\ -27 x_{6} & =e_{2}=-8 \cdot 1\end{array}$

$$
\begin{aligned}
& x_{3}=-.018 \\
& x_{6}=+28.5
\end{aligned}
$$

Figure 7.
Triangles 52 to 55.
Constants (from page 199).

Equations to be satisfied.
Factor.

...	...	\ldots	=	e_{1}	$=$		-000,	λ_{1}
...	$=$	e_{9}	$=$		-000,	λ_{2}
\ldots	\ldots	\ldots	=	${ }^{3}$	$=$		-000,	λ_{3}
\ldots	\ldots	\ldots	=	e_{4}	$=$		-000,	λ_{4}
\ldots	\ldots	\ldots	=	e_{5}	=	-	-099,	λ_{5}
\ldots			=	e_{6}	=	-	-080,	λ_{6}
- $11 \mathrm{x}_{11}$...		=	e_{7}	$=$			λ_{7}
$-14{ }^{26}$	$+17 \mathrm{x}_{24}$	$-12 x_{23}$	=	e_{8}	=			λ_{8}

Equations between the Factors									
$\begin{gathered} \text { No. of } \\ e \end{gathered}$	Value of e	Co-efficients of							
		λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{0}	λ_{6}	λ_{7}	λ_{8}
1	-000	+3	\ldots	\ldots		$+1$			
2 3	- 000		+3	\ldots				+ 5	
3	$\cdot \mathrm{-000}$			+3	\ldots	...	+1	...	- 6
4 5	.000 -.090				+3		+1	\cdots	$+\quad 5$ $+\quad 5$
5	-.099				*			$\underline{\cdots}$	$+{ }^{+} 9$
7	$-7 \cdot 1$							+938	- ${ }^{\ldots}$
8	-. 6								+1098

Values of the Factors

Adopted Errors

$\lambda_{1}=+.0130$		
$\lambda_{2}=+.0880$	$\mathrm{x}_{10}=-10.021$	$\mathrm{x}_{29}=$ - $^{\prime \prime} .077$
$\lambda_{3}=+\cdot 0359$	$\mathrm{x}_{11}=+\cdot 08 \mathrm{I}$	$\mathrm{x}_{23}=+$ +069
$\lambda_{4}=+.0436$	$\mathrm{x}_{12}=-\cdot 060$	$\mathrm{x}_{24}=+\cdot 008$
$\lambda_{5}=-\cdot 0906$	$\mathrm{x}_{13}=-.078$	$\mathrm{x}_{25}=-.084$
$\lambda_{6}=-1203$	$\mathrm{x}_{14}=+{ }^{1} 98$	$\mathrm{x}_{26}=+.065$
$\lambda_{7}=-.0103$	$\mathrm{x}_{16}=-{ }^{\text {d }} 20$	$\mathrm{x}_{27}=+$ - ${ }^{\text {a }} 9$
$\lambda_{8}=-.0021$		

The Eastern Sind Meridional Series. Final Figural Adjustments of the Non-Circuit T'riangles.

Figure 8.

Triangles 56 to 59.
Constants (from page 200).

Contained Angles.

Equations to be satisfied.
Factor.

Equations between the Factors										Values of the Factors	Adopted Errors	
$\begin{gathered} \text { No. of } \\ \mathrm{e} \end{gathered}$	Value of e	Co-efficients of										
		λ_{1}	λ_{8}	λ_{3}	λ_{4}	λ_{5}	λ_{6}	λ_{7}	λ_{8}			
1	-000	+3		\cdots	...	+ 1	\cdots	$+6$		$\lambda_{1}=+\cdot .0002$		
2	-000		+3		\ldots	$+1$	$+1$	\bigcirc	- 10	$\lambda_{2}=+0.0179$	$\mathrm{x}_{4}=-^{\prime \prime} \cdot 046$	$\mathrm{x}_{16}=$-'" $^{\text {P }} 016$
3	- 000			+3			+1	...	+ 25	$\lambda_{3}=-\cdot 0722$	$\mathrm{x}_{5}=+\cdot 167$	$\mathrm{x}_{17}=+\cdot 093$
4	-000				+3	\cdots	+1	...	- 7	$\lambda_{4}=-\cdot 0039$	$\mathrm{x}_{6}=-121$	$\mathrm{x}_{18}=-\cdot 077$
5	- .036					+2			$+6$	$\lambda_{5}=-0.0433$	$\mathrm{x}_{7}=+.010$	$\mathrm{x}_{19}=+\cdot 053$
6	-. 010						+3	- 16	\cdots	$\lambda_{6}=+\cdot 0566$	$\mathrm{x}_{8}=+\cdot 037$	$\mathrm{x}_{20}=+\cdot 079$
8	+7.0 +5.6			*				+1252	+256 +1538	$\begin{aligned} & \lambda_{7}=+\cdot 0076 \\ & \lambda_{8}=+\cdot 0064 \end{aligned}$	$\mathrm{x}_{9}=-\cdot 047$	$\mathrm{x}_{21}=-\cdot 132$

Figure 9.

Triangles 60 to 62.

Constants (from pages 200 and 201).

Equations to be satisfied.

$$
\begin{array}{ccc}
\ldots & \ldots & \ldots \\
-10 \mathbf{x}_{14} & +5 \mathbf{x}_{12} & -11 \mathbf{x}_{11}
\end{array}
$$

Factor.

x_{16}	$+\mathrm{x}_{17}$	$+\mathrm{x}_{18}$	\ldots	\ldots	...	$=$	e_{1}	=	- 000,	λ_{1}
X_{13}	$+\mathrm{x}_{14}$	$+\mathrm{x}_{15}$...	\ldots	...	=	${ }^{1}$	=	- 000,	λ_{2}
x_{10}	$+\mathrm{x}_{11}$	$+\mathrm{x}_{12}$	\ldots	\ldots	...	=	${ }^{\text {e }}$	=	- 000,	λ_{3}
X_{16}	$+\mathrm{x}_{13}$	$+\quad x_{10}$	\ldots	\ldots	\ldots	=	e_{4}	=	+ .102,	λ_{4}
$21 \mathrm{X}_{18}$	$-13 x_{17}$	$+20 \mathrm{x}_{15}$	$-10 \mathrm{X}_{14}$	$+5 \mathrm{x}_{12}$	$-11 x_{11}$	=	e_{5}	$=$	+6.8,	λ_{5}

The Eastern Sind Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 9-(Continued).

Equations between the Factors							Values of the Factors			Adopted Errors	
$\begin{gathered} \text { No. of } \\ \mathbf{e} \end{gathered}$	Value of e	Co-efficients of									
		λ_{1}	λ_{2}	λ_{3}	λ_{3}	λ_{5}					
1	-000	+3			$+1$	+ 8	$\lambda_{1}=$. 0367	$\mathrm{x}_{10}=+^{\prime \prime} .054$	$\mathrm{x}_{15}=+{ }^{\prime \prime} .077$
2	-000		+3	\ldots		+ 10	$\lambda_{1}=$		-0406	$\mathrm{x}_{11}=-.074$	$\mathrm{x}_{16}=+\cdot 026$
3	-000			+3		- 6	$\lambda_{3}=$		-0091	$\mathrm{x}_{18}=+$-020	$\mathrm{x}_{17}=-\cdot 113$
4	+ $\cdot 102$						$\lambda_{4}=$		-0628	$\mathrm{x}_{13}=+\cdot .022$	$\mathrm{x}_{18}=+\cdot .087$
5	$+6 \cdot 8$			*		+1256	$\lambda_{5}=$	+	-0059	$\mathrm{x}_{14}=-\cdot 099$	

Figure 10.

Triangle 63.
Constants (from page 201).

Equations to be satisfied.

Figure 11.

The Eastern Sind Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 12.

Triangles 66 and 67. Constants (from page 202).									
Equations between the Factors						Values of the Factors		Adopted Errors	
$\underset{e}{\text { No. of }}$	Value of	Co-efficients of							
		λ_{1}	λ_{8}	λ_{3}	λ_{4}				
1 2 3 4	$\begin{array}{r} .000 \\ +\quad .000 \\ +60.38 \\ +60.3 \end{array}$	+	$\dddot{+}$ +	+1 +1 +2	$=1$ 15 $\ldots 829$	$\lambda_{1}=+\cdot{ }^{1861}$$\lambda_{2}= \pm \cdot 8886$$\lambda_{\text {a }}= \pm .284$$\lambda_{3}=+\cdot 825$			

Ogitieoby, Google
PART II.
THE DETAILS OF THE OBSERVATIONSAND
THE FINAL RESULTS.or
THE JODHPORE MERIDIONAL SERIES
AND OF
THE EASTERN SIND MERIDIONAL SERIESOF THENORTH-WEST QUADRILATERAL.

Ogitireoby, Google

JODHPORE MERIDIONAL SERIES
 AND

EASTERN SIND MERIDIONAL SERIES.

Ogitiex by Google

JODHPORE (JODHPUR) MERIDIONAL SERIES.

INTRODUCTION.

This chain of triangles is the eastern of two meridional series which were intended to fill up the space between the Gurhágarh Meridional Series in long. 75° and the Great Indus in long. 68°, and so complete the North-West Quadrilateral. From Calcutta westward to the Gurhagarh Meridional Series the meridional series were carried at intervals of one degree; but in filling up the remaining area two series $2 \frac{1}{8}$ degrees apart were considered sufficient; these series, however, were to be double throughout and to have an extended secondary triangulation between them.

On completion of the revision of the Great Arc Series from Bangalore to Bider, Lieutenant M. W. Rogers, R.E., and his establishment were transferred to Rajputana (Rajputána) to carry out this work. The Jodhpore Meridional Series emanates from the side Súnda (xurv) to Bonik (xuI) of the Karáchi Longitudinal Series and closes on the side Kanda (xxi) to Kaimsir (xix) of the Sutlej Series.

Lieutenant Rogers having detached Mr. Torrens to finish up the work remaining on the Great Arc Series, Section 18° to 24°, proceeded withthe

Season 1872-78. Pbrbonnel.
Lieut. M. W. Rogers, R.E., Offg. Deputy Sapt., 3rd Grade.
Mr. W. C. Price, Aset. Surreyor, 1et Grade.
" C. P. Torrens, " " 8rd "
 remainder of the party by rail to Poona (Puna), where the office and heavy stores were left, and thence to Ahmedabad (Amdávád), which, owing to the destruction of several bridges on the Bombay and Baroda Railway and the consequent stoppage of traffic, was not reached until the end of November. Messrs. Price and Bryson marched thence direct to the scene of operations, to inspect the country and commence the approximate work. Lieutenant Rogers visited Mount Abu, which it was intended to make the permanent recess quarters of the party, and marched thence vid Erinpura to aid the assistants in their selection of stations.

The country from the origin of the Series for about 60 miles is very favorable for triangulation, being generally flat with high isolated hills rising from it. The approximate series was soon sufficiently advanced to commence principal observations, and Mr. Oldham
having brought up the large theodolite (Barrow's 24-inch No. 2*) from Ahmedabad, where it had been left in charge of the Executive Engineer, the measurement of the final angles was begun at Súnda (xliv) of the Karáchi Longitudinal Series on the 31st January 1873 and proceeded with steadily until the beginning of April. Observations were taken at 14 principal stations, forming 15 triangles, which extended a distance of 95 miles. Lieutenant Rogers also took astronomical observations for the direct determination of azimuth at Thob (VIII), about 44, miles W.S.W. of the city of Jodhpore. The field operations were brought to a close at Dodo (x) on the 8th April 1873, and the party marched towards Ahmedabad in separate detachments, closing stations on the road, i.e., building small rectangular pyramidal pillars over the upper marks to protect them from injury, and arrived at recess quarters in Poona on the 8th May.

Messrs. Price and Bryson made good progress in the approximate operations, Mr. Price having charge of the selection, and Mr. Bryson of the building of the stations. The total out-turn of approximate work for the season was the selection of 25 stations extending over a distance of 147 miles.

Mr. Torrens was employed on the Great Arc Series, Section 18° to 24°, and Mr. Oldham acted as Lieutenant Rogers' assistant in the office and observatory.

The country through which the season's operations were carried, is sandy and flat, with an elevation towards the east of about 700 feet, diminishing towards the west and the Lúni river to 300 or 400 feet. South of the Lúni small detached ranges and isolated hills are numerous: their sides are precipitous and covered with jungle, and many of them rise to a considerable height above the plain, several exceeding 2,000 feet. To the east, towards the Lúni, which flowing west across the Series turns south and skirts its western flank, the country becomes barren and sandy, with sand hills covered with low shrubs; water is scarce and brackish, and villages few and far between. The ranges disappear, and save sand hills, the country is level for 70 miles, as far as the Bálmír hills. North of the Lúni the country becomes still more sandy and desolate, and nearly all the water in the tract embraced by the Series is brackish. About 15 miles north of the Luni and 20 miles from the east flank of the Series, is the city of Jodhpore, which lies at the foot of the hill on which the fort is situated and at its southern side: its greatest length from north to south is $2 \frac{1}{2}$ miles and its greatest breadth $\frac{8}{4}$ of a mile. It is closed in on the north by the fort, and on the east, south and west by a high wall capable of mounting guns, and having six gateways. Jodhpore is a good specimen of a native city and is kept fairly clean : it possesses many wells and three tanks; one of the latter, which is artificial, is very fine and large, its bed and sides being of stone masonry.

The fort is built on a hill, the highest in the neighbourhood, rising 360 feet above the surrounding country. There are two roads leading up to it which unite a few yards from the gateway and turn a sharp corner before reaching the gate; both roads are well protected by guns. Besides this gate there are two others to be passed before the fort is gained-the first a small though strong one in a narrow pass between two rocks, and the second a large one approached by a steep ascent, well commanded by guns, and like the

[^6]outer one made difficult by being placed round a corner. Access to the fort from any other direction would be impossible, as the sides are sheer precipices from two to three hundred feet high. The country below is commanded on all sides by the guns of the fort, save one small eminence opposite the fort gate and within the outer line of fortification.

In October 1873, Lieutenant Rogers took furlough to England, and the charge of

Season 1873-74.
Pirbonnel.
Lieut. J. Hill, R.E., Asst. Supt. 1st Grade. Mr. W. C. Price, Asst. Surveyor lat Grade. C.P. Torrens, " " 3rd " " W. Oldham, " " 4th " the party was transferred to Lieutenant (now Major) J. Hill, R.E. Lieutenant Hill left Poona on the 1st November 1873 and marched to the first station of observation, having en route established his Head Quarters at Mount Abu. The country to be triangulated this season was a sandy desert; and the difficulty of obtaining water and provisions soon began to make itself felt. By the kindness of the Jodhpore Darbar (Court), a vakil (Agent) and staff of sowarrs (mounted men), \&c., was attached to the party as in the former season, and by their aid the difficulties of the country were successfully surmounted. Lieutenant Hill experienced delay from the cloudy and misty weather ; he calculated that he lost 34 days in four months from this cause; however the work was pushed on vigorously by all concerned. The sand hills in the desert were generally flat-topped, low and of about equal altitudes, so that the advantages of a hilly country were lost and short sides were unavoidable. Observations were taken at 21 principal stations extending over a distance of 90 miles. The towns of Phalodi and Pokaran were fixed in position and height, and a considerable amount of secondary triangulation was accomplished.

The Superintendent having directed that three sets of observations for the determination of azimuth should be taken on the Series, at equal intervals between the Karachi Longitudinal and Sutlej Series, astronomical observations were made at Jambo (xxvi) in lat. $27^{\circ} 16^{\prime}$. Angular observations were closed at Harban (xxviir) on the 3rd April, and the party arrived at their recess quarters at Mount Abu on the 30th of that month.

During the season Mr. Price who was employed in laying out the approximate series in advance worked with great energy, and in spite of the difficult nature of the country, pushed on the work for 102 miles, selecting 21 stations.

Mr. Torrens was employed on secondary triangulation. Mr. Oldham assisted Lieutenant Hill as observatory recorder.

Captain Hill writes :-" With the exception of the approximate work which extends "into Bickaneer (Bikaner), the field operations of the season were confined to the States of "Jodhpore and Jeysulmere (Jáisalmír). This season in the Jodhpore desert the triangulation " traversed a sandy country, but towards the close of the season the Series entered a part of "Jeysulmere where the ground is hard and strewn with dark, shining stones. The reflection " from these stones is something like the reflection from water, and for this reason vertical ob" servations to certain of the heliotropes gave a good deal of trouble. Mirage was frequently " observable in the mornings, but, except in one or two instances, did not retard the work."
"Throughout the country triangulated, and especially in Jeysulmere, water is scarce
" and in general brackish. In many cases, according to the statement of the people, well water, " which is drinkable in the cold season, becomes actually poisonous in the hot weather. The "villages and wells are few and far between. The former generally consist of a collection of "circular wigwams, the inhabitants of which are a primitive, dirty and good humoured people, " but given to highway robbery and other forms of thieving. The wells are very deep, one at " the village of Akhadna near the station of Nok (xxx) in Jeysulmere, (said by the people to be " 80 purush in depth) is 5 feet in diameter and 374 feet deep. The water arrived at after such a " laborious excavation was unfortunately bitter and quite unfit for use. The deepest well I " have seen is at the village of Bákri in Jodhpore; it has been bored through a rock and is 5 feet " 4 inches in diameter and 450 feet in depth: its water is good. I know of no other well so "deep in Rajputana. The city of Jeysulmere, which was fixed this season, is much smaller "than that of Jodhpore, its reported number of inhabitants being 10,000; but from all I could " see and hear the place was once in a far more flourishing state ; the ruins of its former great" ness are yet to be seen. The water supply for the city is obtained from an adjoining lake; " when this fails, which is generally the case in June, good water has to be brought from a small " village, Kisamghát, which is about 3 miles distant. There are numerous wellsin the city but " the water is not good. The city used to be closed in by a rampart, now useless, as the wall is " rapidly crumbling to pieces. The fort, once strong, is now in a dilapidated state and would "ill stand an assault ; it contains no tanks but many wells. The Jain temples in the fort are "very fine, the carving in the stone being exquisite; in fact this may be said of most of the "houses in the city, the doors, windows and walls having more or less carving about them. "The greater number of the inhabitants who reside within the walls of the fort are Bhati "Rajputs and Jains, and are as a rule great opium eaters."

In November 1874, Captain Rogers having returned from furlough again took charge

Season 1874-75. Prrsonnel.
Capt. M. W. Rogers, R.E., Offg. Dy. Supt., 3rd Grade.
Mr. W. C. Price, Surveyor, 4th Grade.
" C. P. Torrens, Asst. Surveyor, 3rd Grade.
" P. F. Prunty, " " 4th "
to Mount Abu. During the season observations were taken at 25 principal stations and the Series was advanced 104 miles. The work lay chiefly in the States of Bickaneer and Jeysulmere whose darbars afforded very great assistance to the party. Astronomical observations for the determination of azimuth were taken at Mugrala (xLiII) in lat. $28^{\circ} 31^{\prime}$. The approximate series under Mr. Price was pushed on 64 miles and brought to a successful termination by junction with the Sutlej Series on the side Kanda (xxi) to Kaimsir (xix), 17 stations being selected and built.

Mr. Torrens carried a minor series eastward to the city of Bickaneer, of which the height had not been fixed by the Gurhágarh Meridional Series. He effected a junction with the minor series emanating from the Gurhágarh, with very satisfactory results. He then returned to the main series, built small rectangular pyramidal pillars over the principal stations at which observations had been completed, and connected the town of Pungal and also the tri-
junction pillar of the States of Bickaneer, Baháwalpur and Jeysulmere by a minor triangulation.
Mr. Prunty who had joined the party from the Computing Office at Dehra acted as observatory recorder.

Bickaneer is a fine city, built on a slightly elevated spot in the desert where the ground is hard, stony, and intersected by ravines. It has a wall $3 \frac{1}{8}$ miles in circuit wholly built of stone, in which are eight gates and three sally ports; the wall is from 15 to 30 feet high and in good repair, and has a ditch on three sides about 15 feet deep. There are many highly carved houses in the city and two imposing looking Jain temples. Water is plentiful from many very fine wells. The chief productions are sugarcandy and blankets, both of which are of a superior kind. The population is about 35,000 . The fort of Bickaneer which contains the Mahárája's palace is about 300 yards N.E. of the city. The palace rises above the battlements which gives it an imposing appearance ; it is 1,100 yards in circumference and has two gates, numerous bastions and a ditch all round.

Owing to the heavy rains of 1875 the return of men from leave and the collection of

Season 1875-76.

Personnel.
Capt. M. W. Rogers, R.E., Dy. Supt., 3rd Grade. Mr. W. C. Price, Surveyor, 4th Grade.
" C. P. Torrens, Asst. Surveyor, 3rd Grade.
" P. F. Prunty, " " 4th "
stores for the party were much delayed and Captain Rogers did not leave Mount Abu until October 23rd. He however utilised his time by visiting Deesa and inspecting the Meteorological Observatory there and laying out a small triangulation to connect both it and the Telegraph Office with the main triangulation of the Karáchi Longitudinal Series. After a long march the party reached the scene of operations on the 4th December. Observations were at once commenced and the 21 miles remaining to complete the Series were finished on the 3rd January 1876. After this the party marched westward to take up the Eastern Sind Series on the meridian of 70°.

Mr. Price was this year employed in selecting stations for the new series.
Mr. Torrens first took up the connection of Deesa (Disa), on completion of which he commenced a minor series on the meridian of $71^{\circ} 15^{\prime}$, starting from the Karáchi Longitudinal Series and effecting a junction in the vicinity of the town of Jeysulmere with a secondary series which had been extended to this place in the field season of 1873-74.

Mr. Prunty was employed for a month in connecting such of the Baháwalpur Revenue Survey stations as could be identified near the Series.

The Jodhpore Meridional Series is 310 miles in length, and with the exception of a small portion to the south of the river Lúni, it passes over a sandy tract of nearly utter desolation. On all sides nothing meets the eye for miles but sand-hills dotted here and there with tufts of coarse grass and stunted shrubs. These sand ridges vary from 20 to 200 feet in height and are sometimes 2 or 3 miles in length : they appear to be scattered on every side like the billows of the sea, but run generally in a N.E. and S.W. direction. The villages are few in number and consist of collections of squalid wigwams situated around spots where wells have been excavated. These are sometimes as much as 200 feet deep and often yield only brackish water; for the soil seems to be impregnated, although capriciously, with saline matter, and the water from a large number of the wells is more or less unfit for drinking purposes.

In the whole distance between the Lúni River and the Sutlej Series- 250 miles-only one place, Phalodi, was met with which could be dignified by the name of a town, and but four which ranked as fair sized villages. There is not much difference in the degree of barrenness in the country traversed by the whole Series, but if any, the northern portion in Baháwalpur is the most sterile. There the Series passed over a length of 70 miles in which there were only three wells of drinkable water, and these were within a space of 10 miles. In Baháwalpur the sand hills grow smaller and fewer, and are replaced by long stretches of perfectly level hard clay like the beds of dried up tanks, separated by tracts of drifting sand, accumulating here and there into mounds; there is not a particle of vegetation save a few sparsely scattered Phog (Calligonum) bushes. However, for two or three months in the year the desert presents a cheerful appearance : each village has several hamlets, called dhanis, established where there is any hard soil capable of retaining water; in excavations made in this, water lodges for two or three months after the rains, and the inhabitants of the villages come to these to feed their flocks and herds on the freshly grown herbage, and to cultivate the few miserable fields which they have in the hollows between the sand hills. The rainfall is however very small, 4 or 5 inches; and the inhabitants have a hard struggle for life in respect to both food and water; their food they supplement with the seeds of various grasses, the principal of which is the bhurut. The grain of this grass is about the size of a pin's head and is enclosed in a prickly husk which causes a great deal of discomfort to both man and beast as it sticks in the clothes of the former and the hair of the latter and is very difficult to get rid of. Water is collected in receptacles called tankas, cylindrical reservoirs about 6 feet in diameter and 8 or 10 feet deep, coated with fine chunam. When full they are covered in with brushwood and mud and are not used until the well water fails or becomes brackish, as generally happens in the hot weather. When, as is often the case these tanks also fail, those who can afford it send for water 15 or 20 miles from the nearest fresh-water well, and the poorer drink the brackish water mixing it with a little dahi or curds.

Under these circumstances great care had to be taken to ensure a supply of wholesome water for the main camp and detached signal parties, and in many cases it had to be brought from upwards of 15 miles and sometimes over 20 miles, and even with all these precautions at times every one had to put up with brackish and hardly drinkable water; this was especially the case on the approximate series under Mr. Price, who, having to reconnoitre in parts concerning which no sure information could be got, had often to take with him a camel load of water and march on, not knowing when or where he might get a fresh supply. However every one bore with cheerfulness these privations when they occurred, and owing to the good arrangements for supplies \&c., combined with the healthiness of the desert, there was but little sickness and the party lost but one man during the four years.

The most sterile part of the country, as mentioned above, crossed by the northern portion of the Series, is very near the district which at page xxiv_a of the Introduction to the Jogi-Tila Meridional Series (see Synoptical Volume VI) is mentioned as having been visited by Lieutenant J. Tennant and Mr. J. W. Armstrong with a view to carrying that series south of the Sutlej. They found it impracticable without the arrangements which
the experience of the Executive Officers of the Jodhpore Meridional Series had taught them to adopt, and moreover they experienced hindrance and opposition from the Baháwalpur Sardars. It shows the improvement which has taken place in that country under the guardianship of Colonel Minchin, that, instead of opposition, Captain Rogers met with civility and help from every one, that all trouble as to carriage of water, provisions and materials for station building was taken off his hands, native officials vying with each other in aiding the survey operations. This was also the case, though perhaps in a lesser degree, in the States of Marwar (Márwár), Bickaneer and Jeysulmere, the darbars of which gave great aid to the party. In fact without such assistance no series could have been taken across the desert except at an enormous expense.

The calculations of the triangulation of this Series having been carried up from the side of origin, Súnda-Bonik, of the Karáchi Longitudinal Series, to the terminal side, Kaimsir-Kanda, of the Sutlej Series, the following discrepancies were met with between the original values of the length and azimuth of the terminal side above named and those of the latitude and longitude of the terminal station Kanda, and the values of the same as derived from the Sutlej Series after the Simultaneous Reduction of the North-West Quadri-lateral:-

In Logarithm of the side in feet $-0.000,0123,4=1 \cdot 8$ inches per mile.

, Latitude			$0^{\prime \prime} \cdot 172$
, Longitude			$0 \cdot 121$
Azimuth						$3 \cdot 216$

These discrepancies were treated as errors in the Jodhpore Meridional Series and were dispersed as described in Part I of this Volume.

The heights of the stations above mean sea level are entirely dependent on trigonometrical determinations, no line of spirit-leveling having been executed in the neighbourhood of this Series. The heights of the terminal stations, Kanda and Kaimsir of the Sutlej Series, as brought up by the Jodhpore Series, were in excess of the final values given in Volume IV of the Account of the Operations, $\& c$. ., by 8.6 and 12.8 feet respectively. The mean difference 10.7 feet was treated as an error generated in the Jodhpore Series and was dispersed by simple proportion.

Secondary Triangulation.

This may be divided into two classes :-
(1st). Secondary series of some length.
(2nd). Permanent marks intersected from the principal stations with the large theodolite or fixed by one or two triangles observed with a smaller instrument.

As already mentioned on page III, the intervals between the principal chains of triangles in this desert country were increased from 1° to $2 \frac{1_{2}}{\circ}$. This reduction in the amount of the principal required an increase in that of the secondary triangulation, otherwise a sufficient number of fixed points of reference would not be provided for topographical surveys; it was therefore decided to run a longitudinal chain of secondary triangles from the Indus to the Jodhpore Meridional Series, and also a meridional chain between it and the next intended principal series to the west, which should supply points in the southern and better inhabited portion of the country. In pursuance of this scheme the undermentioned secondary series were executed:-

The Bálmir and Jeysulmere Secondary Series. The longitudinal portion of this series, between the stations of Daichu (xIx), Jalora (xxi), and Ekka (xxui) of the Jodhpore Meridional Series, and the city of Jeysulmere, was executed in the field season of 1873-74, and the meridional portion (which is double throughout) between the stations of Gangasára (Lxv), Didáwa (LxII), and Tampi (Lx) of the Karáchi Longitudinal Series, and the city of Jeysulmere, in the season of 1875-76. Both portions were executed by Mr. C. P. Torrens with a 10 -inch theodolite by Troughton and Simms, and extend a distance of about 230 miles. The meridional portion passes through the district of Mallani which is well inhabited for that region, and fixes the town of Bálmír and many permanent marks. The whole chain has been treated as one series in the Synoptical Volume of this series and adjusted between the final position values of the principal stations of the Karachi Longitudinal and Jodhpore Meridional Series.

The Bickaneer Secondary Series. This series was executed in the field season of 1874-75 by Mr. C.P. Torrens with a 10 -inch theodolite, and emanates from the side Ronesar (xu) to Bithnok (xxxviII) of the principal series, extends eastwards for about 45 miles, and closes on the side Bickaneer-Hethiari of the Bickaneer Secondary Series which extends westwards from the Gurhagarh Meridional Series (see Synoptical Volume IV). Thus the Jodhpore and Gurhágarh Meridional Series are connected by a longitudinal chain of triangles.

Mount Abu Secondary Triangulation. This was executed by No. 7 Topographical Survey Party, Rajputana Survey, under Captain G. Strahan, R.E., during the field season of 1869-70, and is based on the side Gúrú Sikkar-Súnda (xili-xurv) of the Karáchi Longitudinal Series. At the greater number of the stations, observations were taken with a 14 -inch theodolite to luminous signals; but in a few cases, when an ascent was too steep and dangerous to carry up the large instrument, a 6 -inch theodolite was employed: it will be seen that the summit of Mount Abu rises about 4,700 feet above the plain of Sirohee at the foot of the mountain. In 1876 Mr. Prunty connected the Hospital and the Survey Office at Mount Abu with the above triangulation, observations being taken with a 10 -inch theodolite to luminous signals. The stations of this triangulation are in general marked with an engraved circle and dot and covered by a cairn of stones.

The remainder of the secondary triangulation was mainly executed pari passi with the principal series, by the measurement-with the large theodolite-of angles at the prin-
cipal stations to the surrounding secondary stations, trijunction and Revenue Survey pillars and other prominent objects, the angles at the secondary stations being measured with smaller theodolites : in this way the positions of the following places of note were determined, the town of Erinpura, the fort of Jalor, the city of Jodhpore, the large village of Pungal and the towns of Mároth, Mirgarh and Maujgarh in Baháwalpur.

August, 1884.
MALCOLM W. ROQERS, R.E.

Ogitieoby, Google

EASTERN SIND MERIDIONAL SERIES.

INTRODUCTION.

The Eastern Sind is the western of the two meridional series which have been carried across the deserts of Rajputana (Rajputána) and Sind, between the Great Indus and the Gurhágarh Meridional Series.

The Series is double throughout and 240 miles in length: it originates from the side Rojhra (LXXV) to Sandohar (LXXVIII) of the Karáchi Longitudinal Series and after passing through the Thar and Párkar district of Sind, the eastern portion of the Khairpur State and the western portion of Jeysulmere (Jáisalmír), enters the Ubauro taluk of Shikárpur, its eastern flank stations being within the boundaries of the Baháwalpur State; it terminates on the side Dáowála (LXII) to Máchka (LIX) of the Great Indus Series. Operations were commenced in the field season of 1875-76, and continued the following year, but were suspended from 1877 to 1879, at first on account of the failure of the rains in 1877 which deprived the country of its natural water supply, and afterwards because Major Rogers's services were required with the Army in Southern Afghanistan. The Series was continued in 1879-80 and finally completed by Lieut.-Colonel Branfill in 1880-81.

With the exception of the last 50 miles of the Series on which Colonel Branfill used Troughton and Simms' 24-inch Theodolite No. 1, the observations were taken by Captain (now Major) Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

On the completion of the Jodhpore Meridional Series in January 1876, Captain season 1875-76. Rogers having been ordered to commence a series on the Personnel.
Capt. M. W. Rogers, R.E., Offg. Dy. Supt., 8rd Grade.
Mr. W.
r. W. C. Price, Surveyor, 4th Grade.
" C. P. Torrens, Asst. Surveyor, 3rd Grade.
" P. F. Prunty " " 4th "
Unfortunately the River Indus had washed away several of the old stations about
the most convenient locality, so that Captain Rogers had to adopt a side west of the given meridian, intending to gradually work on to it and then turn southwards.

The country south of the Indus is quite flat and covered with dense tree and grass jungle and for four or five months in the year is inundated; it therefore became necessary in the 20 miles which intervene between the river and the sand hills to resort to ray-tracing and tower-building, and as this style of work was new to all the members of the party, the progress was in consequence slow. Eight stations were selected, advancing the Series to the the sand hills a distance of 24 miles. Two towers were built and 104 miles of rays cleared.

Mr. Price, who was to take up the selection of stations in the southern section, was delayed for a month owing to his camp being attacked by fever and having to go to Deesa (Dísa) for medical treatment, he then marched to the meridian of 70° on the Karáchi Longitudinal Series and commenced selecting and building. Mr. Price found the station Rojhra of the Karáchi Longitudinal Series in complete preservation, and the pillar at the station of Sandohar was also in good condition except that the upper mark was wanting. The neighbouring stations of Fulrár and Chánga were in ruins. He therefore based his work on the side Rojhra-Sandohar and rebuilt the stations Fulrár and Chánga as nearly on their old sites as possible making use of them to construct a hexagon about Sandohar. The elements for these stations given in the details of the Karáchi Longitudinal Series are therefore no longer applicable. He selected 24 stations and built eight, extending the Series 110 miles.

During this season there were no final observations taken, but the party was employed in pushing on the preliminary work in order to get a fair start for the next season.

The party took the field in October and marched from Mount Abu to Cháchra in Thar

Season 1876-77.

Prrsonnbl.
Capt. M. W. Rogers, R. E., Offg. Dy. Supt., 3rd Grade.
Mr. W. C Price, Surveyor, 4th Grade
", C. P. Torrens, Aset. Surveyor, 3rd Grade.
" P. F. Prunty, " " 4th "
and Párkar, and thence to Rojhra station of the Karáchi Longitudinal Series. Observations were commenced here on the 20 th November and were carried on continuously through the Thar and Párkar district of Sind, the Khairpur State and Jeysulmere, and were closed at Dhanono (XXIV) on the 18th March up to which the weather had been very favourable for observations; after this, as is usual in the desert, high winds and duststorms commenced and made the observing difficult and tedious.

Twenty-six new principal stations were fixed, extending the Series 125 miles along the meridian. An azimuth was observed at Malar (xiv) to two circumpolar stars.

Mr. Price selected 21 new principal stations, advancing the Series 98 miles and completing its junction with the southernmost side of the work laid out by Captain Rogers during the previous season.

Mr. Torrens built 19 and closed 16 principal stations, and moreover did a good deal of work in identifying and fixing a number of stations of the Sind Revenue Survey. The construction of stations in the desert involved a large amount of trouble, owing to the difficulties of making good bricks and of transporting them, when made, to the sites where they were required.

The country through which the Series passed this season, in the district of Thar and

Párkar, chiefly consisted of narrow sand hills sometimes of considerable height, running from south-west to north-east in perfectly parallel lines: they are higher and closer together than those in Rajputana, and their slopes are steep, cut up by ravines and covered with low thorn jungle. Travelling was thus rendered very tedious, the village tracks had to be followed and long detours made, 10 miles was a heavy march for laden camels, and much time was spent in moving from station to station. This season, for about 50 miles along the western side of the Series, the country was inundated and a vast expanse of water stretched as far as the eye could reach. The town of Umarkot, when visited was surrounded on two sides by water which came up to the base of the fort.

In the north of Thar and Párkar and the western portion of Jeysulmere a new phenomenon is met with. This is the draens or expanse of shifting sand, which occurs here and there amongst the desert sand hills and is often many miles in extent. These draens have no vegetation, and their surface is continually changing, the sand is in one place scooped out into funnel shaped hollows, and in another thrown up into beautifully rounded hills. They were only crossed, when unavoidable, and then the road had to be inspected and prepared beforehand, and five miles was a fatiguing march. It is a curious fact that in certain places in these draens there are wells of water on small pieces of hard ground, which seem to be spared by the overwhelming sand, and the water of which is invariably good. The draens are very numerous for some 75 miles north of parallel 26°. They impoverish the already sterile country, the acme of desolation being reached in eastern Khairpur and western Jeysulmere. There are no crops and the people live nearly entirely on milk in various forms; a little bajri and mot are however imported from Sind in exchange for sheep. The inhabitants say that the draens travel gradually northwards, but very slowly. Their summits rise to a considerable height, in many cases overtopping the sand hills: and it was a matter of considerable difficulty to arrange the Series so that the stations should not fall on them. In two cases this could not be avoided, and although all precautions for stability were taken in their construction, it is doubtful if they can remain for long. The villages are of the same description as those met with in other parts of the desert, and the majority of the houses are merely wigwams of brushwood; a house with mud walls is a rarity, and brick and stone are almost unknown. With the exception of Umarkot there is no place along the Series worthy of the name of a town. The villages are, nearly without exception, built on the summits of sand hills, and often at a great distance from their wells, which are in the hollows between the hills. The reason for this custom seems to be, that in the cold weather the tops of the sand hills are considerably warmer than the valleys where the cold is sometimes very great. The party experienced considerable trouble from the difficulty of procuring drinking water, especially on the eastern side of the Series, near the junction of the four States of Marwar (Márwár), Jeysulmere, Khairpur, and Thar and Párkar, where there is a tract of country 30 miles broad by 40 long without any drinkable water.

During the season of 1877-78 the operations of the Eastern Sind Meridional Series were suspended owing to the failure of the rains in Rajputana. Captain Rogers and his assistants, Messrs. Torrens and Prunty, were sent to carry on a survey across the Frontier in Beluchistan, whilst Mr. Price was sent to the Eastern Frontier Series in Burma.

During the season of 1878-79, Captain Rogers was sent as Survey Officer with the Army into Southern Afghanistan. Mr. Price remained with the party and continued the triangulation in Beluchistan, Mr. Torrens joining him after having completed some secondary triangulation to connect the main series with the Jeysulmere secondary series and reconnoitred the intended Sehwán secondary series.

Having completed the operations on which he had been engaged in Southern Afgha-

Season 1879-80.
Prebonnel.
Captain M. W. Rogers, R.E., Offg. Dy. Supt., 3rd Grade.
Mr. W. C. Price, Surveyor, 4th Grade " C. P. Torrens, Asst. Surveyor, 2nd Grade.
nistan in connection with the military movements, Captain Rogers returned to Sind to resume the principal and secondary triangulations which had been suspended in 1878 when war with Afghanistan was declared. On his return he was much delayed for want of transport, all available animals being required for the Army, and when he arrived at Hyderabad, sind, where his principal instruments had been left in store, he was further delayed because no hammals or bearers were to be obtained for the carriage of the large theodolite, all persons of this calling having either joined the Army or deserted the country through fear of being required to do so. Thus it was necessary to wait until bearers could be brought up from Poona (Púna) before operations could be commenced. This enforced delay was utilised in computing and projecting the series of triangles from Quetta to Kandahár the observations of which had been taken by Captain Rogers a few months before.

The amount of work remaining to be completed on the Eastern Sind Series would have been just possible to accomplish in a long field season and under a very favourable combination of circumstances, if the survey party were fresh and in full vigour after some months' residence in recess quarters : but it could hardly be expected from Captain Rogers and his party who had just returned from more than a year's continuous field service in Afghanistan and Beluchistan, and who were unable to commence their observations until late in the season.

Having obtained bearers from Poona, Captain Rogers left Hyderabad on the 7th January and marching through Sind and western Jeysulmere commenced observations at Ráviláhu (xxvi) on the 27th January ; work was closed at Chauki (xxxv) on the 27th March, and the party marched to Reti on the Indus Valley Railway, and thence proceeded by rail and road to Dehra Dún. Fifty angles were observed at the stations, advancing the Series 64 miles : an azimuth was observed at Asu (xxxi) to two circumpolar stars.

The country through which the Series passed was much the same as described the last season, but draens were not met with outside the tract that lies between the meridians of $69^{\circ} 15^{\prime}$ and $79^{\circ} 15^{\prime}$ and the parallels of 26° and 27°. It was taken from the Amírs of Sind after the war of 1845 and given as a reward to the Maharíwal of Jeysulmere to whom it still belongs, it contains no towns of any size, and but three forts, two of which, Sháhgarh and Kháro, are of mud and in ruins, being rapidly buried by the desert sand; the third, Gotáru, is of brick and much larger; it contains two wells and is in fair repair, with two antiquated cannons on the ramparts.

Colonel Branfill having finished the principal triangulation in Southern India pro-

Season 1880-81.
Personnel.
Lieut.-Ool. B. R. Branfill, Dy. Supt., 2nd Grade. Mr. C. P. Torrens, Asst. Surveyor, 1st Grade.
ceeded from Bangalore to Sind, where on the 6th November he assumed charge of the Bombay Party formerly under Major Rogers, R.E.; it had been equipped for the field by Mr. Hennessey who had held temporary charge in addition to his other duties since Major Rogers' departure on furlough to Europe in April.

The southern portion of the country triangulated in this year was desert pure and simple, water having to be carried on camels many miles to each station. Then, as the boundary between the Baháwalpur desert and the valley of the Indus was approached, hills and long ridges of drift sand were met with, interspersed with stretches of low lying, alluvial flats, which are mostly dependent on rainfall for their supply of water, and are thus practically desert for the greater portion of the year: when rain does fall, grass and shrubs spring up and render these tracts good grazing ground for cattle and camels for a short time afterwards; to some of them the flood waters of the Indus find occasional access by the old river channels, the deeper parts of which contain water for several months after the subsidence of the annual inundation, and are thus natural reservoirs; they are locally called dhauds. Finally, the valley of the Indus was entered and the principal operations were brought to a close on two stations-Dáowála (Lxii) and Máchka (Lix) -of the Great Indus Series, which had been established in the year 1859-60; this part of the country was covered with a dense growth of acacias and other trees, the clearance of the necessary rays through which was tedious and laborious.

The triangulation had already been designed and laid out by Major Rogers in 1876-77 in the form of a hexagon, a quadrilateral, and two pentagonal figures. Half the stations had been built; but three towers and as many platform stations remained to be completed, and 140 miles of line had to be cleared on the rays between the principal stations. The ray on the side, between the stations of Chauki (xxxv) and Trisingh (xxxvini) was found to have become blocked up by a moving sand hill during the interval of six months which had elapsed since the stations were last visited; but Major Rogers had fortunately anticipated that this might happen, and had taken observations at both the base stations to the forward station at the vertex of the first triangle; thus it only remained to measure the third angle, and the necessity for clearing a ray through the sand hill was avoided.

The terminal stations in the valley of the Indus, consisting of towers about 24 feet high, were found still serviceable, having been put in repair in 1876-77, but had both become deflected to some extent; it was thus necessary to enlarge the upper portions of the central shafts before the large theodolite could be plumbed over the mark-stone at the ground level.

The principal triangulation completed this season extended for a distance of 50 miles along the meridian, introducing 13 new stations. The vertical angles were observed with some trouble owing to variations in atmospheric conditions materially influencing the terrestrial refraction, which in several cases was found to be negative, to an average extent of an eighth of the contained arc, thus making signals at a distance of 10 miles appear to be as much as 14 feet below their actual position.

Observations for azimuth to circumpolar stars were taken at two stations on the
series, Vijnot (xLIV), and Dáowála (LXII) of the Great Indus Series.
Although so much of the country traversed by the Eastern Sind Meridional Series is a dreary wilderness of sand, it is not entirely devoid of interest; from the fact that it may only have become a desert in comparatively recent times, and being in a state of continual motion it is now probably spreading in the direction of the prevailing wind during the dry, hot season. That a part of the desert was not always so, appears from the existence of many ruined places and forts within its borders, and from the change of the bed of the river Indus from east to west within historic times. The westerly tendency of the river bed has been attributed to the natural "set" to the westward of a north to south flowing current in the northern hemisphere, due to the increasing velocity of diurnal rotation of the parallels which it successively crosses; but a more effective cause of change may be found in the prevalence of westerly or south-westerly over easterly or north-easterly winds, especially in the dry, hot months of March, April and May, when the sand of the river channel is transported continually to the eastward, tending to fill up the more easterly channels and to protect their eastern banks from erosion by the water of the ensuing inundation, besides going to increase the actual amount of drift sand in the desert to the eastward. However this may be, there is no doubt that many towns and villages have been deserted by the rivers which once watered them. The ruins of some of these and the traces of the river channels on which they were built are still met with, especially on the western and northern edges of the desert where the sand has not quite obliterated them; but most of them have probably been overwhelmed and lost in the ever moving flood of sand from the south-westward.

In the portion of Baháwalpur traversed by the Jodhpore Meridional Series the ruinous and nearly deserted towns of Maujgarh, Mirgarh and Mároth mark the course of the now non-existent Hurkaru river, and on the north of the Eastern Sind Series were met with the ruins of Vijnot and Sirwáhi (or Seorae), the former of which is a collection of blackened mounds from 10 to 20 feet in height, consisting of the débris of bricks and pottery mixed with earth and comminuted pieces of charcoal, indicating the site of a considerable town extending over half a mile in length and nearly a quarter of a mile in width. Exclusive of suburban mounds the site now measures a mile and a half in circumference. The only tradition about Vijnot amongst the country folk is, that it was one of the five (or seven) chief cities of Sind in the early days before the Muhammadan conquest (711 a.d.). The place lies about half a mile east of the Reni nadi, an old channel of the river Indus, and about 4 miles south of the Reni station of the Indus Valley State Railway.

Sirwáhi, the site of a lofty fort close to a town which is also said to be one of the ancient fortified cities of Sind, is situated about five miles N.E. of Sabzalkot and 3 miles N.W. of the Walhar station of the Indus Valley State Railway in the Baháwalpur State. The fort is about a quarter of a mile in circumference and rises 50 feet above the great plain around it, whilst the mound on which the adjacent town stood is perhaps half to three quarters of a mile around and 20 to 30 feet high.

The calculations of the triangulation of this Series having been carried from the side of origin, Rojhra-Sandohar of the Karachi Longitudinal Series, to the terminal side, Máchka-Dáowála of the Great Indus Series, the following discrepancies were met with
between the original values of the length and azimuth of the terminal side above named and those of the latitude and longitude of the terminal station Dáowala, and the values of the same as derived from the Great Indus Series after the Simultaneous Reduction of the North-West Quadrilateral:-

```
In Logarithm of the side ... ... \(=-0 \cdot 000,0074,2=1 \cdot 1\) inches per mile.
    Latitude ... ... ... \(=-0^{\prime \prime} \cdot 423\)
    Longitude ... ... ... \(=+0 \cdot 028\)
    Azimuth ... ... ... \(=+0 \cdot 939\)
```

These discrepancies were treated as errors in the Eastern Sind Meridional Series and were dispersed as described in Part I of this Volume.

The heights of the stations above mean sea level are entirely dependent on trigonometrical determinations, no line of spirit-leveling having been executed in the neighbourhood of this Series. The heights of the terminal stations, Máchka and Dáowála of the Great Indus Series, as brought up by the Eastern Sind Meridional Series, were in excess of the final values given in Volume III of the Account of the Operations, \&c., by 5.0 and 0.3 feet respectively. The mean difference $2 \cdot 7$ feet was treated as an error generated in the Eastern Sind Meridional Series and was dispersed by simple proportion.

Secondary Triangulation.

The secondary triangulation executed in connection with the Eastern Sind Meridional Series may be divided into three portions.
(lst). Secondary Series of some length.
The Jeysulmere Secondary Series. The extension of the Jeysulmere chain of secondary triangles of the Jodhpore Series westward from the city of Jeysulmere to meet the principal triangulation of the Eastern Sind Meridional Series. This work was done by Mr. C. P. Torrens, Assistant Surveyor, 2nd Grade, in the field season of 1878-79. It is about 60 miles in length and extends from the side Asu-Maringra of the Eastern Sind Meridional Series to the side Jeysulmere-Thaiat of the Jeysulmere Minor Series, thereby establishing a secondary longitudinal series on the parallel of 27°, extending from the Jodhpore to the Eastern Sind Meridional Series.

The Sehwán Secondary Series. This series originates from the side Ramsar (xvi) to Patanawari (xviII) of the Eastern Sind Series and extends on the parallel of $26^{\circ} 25^{\prime}$ to the side Mírkhán (xir) to Bhit (x) of the Great Indus Series. It consists of 24 triangles extending over a direct distance of 154 miles. The whole of this series was the work of Mr. C. P. Torrens, in the field seasons of 1878-79, 1879-80 and 1880-81. The instrument used for the observations was a 10 -inch theodolite; it gave very satisfactory results, the closing errors at the junction with the Great Indus Series being minute.
(2nd). Permanent marks intersected from the principal stations with the large theodolite or fixed by one or more triangles observed with a smaller instrument.
(3rd). In addition to these triangulations a considerable amount of secondary work was executed during the progress of the Series in order to fix all the stations of the Sind Revenue Survey which could be identified and which fell within the limits of the principal triangulation, also the boundary and junction pillars of the States of Marwar, Khairpur, Jeysulmere, Sind and Baháwalpur, and several forts which had once been important in that part of the country. Owing to the nature of the country and the innumerable sand hills, auxiliary stations had to be established in nearly every case. In the season of 1876-77 observations were taken with a 7 -inch theodolite by Mr. C. P. Torrens, and in 1879-80 by Captain Rogers with the same instrument. Owing to the desert nature of the country the same dearth of intersected points prevails on this Series as was noticed on the Jodhpore Meridional Series.

August, 1884.

JODHPORE MERIDIONAL SERIES.

Ogitiex by Google

JODHPORE MERIDIONAL SERIES.

ALPHABETICAL LIST OF PRINCIPAL STATIONS.

JODHPORE MERIDIONAL SERIES.

 NUMERICAL LIST OF PRINCIPAL STATIONS.

JODHPORE MERIDIONAL SERIES.

DESCRIP'IION OF PRINCIPAL STATIONS.

The Principal Stations of this Series consist of circular masonry pillars from 3 to 4 feet in diameter for the large 'lheodolite to rest on, and in general are surrounded by a platform of stones and earth, or sand, on which the observatory tent was pitched. In certain instances the sand hills, on which several of the stations fell, did not afford a satisfactory foundation for the pillars; and piles were driven deep down on which the foundations were laid and the pillars built so that their surfaces were nearly flush with the level of the hill top. When this was the case a platform was not always necessary. Being almost invariably on the highest accessible points the pillars rarely required to be raised more than 3 or 4 feet. They contain mark-stones placed vertically over one another, the uppermost being generally flush with the surface: over this a rectangular protecting pillar, bearing a sufficiently accurate mark for Topographical and Revenue Survey purposes-as shown at page 74 of Volume II of the "Account of the Operations, \&c." -was erected after the completion of the observations.

The following descriptions have been compiled from those given by the officers who executed the Series. The orthography of such names of parganas, districts \&c., as has been fixed by Government for Rajputana has been adhered to. A few details, such as the name of a village or pargana within which a station is situated, have been obtained from the returns furnished by the political authorities to whose charge the stations have been committed.
XLI.-(Of the Karáchi Longitudinal Series). Bonik Hill Station, lat. $25^{\circ} 4^{\prime}$, long. 72° 54 4^{\prime}-observed at in 1850 and 1873 -is situated in a group of hills which are unconnected with the Aravalli range and lie 25 miles north of Mount. Abu on the border of Marwar; pargana Jhara Kharul of the Sirohee territories. The station is fixed on the most prominent though not the most elevated hill of the group, being an acute peak crowned with large naked masses of granite of square outline. The platform is built upon and amongst these rocks, the upper surface of the pillar being 2 feet 9 inches below the highest one, viz., that towards the north-west angle of the platform.

The pillar, which is surrounded by a platform of the usual construction, is solid, and contains three marks, one at the surface, the others 1 foot and 3 feet below it, the last being at the level of the foundation. When visited in 1872 prior to the commencement of the Jodhpore Meridional Series, the station of 1850 was found intact. The azimuths and distances of the surrounding villages are :-Wáan 190°, at foot of hill; Barwara 325°, miles 2; Audor 356°, miles $2 \cdot 5$; Modoni (temple) 83°, miles 7•3.
XLIV.-(Of the Karáchi Longitudinal Series). Súnda Hill Station, lat. $24^{\circ} 47^{\prime}$, long. $72^{\circ} 28^{\prime}$ observed at in 1851 and 1873-is situated on an isolated group of hills, about 24 miles W. by N. of Mount Abu. The southern half of this group, known as the Nímbáj hills, from the town of Nímbáj, which lies at their foot, belongs to the Sirohee territories. The northern portion, including the hill of Sunda, after which the station is named, is in taluk Jálor of the Jodhpore territories. The ascent commences at the small village of Usmat on the eastern side of the hill.

The pillar, which is surrounded by a platform of the usual construction, is solid and contains three marks, one at the surface, the others 1.21 and 3.21 feet below it, the last being at the level of the foundation. When visited in 1872 prior to the commencement of the Jodhpore Meridional Series, the station of 1851 was found intact. The azimuths and distances of the surrounding villages are:-Warra 288°, miles 2.8 ; Víkanwa 240°, miles 4.7 ; Nímbáj (temple) 293°, miles 4.1 ; Rajiraua 155°, miles 6.0.
I. Borta Hill Station, lat. $25^{\circ} 6^{\prime}$, long. $72^{\circ} 23^{\prime}$ —observed at in 1873 -is on the highest part of a short range running N.E. and S.W., south of Borta village and 8 miles N.E. of Bhínmál, a large village. It is on the northern portion of the hill which is locally called Renáva. The road has been made from about a mile W. of the village and N.E. of the station. The station is in sub-division Bhínmál of taluk Jálor of the Jodh. pore territories.

The pillar, which is surrounded by a platform of the usual construction, is solid and contains two marks, one level with the hill top on a very large stone, and the other at the surface of the pillar which is $3 \cdot 10$ feet high. The azimuths and distances of the circumjacent villages are :-Pádru 127°, miles 2.8; Borta 224°, miles $1 \cdot 2$; Ledramír 351°, miles 2.7 .
II. Dhaula Hill Station, lat. $25^{\circ} 15^{\prime}$, long. $72^{\circ} 42^{\prime}$-observed at in 1873 -is situated on a small detached hill about 440 feet above the plain, the platform being on a mass of boulders on the eastern and highest portion. The hill, which is locally named Pansútia, is apparently a portion of the Ásarona hills, being the most southwesterly of all. The station derives its name from Dhaula village, in the lands of which it lies; it is in taluk Jalor of the Jodhpore territories. The large town and fort of Jálor are about $5 \cdot 4$ miles W.N.W. of the station.

The pillar, which is surrounded by a platform of the usual construction, contains two marks, the lower on the rock in situ, and the upper in the surface of the pillar, which is 2.75 feet high. The azimuths and distances of the circumjacent villages are :-Bhaugal 109°, miles 2.9; Dhaula 224°, mile 1.0 ; Narauáwa 346°, miles 1.4 .
III. Kundal Hill Station, lat. $25^{\circ} 29^{\prime}$, long. $72^{\circ} 22^{\prime}$-observed at in 1873 -is on a hill locally called Waduwár and is on the peak which is the highest and most southerly, and most westerly but one, of a long range about 10 miles N. of the Sukri river, 16 miles N.W. of Jálor and 12 miles S. of Siwana village, extending in a curved line from Kanki to Mangi village. The hill on which the station is situated is about $1 \frac{1}{4}$ miles S.W. of Kundal village from whence the ascent begins. It is in taluk Siwána of the Jodhpore territories. There is a higher hill, about 3 miles N., called Saura, or Mahádeo-ka-Bakra, which is the highest in that portion of the country.

The pillar, which is surrounded by a platform of the usual contruction, is solid and contains two marks, one on a huge boulder and flush with the surface of the hill, and the other at the surface of the pillar which is 3.33 feet high. The azimuths and distances of the circumjacent villages are:-Pádru 104°, miles .7 .9 ; Kundal 171°, at foot of hill; Elaua 301°, miles 8.5 .
IV. Mandaula Hill Station, lat. $25^{\circ} 25^{\prime}$, long. $71^{\circ} 55^{\prime}$-observed at in 1873 -is situated on a sand hill (locally called Ura) about 200 yards from the left bank of the Lúni river, and about two miles W. of the village of Mandaula. The station is in the lands of that village in taluk Maloni of the Jodhpore territories.

The pillar, which has no surrounding platform but is sunk so that its surface is level with the ground, is solid and contains two marks, one at the top and the other $3 \cdot 2 ;$ feet below at the level of the foundation. The azimuths and distances of the cicumjacent villages are :-Harra 92°, mile 1; Koela 220°, miles 4 ; Mandaula 239°, miles 2.27 .
V. Bládrájan Hill Station, lat. $25^{\circ} 36^{\prime}$, long. $72^{\circ} 54^{\prime}$-observed at in 1873 -is identical with the station of the same name of the Rajputana 'Topographical Survey. It is on the bastion of an old fort on the highest and most westerly peak of a small group of hills at the north-eastern foot of which lies the large village of Bhádrájan. The hill is locally called Dhumra and is in the Bhádrájan jágír, taluk Jodhpore, of the Jodhpore territories. The bastion on which the station is placed is 16 feet in diameter and the highest on the southern face of the fort.

The pillar, which is surrounded by a platform of the usual construction, is solid and contains two marks, the lower on the rock in situ and the upper in the surface of the pillar which is 3.17 feet high. The azimuths and distances of the circumjacent villages are :-Agalia 51°, miles 4.5 ; Rama 186°, miles $4 \cdot 1$; Bhádrajan 270°, at foot of hill; and Koala 307°, miles 1.9 .
VI. Nagar Hill Station, lat. $25^{\circ} 47^{\prime}$, long. $72^{\circ} 12^{\prime}$-observed at in 1873-is situated on one of three peaks locally called Vauki Taunka, on the western portion of a long low range running east and west about 3 miles S . of Láni river and 5 miles S.W. of Bálotra. The station derives its name from the village of Nagar which lies at the foot of the hill on the north. The hill is difficult of ascent; it is in sub-division Jasol, talúk Maloni of the Jodhpore territories.

The pillar, which is surrounded by a platform of irregular shape, is solid and contains two marks, one in the foundation and the other in the surface of the pillar which is 3 feet high. The azimuths and distances of the circumjacent villages are:Nagar 147°, at foot of hill ; Temawa 215°, miles 3.5 ; and 'Tápra 354°, miles 3.95 .
VII. Samdari Hill Station, lat. $25^{\circ} 49^{\prime}$, long. $72^{\circ} 37^{\prime}$-observed at in 1873 -is on a small isolated, irregularly shaped hill locally named Mátalalasi, on the north bank of the river Lúni and close to the large village of Samdari, in taluk Siwána of the Jodhpore territories.

The pillar, which is surrounded by a platform of the usual construction, is solid and contains three marks, one in the foundation, 2 feet below the ground, another flush with the hill top and the third on the surface of the pillar; the difference of height between the upper and lower marks is 3.13 feet. The azimuths and distances of the circumjacent villages are:-Devalihari 66°, miles $1 \cdot 7$; Mokrundi 180°, miles $2 \cdot 25$; Deopura 243°, miles $2 \cdot 1$; and Komáwas 335°, miles $2 \cdot 6$.
VIII. Thob Hill Station, lat. $26^{\circ} 3^{\prime}$, long. 72°, 25^{\prime}-observed at in 1873 -is on a low hill, about half a mile W. of the large village of Thob and 10 miles N. of Pachbudra village, in taluk Siwána of the Jodhpore territories. There is a well of fairly good water near the village.

The pillar, which is surrounded by a platform of the usual construction, is solid and contains two marks, one in the foundation, flush with the hill top and the other in the surface of the pillar which is 3 feet high. The azimuths and distances of the circumjacent villages are :-Havadhan Roaro 35°, miles $2 \cdot 95$; Thob 266°, mile 0.63 ; aud Roaro 348°, miles $2 \cdot 22$.
IX. Borla Hill Station, lat. $26^{\circ} 9^{\prime}$, long. $72^{\circ} 7^{\prime}$-observed at in 1873 - derives its name from the local name of the sand hill on which it stands, and which is about 3 miles N.W. from the village of Lapúndra to the lands of which it appertains. It is in a desolate and barren country the nearest village being Lapúndra. Perao village lies to the N.E. distant 3.1 miles. The water of the villages is hardly drinkable, but a small supply for a short time may be obtained from the villagers' tanks. The station lies about 16 miles W. of Patodi in taluk Maloni of the Jodhpore territories.

The pillar, which is built on a foundation laid on wooden stakes driven into the ground which had previously been excavated to a depth of 4 feet, is solid and coutains two marks, one in the foundation and the other in the surface of the pillar 3 feet above it. There is no platform.
X. Dodo Hill Station, lat. $26^{\circ} 4^{\prime}$, long. $72^{\circ} 51^{\prime}$-observed at in 1873 -is on a flat rock to the west of higher but unsuitable rocks on the western side of a low irregular rocky hill about 20 miles south-east of Jodhpore, near the road from Jasol and Bálotra to Jodhpore. The hill is in the lands of Doda-Lonasar village in taluk Jodhpore of the Jodhpore territories. Water can be obtained up to the end of March from a tank $\frac{1}{3}$ mile to the north.

The pillar, which is surrounded by a platform of the usual construction, s solid and contains two marks, the lower on the rock in situ and the upper in the surface of the pillar 3.33 feet above it. The azimuths and distances of the circumjacent villages are :-Selawa 91°, miles 2.2; Lanowás 160°, miles $1 \cdot 8$; Kalijara 354°, miles $1 \cdot 4$; and Katowás 186°, miles $4 \cdot 2$.
XI. Adori Hill Station, lat. $26^{\circ} 20^{\prime}$, long. $72^{\circ} 23^{\prime}$-observed at in 1873 -is on a small rocky hill about 300 feet above the level of the surrounding country and situated amongst the sand hills, between the villages of Shera and Sheráda. It is in the lands of Tina village in taluk Jodhpore of the Jodhpore territories.

The pillar, which is surrounded by a platform of the nsual construction, is solid and contains two marks, the lower on the rock in situ and the upper at the surface of the pillar which is 2.08 feet high. The azimuths and distances of the circumjacent villages are :-Shera 73°, miles $2 \cdot{ }^{\circ}$; Tína 101°, miles 1.5 ; Sheráda 263°, miles 2.0 ; and Soítra 328°, miles 4.0 .
XII. Dugur Hill Station, lat. $26^{\circ} 17^{\prime}$, long. $72^{\circ} 42^{\prime}$-observed at in 1873 -is situated on a conical rocky hill, the northernmost of a range of isolated hills running north and south about 23 miles west of Jodhpore city. The ascent of the hill is from the village of Dugur. There is a tank of good water about it a mile from the hill. It is in taluk Jodhpore of the Jodhpore territories.

The pillar, which is surrounded by a platform of the usual construction, is solid and contains two marks, one on the rock in situ and the other on the surface of the pillar which is 1 foot high. The azimuths and distances of the circumjacent villages are:-Angolai 105°, miles 1.34 ; Batila 253°, miles 3.22 ; and Sironi 343°, miles 2.99 .
XIII. Ketu Hill Station, lat. $26^{\circ} 31^{\prime}$, long. $72^{\circ} 33$-observed at in 1873 -is situated on a rocky hill, distant about 4 miles in an easterly direction from the village of Ketu, and about 3 miles in a westerly direction from the village of Belwa. It is in taluk Ketu of the Jodhpore territories. The water is good but scarce in, the hot weather.

The pillar, which is surrounded by a platform of the usual construction, is solid and contains two marks, one on the rock in situ and the other at the surface of the pillar which is 3 feet high. Kirja village lies S . W. by W., at a distance of 10.7 miles.
XIV. Sulkia Thalau Hill Station, lat. $26^{\circ} 31^{\prime}$, long. $72^{\circ} 20^{\prime}$-observed at in 1873 -is on the westernmost knoll of a range of sand hills, and is distant 2 miles to the N.E. from the large village of Sulkia Thalau in taluk Jodhpore of the Jodhpore territories. There is no good water near the station. The water in the village of Sulkia Thalau is brackish.

The pillar, which has no surrounding platform, but is sunk so that its surface is level with the ground, is solid and contains three marks, one at the bottom of the foundation, a second 2 feet above it, and a third in the surface of the pillar, which is 3.04 feet high. The azimuths and distances of the circumjacent villages are:-Loharan 205°, miles 10.5 ; and Kirja 325°, miles 8.5 .
XV. Malunga Hill Station, lat. $26^{\circ} 29^{\prime}$, long. $72^{\circ} 49^{\prime}$-observed at in 187 -is situated on a conspicuous conical-shaped rocky hill which rises to the height of 320 feet above the surrounding country. The small hamlet of Digari lies at its foot to the south-east, and the village of Malunga is distant $2 \cdot 4$ miles and $58^{\circ} \mathrm{E}$. of S. The water at the village of Malunga is good. The station lies within the boundary of the village of Malunga, taluk Ketu of the Jodhpore territories.

The pillar, which is surrounded by a platform of the usual construction, is solid and contains two marks, one at the surface and the other at the bottom of the pillar which is 3 feet high. The azimuths and distances of the circumjacent places are :Báro 255°, miles 2 nearly ; and Jodhpore city 311°, miles $20 \cdot 1$.
XVI. Loharan Hill Station, lat. $26^{\circ} 40^{\prime}$, long. $72^{\circ} 25^{\prime}$-observed at in 1874 -is situated on a low range of sand hills at a distance of 4 of a mile in a direction $22^{\circ} \mathrm{E}$. of N . from the village of Loharan. It is within the boundary of the village of Loharan in taluk Ketu of the Jodhpore territories. There is no good water near the station.

The pillar, which is solid and 3 feet high, is built on a foundation 2 feet thick. There are three mark-stones, one at the bottom of the foundation, a second 2 feet above it and a third in the surface of the pillar. The sand had to be heaped up 14 feet above the former hill top level, so as to form a platform flush with the upper surface of the pillar. The bearings and distances of the circumjacent villages are :-Kanudia W.N.W., about 4 miles ; Laurta N.E., about 3 miles ; and Daidu E.S.E., about 8 miles.
XVII. Chamu Hill Station, lat. $26^{\circ} 40^{\prime}$, long. $72^{\circ} 38^{\prime}$-observed at in 1874 -is distant about 1 mile in adirection $42^{\circ} \mathbf{E}$. of N . from the village of Chamu, and is situated on the highest sand hill in the vicinity of that village. It lies within the boundary of the village of Chamu in taluk Ketu of the Jodhpore territories.

The pillar, which is solid and 3 feet high, has been sunk so that its surface is level with the ground, and has been built on a circular foundation 6 feet in diameter and 1 foot in thickness, resting on wooden piles. It contains two marks, one at the surface and the other at the bottom of the pillar. Barnan village lies about 4 miles N.W.
XVIII. Pelu Hill Station, lat. $26^{\circ} 49^{\prime}$, long. $72^{\circ} 30^{\prime}$-observed at in 1874 -is situated on a small sand hill, and is distant $2 \frac{1}{\frac{1}{2}}$ miles in a direction 30° E. of S. from the village of Pelu. It lies on the boundary between the villages of Pelu and Marla in taluk Ketu of the Jodhpore territories.

The pillar, which is solid and 3 feet high, has been sunk so that its surface is level with the ground and has been built upon a circular foundation 6 feet in diameter and 1 foot in thickness, resting on wooden piles. It contains two marks, one at the surface and the other at the bottom of the pillar. The azimuth and distance of Bakri village are 235°, miles 10.8 .
XIX. Daichu Hill Station, lat. $26^{\circ} 49^{\prime}$, long. $72^{\circ} 20^{\prime}$-observed at in 1874 -is situated at the eastern extremity of a long range of sand hills, and lies about $3 \frac{1}{\frac{1}{2}}$ miles in a north-westerly direction from the large village of Daichu and 2 miles in a direction $7^{\circ} 30^{\prime} \mathrm{W}$. of N . from the village of Ságra. It is on the lands of the village of Daichu, in taluk Ketu of the Jodhpore territories.

The pillar, which is solid and 3 feet high, has been sunk so that its surface is level with the ground and has been: built on a foundation 2 feet thick. It contains three mark-stones, one in the upper surface of the pillar, the second at the bottom of the pillar, and the third at the bottom of the foundatiou. The azimuths and distances of the circumjacent villages are:-Marla 149°, miles 4.7 ; and Koru 191°, miles 7.2 .
XX. Sorau Hill Station, lat. $26^{\circ} 50^{\prime}$, long. $72^{\circ} 42^{\prime}$-observed at in 1874 -is situated on the highest knoll of a rather elevated sand ridge, and is distant $2 \frac{1}{8}$ miles in a direction $68^{\circ} \mathrm{E}$. of N. from the good sized village of Sorau. It is on the lands of the village of Sorau, in pargana Phalodi of the Jodhpore territories.

The pillar, which is solid and 3.08 feet high, has been sunk so that its surface is level with the ground, and has been built on a foundation 2 feet thick. It coutains three mark-stones, one in the upper surface of the pillar, the second at the bottom of the pillar, and the third at the bottom of the foundation. The azimuth and distance of Bakri village are $138^{\circ} 30^{\circ}$, miles 5.5 .
XXI. Jalora Hill Station, lat. $26^{\circ} 58^{\prime}$, long. $72^{\circ} 25^{\prime}$-observed at in 1874 -is situated on a rocky hill which has but a small elevation above the surrounding country. It is distant 2.7 miles in a direction $33^{\circ} \mathrm{W}$. of S . from the village of Jalora, and is on the lands of that village in pargana Phalodi of the Jodhpore territories.

The pillar, which is surrounded hy a platform of the usual construction, is solid and contains two marks, one in the surface and the other in the foundation 4 feet below. The azimuths aud distances of the circumjacent villages are;-Koru 51°, miles $5 \cdot 4$; and Dhaiakor $328^{\circ} 30^{\prime}$, miles $5 \cdot 4$.
XXII. Loháwat Hill Station, lat. $27^{\circ} 0^{\prime}$, long. $72^{\circ} 36^{\prime}$-observed at in 1874 -is situated on a conspicuous conical-shaped rocky hill which rises to a height of 250 feet above the rather elevated piece of country which immediately surrounds it. It lies in a direction $80^{\circ} \mathrm{W}$. of N . from the Vishnui portion and $65^{\circ} \mathrm{W}$. of N . from the Ját portion of the village of Loháwat, and is distant $2 \cdot 4$ miles from a point about half way between these parts of the village. It is within the boundary of the village of Loháwat in pargana Phalodi of the Jodhpore territories. Good water can be obtained from the village of Loháwat from a well 333 feet deep.

The pillar, which is surrounded by a platform of the usual construction, is solid, 3 feet high and contains two marks, one at its surface and the other at the bottom of the pillar. The azimuth and distance of Bakri village are 332°, miles $7 \cdot 2$.
XXIII. Ekka Hill Station, lat. $27^{\circ} 6^{\prime}$, long. $72^{\circ} 22^{\prime}$-observed at in 1874 -is situated on the highest of a low group of sand hills and is distant $1 \cdot 1$ miles in a direction S.W. from the village of Ekka and 3.2 miles in a direction $36^{\circ} \mathrm{W}$. of S . from the fort in the town of Phalodi. It is on the lands of the village of Ekka in pargana Phalodi of the Jodhpore territories.

The pillar, which is solid and 3 feet high, has been sunk so that its surface is level with the ground. It has been built on a foundation 1 foot thick which rests on piles driven into the sand. There are two mark-stones, one at the top and the other at the bottom of the pillar. The azimuth and distance of Mokheri village are $27^{\circ} 30^{\prime}$, miles $2 \cdot 4$.
XXIV. Omlo Hill Station, lat. $27^{\circ} 7^{\prime}$, long. $72^{\circ} 31^{\prime}$-observed at in ${ }^{1874-\text { is situated on a low stony }}$ hill and is distant 0.8 of a mile from the village of Omlo in a direction $31^{\circ} \mathrm{W}$. of S . It is on the lands of the village of Omlo in pargana Phalodi of the Jodhpore territories.

The pillar, which is surrounded by a platform of the usual construction, is solid, 5 feet high and rests on a foundation 1 foot thick. It contains two marks, one at the top and the other at the bottom. The azimuths and distances of the circumjacent places are:-Phalodi town 100°, miles $7 \cdot 3$; and Kicham village $108^{\circ} 15^{\prime}$, miles 4.1.
XXV. Khirwa Hill Station, lat. $27^{\circ} 17^{\prime}$, long. $72^{\circ} 24^{\prime}$-observed at in 1874 -is situated on land of the village of Khirwa in pargana Báp of the Jeysulmere territories. The station is built on one of a group of sand knolls at a distance of about $2 \frac{1}{2}$ miles in a direction $65^{\circ} 30^{\prime} \mathrm{E}$. of S . from the village of Khirwa.

The pillar, which is surrounded by a rough platform of sand covered with a layer of stones 1 foot thick, is solid and 3 feet high and has been sunk so that its surface is flush with the level of the platform. It has been built on a foundation 2 feet thick. It contains three mark-stones, one in the upper surface of the pillar, the second at the bottom of the pillar and the third at the bottom of the foundation. The azimuths and distances of the circumjacent places are:-Báp village of the Jeysulmere territories $180^{\circ} 27^{\prime}$, miles 6.64; Agar village of the Jodhpore territories 281°, miles 5.75 ; and Phalodi town of the latter territories 357° 30^{\prime}, miles $10 \cdot 0$.
XXVI. Jambo Hill Station, lat. $27^{\circ} 16^{\prime}$, long. $72^{\circ} 34^{\prime}$-observed at in 1874-is situated on a long sand ridge which runs in a N.E. and S.W. direction. It is distant $2 \cdot 4$ miles in a direction due south from the village of Jambo and is on the lands of Naneo village in pargana Phalodi of the Jodhpore territories.

The pillar, which is surrounded by a rough platform of sand covered with a layer of stones 1 foot thick, is solid and 3 feet high and has been sunk so that its surface is flush with the level of the platform. It has been built on a foundation 2 feet
thick. It contains three mark-stones, one in the upper surface of the pillar, the second at the bottom of the pillar and the third at the bottom of the foundation. The azimuths and distances of the circumjacent places are:-Phalodi town 45°, miles 13.75 ; Sawanti village $76^{\circ} \mathbf{3 0}$, miles 3; and Báp village of the Jeysulmere territories $\mathbf{1 2 5}$, miles $\mathbf{1 2 \cdot 2}$.
XXVII. Sirad Platform Station, lat. $27^{\circ} 26^{\prime}$, long. $72^{\circ} 28^{\prime}$-observed at in 1874 -is situated on an extensive flat, the soil of which is very hard and stony. It is on the lands of the village of Bara Sirad in pargana Nok of the Jeysulmere territories. The nearest village is Nauagaon, from which the station is distant $3 i$ miles in a direction $50^{\circ} \mathrm{E}$. of S .

The pillar, which is surrounded by a platform of the usual construction, is solid and 3.94 feet high, resting on a foundation 2 feet thick the upper surface of which is flush with the surface of the ground. There are three marks, one on the upper surface of a large stone in the bottom of the foundation, the second 7 inches above it and level with the surface of the ground, and the third in the upper surface of the pillar. The azimuths and distances of the circumjacent villages are ;-Bap 54. miles 6.0; and Sirad $169^{\circ} 30^{\prime}$, miles 3.9.
XXVIII. Harban (or Ghatori Mál) Hill Station, lat. $27^{\circ} 26^{\prime}$, long. $72^{\circ} 17^{\prime}$-observed at in 1874 is situated on a rocky hillock about 50 yards from which is another, surmounted by a stone pillar bearing an inscription. It is distant from Harban village 3.9 miles, in a direction $24^{\circ} \mathrm{W}$. of N . It is on the lands of the village of Báp in pargana Báp of the Jeysulmere territories.

The pillar, which is surrounded by a platform of the usual construction, is solid and 3 feet high, resting on a foundation 2 feet thick. There are two mark-stones, one in the upper surface of the pillar and the other at the ground level. The azimuths and distances of the circumjacent villages are :-Sheora $211^{\circ} 30^{\prime}$, miles 8 ; Báp 299°, miles 8.3 ; and Mondali $136^{\circ} 30^{\prime}$, miles 2.75.
XXIX. Bintli Hill Station, lat. $27^{\circ} 26^{\prime}$, long. $72^{\circ} 39^{\prime}$-observed at in 1874 -is named after some fields that are in its neighbourhood, and is built on the highest sand hill in that part of the country. The boundary between the Jodhpore and Jeysulmere states passes close to the station on its eastern side. The nearest village is Partáb Sing-ka-sirad from which the station is distant 6.3 miles in a direction $72^{\circ} 30^{\prime}$ E. of S. The station is on the lands of that village in pargana Nok of the Jeysulmere territories.

Abstract

The pillar, which is surrounded by a rough platform of sand covered with a layer of stones 1 foot thick, is solid and 8 feet high and has been sunk so that its surface is flush with the level of the platform. It has been built on a foundation 2 feet thick. It contains three mark-stones, one in the upper surface of the pillar, the second at the bottom of the pillar and the third at the bottom of the foundation. The azimuths and distances of the circumjacent villages are;-Jambo in the Jodhpore territories

 $\mathbf{8 2} \mathbf{2}^{\circ}$, miles $9 \cdot 6$; and Modia in the Jeysulmere territories $192^{\circ} 30^{\prime}$, miles $\mathbf{1 2 . 0}$.XXX. Nok Hill Station, lat. $27^{\circ} 36^{\prime}$, long. $72^{\circ} 20^{\prime}$-observed at in 1874 -is on the easternmost of a number of low sand knolls near the village of Nok. The knoll on which the station has been built is known as Mátá ji khejri-ka-dhúra. The station is on the lands of the village of Nok, from which it is distant $\mathbf{3 . 6}$ miles in a direction $45^{\circ} 30^{\prime} \mathrm{E}$. of N ; pargana Nok of the Jeysulmere territories. The water obtained from its wells is good, and the supply never fails.

The pillar, which is surrounded by a rough platform of sand covered with a layer of stones 1 foot thick, is solid and 3 feet high, and has been sunk so that its surface is flush with the level of the platform. It has been built on a foundation 2 feet thick. It contains three mark-stones, one in the upper surface of the pillar, the second at the bottom of the pillar and the third at the bottom of the foundation. The azimuth and distance of Sheora village are $356^{\circ} 30^{\prime}$, miles $4 \cdot 8$.
XXXI. Mongolia Platform Station, lat. $27^{\circ} 38^{\prime}$, long. $72^{\circ} 32^{\prime}$-observed at in 1874 -is situated on a slight rise near the spot where the former hamlet of Mongolia once stood. The site of that village is still marked by a few plum and other trees. The nearest village is Girajsúr from which the station is distant $6 \frac{1}{4}$ miles in a direction $25^{\circ} \mathrm{W}$. of S . The station is on the lands of Nok village in pargana Nok of the Jeysulmere territories.

The pillar, which is surrounded by a rough platform of sand covered with a layer of stones 1 foot thick, is solid and 3 feet high, and has been sunk so that its surface is flush with the level of the platform. It has been built on a foundation 2 feet thick and contains three mark-stones, one in the upper surface of the pillar, the second at the bottom of the pillar and the third at the bottom of the foundation. The azimuths and distances of the circumjacent villages are:-Sirad 21°, miles $11 \cdot 6$; Nokra $270^{\circ} 30^{\prime}$, miles $9 \cdot 5$; and Trijunction Pillar on Jodhpore, Bickaneer and Jeysulmere boundary 281°, miles 12.6.
XXXII. Pabusar Hill Station, lat. $27^{\circ} 44^{\prime}$; long. $72^{\circ} 23^{\prime}-$ observed at in 1874 -is called after the village of that name which is distant 0.35 mile at an azimuth of 255°. It is on the northern end of a sand hill about $52 \cdot 5$ feet high terminating abruptly at the station. The path from Bikampur to Pabusar skirts its base. The village of Pabusar is very small and has a well of brackish water; fresh water comes from Nok. The vil-
lage of Kolasir a little larger lies about 5 miles to the E. The station is in that portion of pargana Nok which belongs to the Thakur of Bikampur in the Jeysulmere territories.

The pillar is 3 feet high having a foundation of 2 feet with three mark-stones, one at the bottom, another 1 foot above it and the upper one at the surface. No mention is made in the records of the existence of a platform.
XXXIII. Bikampur Hill Station, lat. $27^{\circ} 43^{\prime}$, long. $72^{\circ} 14^{\prime}$-observed at in 1874 -is on the highest point of a sand ridge about $64 \cdot 5$ feet in height,t he nearest village being Bikampur distant 4.9 miles at an azimuth of 131°. The fort, or Thakur's residence, built of white stone can be seen from the station. The water at Bikampur is brackish in the wells, a small quantity for drinking is stored in small excavations. The station is in the lands of the Thakur of Bikampur, in pargana Nok of the Jeysulmere territories.

The pillar is solid and 3 feet high exclusive of foundation, and has three mark-stones, one at the bottom, the second 9 inches above it and the third at the surface. No mention is made in the records of the existence of a platform. The bearings and distances of the circumjacent villages are:-Borono S.W., miles 8; and Charanala N.N.W., miles 8.
XXXIV. Phulasar Hill Station, lat. $27^{\circ} 52^{\prime}$, long. $72^{\circ} 22^{\prime}$-observed at in $\mathbf{1 8 7 4 - 7 5}$-is named after a small village of Vishnu worshippers, which is distant $5^{\prime} 3$ miles at an azimuth of 174°. There is a dry tank called Natheri about 1 mile south; and the station itself is on the highest sand hill in the vicinity. The only village seen is Phulasar. There is a well of brackish water at Phulasar but no good water nearer than Bikampur. The station is in the lands of the village of Gogaliala, belonging to the Thakur of Bikampur, in pargana Nok of the Jeysulmere territories.

The pillar, which is surrounded by a rough platform of sand and stones, is solid and 3 feet high exclusive of the foundation. It has three mark-stones, one at the base on a large stone, another 9 inches above it and the third at the surface. The approximate azimuths and distances of the circumjacent villages are;-Charauala 81°, miles 6 ; and Gogaliala 47°, miles 9 .
XXXV. Girondi Hill Station, lat. $27^{\circ} 50^{\prime}$, long. $72^{\circ} 32^{\prime}$-observed at in 1875 -is on a high sand hill locally called Gadalet-ka-dhúra near the boundary of Jeysulmere. Girondi village is distant $1 \cdot 72$ miles at an azimuth of 336°. The station isin the lands of the village of Nok in pargana Nok, of the Jeysulmere territories. There are wells of brackish water at Girondi and drinking water can be obtained from the chunam tauks.

The pillar, which is surrounded by a rough platform of stones and sand, is 3 feet high with a foundation of 2 feet and has three mark-stones, one in the foundation, another 7 inches above it flush with the hill top and the third at the surface. The azimuths and distances of the circumjacent villages are:-Ghariala (which is visible from the station and is in the Bickaneer territories) 314°, miles $7 \cdot 26$; aud Girajsar (approximately) 338°, miles 7 .
XXXVI. Mankasar Hill Station, lat. $28^{\circ} 0^{\prime}$, long. $72^{\circ} 31^{\prime}$-observed at in 1875 -is on a sand ridge $2 \cdot 62$ miles from Mankasar village which lies at an azimuth of 216°. All the villages about are small and have wells of brackish water, drinking water being obtained from tanks. Bangarsar is the nearest village for supplies. The station is on the lands of Nok village, in pargana Nok of the Jeysulmere territories.

The pillar, which is surrounded by a platform of stones and sand, is solid and 3.71 feet high with a 2 feet foundation. It contains three mark-stones, one at the botom, another 2 feet above it flush with the hill surface and the third at the surface. The approximate azimuth and distance of Bangarsar village are $28 i^{\circ}$, miles 8 nearly.
XXXVII. Uperthal Hill Station, lat. $28^{\circ} 0^{\prime}$, long. $72^{\circ} 17^{\prime}$-observed at in $\mathbf{1 8 7 5 - i s}$ on a very high sand hill called by the natives Uperthal from its being the highest in those parts; it is 170 feet above the plain to the east and commands a good view all round. The station is on the lands of Nok village, in pargana Nok of the Jeysulmere territories. The water at Goru is brackish.

The pillar is solid and 3.04 feet high exclusive of the foundation. It contains three mark-stones, one at the bottom, another 7 inches above it and the third at the top. The bearings and distances of the circumjacent villages are:-Goru (a Vishuu village) S.E., miles 1•16; Nargroh W., about miles 10; Phulasar S.S.E., miles 6; and Barsalpur the only large village N.N.W., miles 14.6 .
XXXVIII. Bithnok Hill Station, lat. $27^{\circ} 53^{\prime}$ long. $72^{\circ} 42^{\prime}$-observed at in 1875 -is on the highest sand hill of a range running N. and S. locally called Gajath Thal a few hundred yards south of a cart track from Bithnok to Bagu village. Bithnok is a large village with good water. The station is in the lands of that village in pargana Magra of the Bickaneer territories.

The pillar, which is surrounded by a platform of sand and stones, is solid and 3.5 feet alove the ground with a foundation and has two mark-stones, one at the bottom and the other 2 feet above it level with the top of the hill. No mention is made of a mark-stone having been placed at the surface of the pillar. The azimuths and distances of the circumjacent villages are:Baugarsar (approximately) 141°, miles 9 uearly; Bithuok 275°, miles $\overline{2} 22^{2}$; aud Maudal 323°, miles 10 uearly.
XXXIX. Modia Hill Station, lat. $28^{\circ} 15^{\prime}$, long. $72^{\circ} 27^{\prime}$-observed at in 1875 -is on a very conspicuous, high, long sand hill overlooking the country on all sides, 11.88 miles S.E. by E. of the large village of Barsalpur. There are no villages near, only dhanis, e.i, cold weather temporary villages; of these Modia is the nearest. The station is in the lands of the Rao of Barsalpur in pargana Nok of the Jeysulmere territories.

The pillar, which is surrounded by a paltform of sand, is solid and 4 feet in height ahove the ground and has three mark-stones, one in the lowest part of the foundation, the second 2 feet above it flush with the hill top and the third at the surface of the pillar. The approximate azimuths and distances of the circumjacent villages are:-Modia 29°, miles 2.88; Bhati Walla 59 ${ }^{\circ}$, miles 5.61; and Bhim. Walla 104°, miles 4.
XL. Ronesar Hill Station, lat. $28^{\circ} 3^{\prime}$, long. $72^{\circ} 44^{\prime}$-observed at in 1875 -is on a high flat and extensive sand hill, not on the very highest point on account of the ray to Modia H. S. No villages are visible from the station. Water and supplies are scarce in the small villages around. The station is on the lands of the village of Ronesar in pargana Magra of the Bickaneer territories.

The pillar, which is surrounded by a platform of stones and sand, is solid and 3 feet high above the ground and has three mark-stones, one at the bottom of the foundation, the second 1 foot above it flush with the ground and the third on the top of the pillar. The approximate azimuths and distances of the circumjacent villages are:-Konesar 314°, miles 6 ; and Augnu 180°, miles 6.
XLI. Sachu Hill Station, lat. $28^{\circ} 15^{\prime}$, long. $72^{\circ} 7^{\prime}$-observed at in 1875 -is on a sand hill 183.9 feet high and $10 \cdot 29$ miles distant from the large village of Barsalpur to the N.N.W.: the cart track from thence to Sachu village runs about 1 mile \mathbf{S}. of the hill. The station is on the lands of the village of Sachu which belongs to the Rao of Barsalpur in pargana Nok of the Jeysulmere territories. The well water at Sachu is drinkable.

The pillar, which is surrounded by a platform of stones and earth, is solid and 3.83 feet high with a foundation of 1 foot. There are three mark-stones, one at the bottom of the foundation, the second 11 inches above this flush with the hill top aud the third at the surface of the pillar. Sachu village is distant 2.69 miles at an azimuth of 54°.
XLII. Jodasar Hill Station, lat. $28^{\circ} 18^{\prime}$, long. $72^{\circ} 44^{\prime}$-observed at in 1875 -is on a high sand hill called by the natives Keridi dhúra, and is 6.1 miles E. of the village of Jodasar and about 8 miles S.S.E. of Ramra village. The station is on the lands of Jodasar village which belongs to the Rao of Pungal in the Bickaneer territories. The water at Jodasar village is brackish. Good water has to be brought from Pungal which is 15 miles distant to the N.E.

The pillar, which is surrounded by a platform of stones and sand, is solid and 5.06 feet high with a foundation of 1.75 feet. It has three mark-stones, one on the top of the foundation, the second $2 \cdot 64$ feet above it and the third $2 \cdot 42$ feet above the second at the surface of the pillar.
XLIII. Mugrala Hill Station, lat. $28^{\circ} 31^{\prime}$, long. $72^{\circ} 25^{\prime}$-observed at in 1875 -is on a high sand hill called Mugrala. It is in the lands of the village of Akasar in the estate of the Rao of Pungal in the Bickaneer territories. The water at Akasar and Siasar is very brackish, at Balhar slightly better, at Rachni there is a small tank. Besides this there is no good water nearer than Bhiawala toba (tank), 24 miles distant to the N.N.W., in the Baháwalpur territories.

The pillar is solid and $5 \cdot 17$ feet high, with a foundation, which with the pillar contains 5 mark-stones, the first at the bottom of the foundation, the second 2 feet above it, the third 0.50 foot above the second, and flush with the hill surface, the fourth 2.50 feet above the third, and the fifth 2.67 feet above the fourth and flush with the upper surface of the pillar. The bearings and distances of the circumjacent villages are:-Akasar N.E., miles 4.8 ; Rachni S.W., miles 8.46 ; Balhar S., miles 8 ; and Siasar N.E., miles 10.
XLIV. Khirsar Hill Station, lat. $28^{\circ} 30^{\prime}$, long. $72^{\circ} 42^{\prime}$-observed at in 1875-derives its name from Khirsar village in the lands of which it lies in pargana Pungal of the Bickaneer territories. The hill slopes gently from the south and terminates abruptly to the north being there 186 feet above the adjacent plain. The path from Dattohar to Pungal runs south of the hill. The water of Khirsar village is brackish, drinking water comes from Pungal.

The pillar, which is surrounded by a platform of stones and sand, is solid and $5 \cdot 15$ feet high with a 1 foot foundation, and has three mark-stones, one at the top of the foundation, a second 2.54 feet above it and the third 2.60 feet above the second flush with the top of the pillar. The approximate bearings and distances of the circumjacent villages are :-Khirsar E. by S., miles 3.37 ; Dattohar S.W. by S., miles 10.05 ; Pungal E., miles 9.5 ; and Ramra S., miles 6 nearly.
XLV. Bhada Hill Station, lat. $28^{\circ} 43^{\prime}$, long. $72^{\circ} 36^{\prime}$-observed at in 1875 -is on the highest point of an extensive sand hill with many spurs. It is on the lands of Bhada village belonging to the Rao of Pungal
in the Bickaneer territories. The track from Pungal to Maujgarh is a little to the north. The water at Bhada is very brackish, at Bheria and Siasar slightly so.

> The pillar, which is surrounded by a platform of stones and sand, is solid, 3 feet high with 1 foot foundation and has two mark-stones, one on the top of the foundation flush with the hill top and the second 3 feet above it at the surface of the pillar. The azimuths and distances of the circumjacent places are:-Bhada village 8°, miles $2 \cdot 90$; Siasar village (approximately) 45°, miles 8 nearly; and Bheria well 273°, miles $6 \cdot 40$.
XLVI. Habib Hill Station, lat. $28^{\circ} 44^{\prime}$, long. $72^{\circ} 23^{\prime}$-observed at in 1875 -is on a low flat-topped hill in the desert near no village. The station is in the lands of the village of Maujgarh (24 miles N.N.W.) in thána Maujgarh, pargana Khairpur of the Baháwalpur territories.

The pillar is solid and 5.33 feet high exclusive of a 2 feet foundation and has three marks, one on the top of the foundation flush with the hill top, the second $2 \cdot 33$ feet above the first and the third at the surface of the pillar 3 feet above the second. The boundary between Bickaueer and Baháwalpur runs near the station and the nearest visible boundary pillars have the following azimuths and distances :-No. 1, 299°, mile 0.89 ; No. $2,270^{\circ}$, miles $1 \cdot 13$; No. 3, 24. ${ }^{\circ}$, miles 3.23 . The approximate bearings and distances of neighbouring places are:-Bhiawala toba (tank) N.N.W., miles 8; and Bhaian-ki-verah (well) S.E., miles 9.
XLVII. Karamala Hill Station, lat. $28^{\circ} 45^{\prime}$, long. $72^{\circ} 48^{\prime}$-observed at in 1875 -is on a hill which rises gradually from the well at Karamala village, the water of which is slightly brackish. It is on the lands of that village which belongs to the Rao of Pungal in the Bickaneer territories.

The pillar, which is surrounded by a platform of stones and sand, is 3 feet high with 1 foot foundation and has two markstones, one on the top of the foundation flush with the hill surface and the second 3 feet above it at the surface of the pillar. The approximate bearings and distances of the following places are:-Alden-kíverah (well) S., miles 6 nearly; Naishera S.S.W., miles 8; Karamala well S.W., mile 0.68; aud Rakasam well E. by S., mile 0.97.
XLVIII. Phogala Hill Station, lat. 28° 51', long. $72^{\circ} 28^{\prime}$-observed at in 1875 -is on a low sand hill called either "Tappiwala dhúra" or Phogala from the numerous Phog trees on it. It is in the desert in the lands of Bhiawala village in thána Maujgarh of the Baháwalpur state and pargana. There are a number of small tanks in the neighbourhood which dry up about January.

The pillar is solid and sunk in the ground so that its top is flush with the hill surface: it has two marks, one at the surface of the pillar and a second $4 \cdot 2 \overline{5}$ feet below it, ou the second lowest course of bricks. The Bickaneer and Baháwalpur boundary runs near the station, the three nearest visible boundary pillars have the following azimuths and distances :-No. $1,356^{\circ} 5 l^{\prime}$, miles 3.78 ; No. 2, $348^{\circ} 33^{\prime}$, miles 3.64 ; No. $3,3^{\circ} 33^{\prime}$, miles 4.01 . Bhiawala toba (tank) is 8 miles W., and Maujgarh 20 miles N.W.
XLIX. Blulan Hill Station, lat. $28^{\circ} 57^{\prime}$, long. $72^{\circ} 41^{\prime}$-observed at in 1875 -is on a rising ground 4 miles S.S.W. of Bhulan tank and about $\frac{1}{2}$ mile S.S.W. of Karamala small tank (both dry in February) in the heart of the desert. It is on the lands of Bhulan hamlet thána Marot; pargana Khairpur of the Baháwalpur territories.

The pillar, which is surrounded by a platform of sundried bricks and sand, is solid and 3 feet high having three marks on bricks, one at the very bottom of the foundation, one 2 feet above it flush with the surface of the hill and the third 3 feet above the second, at the surface of the pillar. Three of the pillars on the boundary of Bikaneer and Baháwalpur have azimuths and distances as follows :-No. $1,340^{\circ} 47^{\prime}$, miles $2 \cdot 39$; No. $2,316^{\circ} 54^{\prime}$, miles $2 \cdot 38$; and No. $3,1^{\circ} 15^{\prime}$, miles 2.78 . Mírgarh village lies 15 miles N.; Phulera 15 miles N.E.; and Sakhi in Bickaneer 14 miles E., the three nearest places at which drinkable water can be obtained.
L. Soma Hill Station, lat. $29^{\circ} 2^{\prime}$, long. $72^{\circ} 30^{\prime}$-observed at in 1875 -is on a small mound on the highest sand hill 5.88 miles, $23^{\circ} \mathrm{E}$. of S. of Soma well hamlet and about 5 miles E.S.E. of Jalalsar well hamlet and about 10 miles \mathbf{S}. of Marot town. The path from Marot to Pungal in Bickaneer passes about a mile and a half E . of the hill. The station is in the lands of Soma hamlet; thana Marot, pargana Khairpur, in the Baháwalpur territories. The water at Soma and Jalalsar is undrinkable; all supplies of water are got from Marot.

The pillar, which is surrounded by a platform of sundried bricks and sand, is solid and $3 \cdot 15$ feet high with a foundation of 1.75 feet; it has three marks, oue at the bottom of the foundation, another 1.75 feet above it and the third 3.15 feet above the second, at the surface of the pillar.
LI. Telu Hill Station, lat. $28^{\circ} 56^{\prime}$, long. 72° 17 -observed at in $\mathbf{1 8 7 5}$-is on a sand rise of ground hardly to be called a hill, about 6 miles N. of Bhiawala tank and 7.77 miles S.E. of Maujgarh town. There are two old mud towers near Telu from which the station takes its name, distant 0.55 of a mile at an azimuth of $86^{\circ} 16^{\prime}$. It is in thána Maujgarh, pargana and state Baháwalpur. Water is obtained from either Bhiawala or Maujgarh.

The pillar, which is surrounded by a platform of sundried bricks and sand, is solid and 5 feet high with a 2.5 feet foundation. There are three mark-stoues, one at the bottom of the foundation, the second $2 \frac{1}{2}$ feet above it flush with the hill top aud the third 5 feet above the secoud at the surface of the pillar. The azimuth and distance of Gidarwala village are $180^{\circ} 45^{\prime}$, miles 2.37.
LII. Aukli Hill Station, lat. $29^{\circ} 4^{\prime}$, long. $72^{\circ} 40^{\prime}$-observed at in 1875 -is on a black looking hill with plenty of shrubs on the top, about 5 miles N.W. of Bhulan tank which dries up in January, in pargana Khairpur, thána Marot, and state Baháwalpur. Water is brought from Mírgarh.

The pillar, which is surrounded by a platform of sundried bricks and sand, is solid and $3 \cdot 52$ feet high having three mark-stones, one at the bottom of the pillar, a second $2 \cdot 46$ feet above it and flush with the hill top, and the third 1.06 feet above the second at the surface of the pillar. 'The azimuths and distances of the circumjacent places are:-Jamgarh $144^{\circ} 58$ ', miles 8.2; Mírgarh $177^{\circ} 38^{\prime}$, miles $7 \cdot 2$; and Kheniwala Thul (an old mud tower) $196^{\circ} 25^{\prime}$, miles $4 \cdot 25$.
LIII. Mansa Hill Station, lat. $29^{\circ} 5^{\prime}$, long. $72^{\circ} 17^{\prime}$-observed at in 1875 -is 2 miles E. of a higher sand hill called by this same on a loose, shifting sand knoll, having no vegetation on the top, but being the best procurable. The country here is more or less a plain, with small rises and gentle slopes. The station is in the lands of Chápu village; in thána Maujgarh, pargana and state Baháwalpur. Water is obtained from Kandai wells 3 and 4 miles east and from Chápu village.

The pillar, which is surrounded by a platform of sundried bricks and sand, is solid and sunk into the hill. It is 5.08 feet high, with three mark-stones, one at the bottom, a second $2 \cdot 62$ feet above it and the third $2 \cdot 46$ feet above the second at the surface of the pillar. The approximate bearings and distances of the circumjacent places are:-Maujarh town S.W., miles 8.2 ; Khirsar hamlet N.W., miles 4; and Chápu village N., miles $4 \cdot 51$.
LIV. Marot Station, lat. $29^{\circ} 11^{\prime}$, long. $72^{\circ} 29^{\prime}$-observed at in 1875 -is on the fort on the highest mud bastion at the S.E. corner which is about 150 feet above the ground. The fort which is of mud, about 725 feet square is quite in ruins and the town lies partly within and partly without the walls. The bastion on which the station stands is of solid clay and is approached by a ramp. It is in pargana Khairpur of the Baháwalpur state. There are a tank and wells at this place.

The pillar is solid and has been sunk in the bastion; it is 4.25 feet deep with two marks, the lower at the bottom of the pillar and the upper $4 \cdot 25$ feet above it at the surface of the pillar.
LV. Hasan Hill Station, lat. $29^{\circ} 14^{\prime}$, long. $72^{\circ} 19^{\prime}$-observed at in 1875 -is in the desert on a ridge called Hasanwala tibba the top of which is loose sand, 12.6 miles W. 20° N. of Marot town and about 6 miles N . of Chápu wells. The station is in the lands of Chápu village, thána Marot, division Khairpur, and state Baláwalpur.

The pillar, which is surrounded by a low platform of bricks and sand, is solid and 3 feet deep with 3 mark-stones, one at the bottom of the pillar, a second 2 feet above the first and a third (at the surface of the pillar) 1 foot above the secoud. The azimuths and distances of the circumjacent places are :-Bakshanwala hill (approximately) 180°, miles 2 ; Mashkiwali thul (deserted tower) 230°, miles 1.66 ; and Saduwala thul 297°, miles 3 nearly.
LVI. Sultán Hill Station, lat. $29^{\circ} 9^{\prime}$, long. $72^{\circ} 13^{\prime}$-observed at in 1875 -is on a sand hill locally named Sultánwala tibba, which is a mass of moving sand hills; but the station has been carefully built and it is anticipated that it may be permanent. The Marot-Baháwalpur track which is marked by pyramidal kacha pillars runs about $1 \frac{1}{2}$ miles north; the nearest pillar-the 7 th from Marot on the Revenue Survey maps-having an azimuth of 139° is distant 18 miles. The station is on the lands of Chápu and Khirsar villages in the Maujgarh thána, division and state Baháwalpur.

The pillar, which is surrounded by a platform of bricks and mud, is solid and 3 feet deep with two mark-stones, one in the foundation and the second 3 feet above it at the surface of the pillar which is flush with the surface of the hill. The bearings and distances of the circumjacent places are:-Khirsar hamlet and well S., miles 2 ; Chapu well E., about $5 \cdot 5$ miles; and Maujgarh town S., miles 9.
LVII. Bijli Hill Station, lat. $29^{\circ} 18^{\prime}$, long. $72^{\circ} 25^{\prime}$-observed at in 1875 -is on a flat-topped sand hill called Bijli by the inhabitants and Jewunee on the Revenue Survey charts. It is in thána Marot, division Khairpur of the Baháwalpur state. It is about a mile east of the track from Marot to Khairpur. The nearest good well water is obtained from Marot.

The pillar, which is surrounded by a platform of sand and bricks, is 3 feet deep with 3 mark-stones, one at the bottom of the pillar, a secoud 1 foot above the first flush with the hill surface and a third 2 feet above the second and at the surface of the pillar. The learings and distances of the following places are:-Mauri Rania temple (not visible) S.S.E., miles $3 \cdot 50$; Khandowala toba N.W. by N., miles 2.68; Marot town S., miles 10; and Khairpur town N., miles 21.
LVIII. Panchkot Hill Station, lat. $29^{\circ} 16^{\prime}$, long. $72^{\circ} 10^{\prime}$-observed at in 1875 -is on the highest portion of a flat-topped hill in the desert 18 miles S . of the Sutlej River, and is called after a toba or tank which is 0.65 of a mile distant at an azimuth of 345°. It is on the lands of Bhiawala toba (30 miles S .), thána Maujgarh, division and state Baháwalpur. When the tanks are dry the nearest good water is at Chápu about 12 miles s.E.

The pillar, which is surrounded by a low platform of bricks and sand, is solid and 3 feet high with 3 mark-stones, one at the bottom of the pillar, a second one foot above this flush with the hill top and a third 2 feet above the second on the surface of the pillar. Gharialwalu toba lies to W., about miles 8.
LIX. Randu Hill Station, lat. $29^{\circ} 19^{\prime}$, long. $72^{\circ} 18^{\prime}$-observed at in 1875 -is on a flat-topped sand hill of the Kali Dhari range, the highest point of which is 3 miles to the east. It is in the heart of the desert, in the lands of the town of Khairpur, in division Khairpur, of the Baháwalpur state.

The pillar, which is surrounded by a platform of sand and bricks, is solid and 3 feet high with 3 mark-stones, one at the bottom of the foundation, a second 1.08 feet above it flush with the hill top and a third 1.92 feet above the second on the surface of the pillar. The bearings and distances of the following places are:-Kimsir well (good) N.W., miles 10; Naganiwala toba N., miles 2; Jamsar well (slightly brackish) N.N.E., miles 10; Ganiwala toba N.E., miles 3 ; Bahawala toba N.E., miles 4 ; Rohriwala N.E., miles 3.50; and Sera well (brackish) S.E., miles 8.
XIX.-(Of the Sutlej Series). Kaimsir Tower Station, lat. $29^{\circ} 25^{\prime}$, long. $72^{\circ} 11^{\prime}$-observed at in 1862 and 1876-is situated in the Baháwalpur territories, and stands in the desert about 7 miles 8 . of the village of Asrani. There is a well about 1 t miles to the N.

The pillar is perforated, and 10.8 feet high. It has a mark-stone at level of ground floor. The station was visited in 1876 for the purpose of connecting the Jodhpore with the Sutlej Series and the mark-stone at the level of the ground was found intact.
XXI.-(Of the Sutlej Series). Kanda Tower Station, lat. $29^{\circ} 28^{\prime}$, long. $72^{\circ} 22^{\prime}-$ observed at in 1862 and 1875-is situated in the Baháwalpur territories, and stands in the desert about 10 miles S. E. of the town of Khairpur. There is a well about 2 miles to the W.

The pillar is perforated, and $20 \cdot 4$ feet high. It has a mark-stone at level of ground floor. The station was visited in 1875 for the purpose of connecting the Jodhpore with the Sutlej Series and the mark-stone on the level of the ground was found intact.

J. B. N. HENNESSEY,

In charge of Computing Office.

JODHPORE MERIDIONAL SERIES.

PRINGIPAL TRIANGULATION. OBSERVED ANGLES.

At XLI (Bonik)

February 1873; observed by Lieut. M. W. Rogers, R. E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XLIV										$M=$ Mean of Groupe ${ }^{20}=\begin{gathered}\text { Relative Weight } \\ C=\text { Concluded Anglo }\end{gathered}$
	$279{ }^{1}{ }^{1}$	$99^{\circ} 1^{\prime}$	$858^{\circ} 18^{\prime}$	$178{ }^{\circ} 18^{\prime}$	$77^{\circ} 25^{\circ}$	$257^{\circ} 25^{\prime}$	$156{ }^{\circ} 37$	$236{ }^{\circ} 87^{\prime}$	$235^{\circ} 50$	$65^{\circ} 50^{\prime}$	
XLIV \& 1	"	"	"	"	"		*		"	-	$\begin{aligned} & M=35^{\prime \prime} \cdot 76 \\ & w=15 \cdot 56 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=38^{\circ} 58^{\prime} 35^{\prime \prime} \cdot 75 \end{aligned}$
	l l 34.14	${ }_{2} 36 \cdot 24$	$l 33.92$	\} 35.48	$237 \cdot 16$	${ }^{2} 36.48$	$l 35.22$	${ }^{2} 36 \cdot 38$	h 35.04	$\mathrm{h}_{3}{ }^{\prime} \cdot 02$	
		$\begin{array}{r} 136 \cdot 70 \\ 126.26 \end{array}$	l l l 35.86	${ }_{l}^{l} 355^{\circ} 24$	${ }_{l}^{l} 36 \cdot 14$	${ }_{l}^{l} 36.92$	${ }_{l}^{l} 35.74$	${ }_{l}^{l} 3.3 .92$	h $36 \cdot 60$ $h 35 \cdot 84$	h 35.56 $h 34.78$	
			$l 34.30$					${ }_{l} 36 \cdot 38$	¢ d 35.93	${ }^{\text {h }} \mathrm{35} 5 \cdot 88$	
	$35^{\prime} 17$	$36 \cdot 40$	34*37	$35 * 43$	36•81	36.44	$35 * 46$	$35 * 84$	$35 * 85$	$35 * 81$	
I \& II	$l 21.50$ $l 20.12$	$l 19.80$ 719.94	$l 20.34$ $l 19.66$		$\begin{array}{lll}l & 18.94 \\ l 18.46\end{array}$	720.98 $l 19.46$	$\begin{array}{ll}l 19.80 \\ l & 19.44\end{array}$	$\begin{array}{ll}l & 21 \cdot 34 \\ l & 219\end{array}$	$h_{18} 18.24$ $h_{19}{ }^{4} 4$	$h_{20} 0^{\prime} 10$ $h_{19} 000$	$\begin{aligned} & M=19^{\prime \prime} \cdot 79 \\ & w=20 \cdot 02 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=42^{\circ} 1^{\prime} 19^{\prime \prime} \cdot 78 \end{aligned}$
	$l 19.86$	$l 18.86$	$l 21 \cdot 32$	$l 20 \cdot 86$	$l 19.16$	$l 5910$	719.98	$\begin{aligned} & l 18.97 \\ & l 18.46 \\ & l \end{aligned}$	h 19 -08 d 19*이	h $20 \cdot 72$	
	20*49	$19 * 53$	20*4	19*91	18.85	$19 * 85$	19`74	20•18	1894	19*94	

Nors.-Stations XLI and XLIV appertain to the Karfichi Longitudinal Series.

NoTz.-Stations XLI and XLIV apportain to the Karáchi Longitudinal Series.

	At I (Borta)-(Continued).											
Angle between	$139{ }^{\circ} \mathbf{3}^{\prime}$	Circle readings, telescope being set on IV							$95^{\circ} 49^{\circ}$	$275^{\circ} 49^{\prime}$	$M=$ Mean of Groups ${ }^{*}=$ Relative Weight $\boldsymbol{C}=$ Concluded Angle	
		$319^{\circ} 3^{\prime}$	$218{ }^{\circ} 13^{\prime}$	$38^{\circ} 14^{\circ}$	$297{ }^{\circ} 26^{\prime}$	$117^{\circ} 26^{\prime}$	$16^{\circ} 38^{\prime}$	$196^{\circ} 38^{\prime}$				
$\begin{aligned} & \text { XLI \& } \\ & \text { XLIV } \end{aligned}$	"	"	"	"	"	"	"	"			$\begin{aligned} & M=11^{\prime \prime} \cdot 26 \\ & w=11 \cdot 21 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=73^{\circ} 15^{\prime} 11^{\prime \prime} \cdot 27 \end{aligned}$	
	$l 13.52$	710.78	h 9.94	$k_{1 I} \cdot 20$	$\ldots 9 \cdot 08$	$h_{12} \cdot 44$	710.50	$212 \cdot 38$				
	$\begin{array}{ll}l \\ l & 10.40 \\ l & 12\end{array}$	$\begin{array}{ll}l \\ l & 9.68 \\ 7 & 8.76\end{array}$		$h 13.52$ $h 13.34$	$h_{12}{ }^{\text {a }} 40$ $h_{11} 00$	$h_{10} \cdot 10$ $h_{11} \cdot 40$	${ }_{l}^{l} 10 \cdot 38$	$\begin{array}{ccc}l & 9 \cdot 8+ \\ l & 11 & 88 \\ l\end{array}$				
		l l l 10.60	$h_{13}{ }^{2} 5$ $h_{11} \cdot 64$	$h 13.34$ $h \times 19$	$h_{11} 100$ $h_{10} 88$	$h 11.40$ l 10.72	$l 11 \cdot 16$	$l 11.83$ l 115				
	$\boldsymbol{l} \mathrm{st} 02$		$h_{13} \cdot 62$		$\mathrm{h}_{10}{ }^{14}$							
	11•84	9*96	12•38	12.50	10•69	11•17	10.68	11*41	10•82	11'14		
	At II (Dhaula)											
February 1873; observed by Lieut. M. W. Rogers, R. E., with Barrow's 24-inch Theodolite No. 2.												
Angle between	$0^{\circ} 0^{\prime}$	Circle readings, telescope being set on XLI									$M=$ Mean of Groups ${ }^{20}=$ Relative Weight C = Conoluded Anglo	
		$180^{\circ} 0^{\prime}$	$79^{\circ} 13^{\prime}$	$259{ }^{13}{ }^{\prime}$	$158^{\circ} 24^{\prime \prime}$	$838^{\circ} \mathbf{2 4}$	$237{ }^{\circ} 37^{\prime}$	$58^{\circ} \mathbf{3} 7^{\prime}$	$316^{\circ} 48^{\prime}$	$136^{\circ} 48^{\prime}$		
$\begin{aligned} & \text { XLI \& } \\ & \text { XLIV } \end{aligned}$	"	"	"	"	"	$\prime \prime$	$\prime \prime$	$\prime \prime$	$\prime \prime$	"	$\begin{aligned} & M=60^{\prime \prime} \cdot 15 \\ & w=20 \cdot 98 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=68^{\circ} 33^{\prime} \quad 0^{\prime \prime \cdot 17} \end{aligned}$	
	${ }^{6} 57 \cdot 64$	h 58.70	h 59.88 762.80	l l $60 \cdot 80$	${ }^{l} 59.78$	l l $60 \cdot 64$	$h 60 \cdot 54$	h $60 \cdot 16$	$h 61.46$ $h 60.68$	$h 59.70$ $h 60.56$		
	h 61.34 $h 60.46$	h 60.58	l l 79.70	$l 59.70$	l	$l 59.56$	h 59.20	${ }_{\text {h }}^{5} \mathrm{C} 28$	${ }^{\text {h }} 59 \times 84$	${ }^{\text {h }} 59 \times{ }^{\text {¢ }}$		
	$h 59.98$ $h 60.76$	$h 59$ $h 60.74$ $h 60$.	$l 60 \cdot 08$		d 60.21							
		h 59 ' 78										
	60.04	$60 \cdot 55$	60*49	$60 \cdot 46$	$60 \cdot 17$	60.17	59*90	59.05	60.66	$60 \cdot 01$		
XLIV \& I	${ }_{6} 1 \times 70$	${ }_{1} 4.14$	$h_{\text {I }} \times 80$	$\underline{7} 362$	$l 3.50$	24.40	${ }^{6} 4.46$	${ }_{4} 2.46$	h $2 \cdot 76$	$h^{3} 300$	$\begin{aligned} & M=3^{\prime \prime} \cdot 42 \\ & w=18 \cdot 15 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=36^{\circ} 28^{\prime} \quad 3^{\prime \prime \cdot} \cdot 4^{2} \end{aligned}$	
	${ }^{1} 4.28$	$\mathrm{h}_{1} 1 \cdot 12$	$l 3.96$	$l 3.96$	$l 3.66$	$l 3.28$	${ }_{\text {h }} 3.56$	${ }_{7} 2.20$	${ }^{2} 4.22$	$h^{\text {h }} 4.44$		
	$\begin{array}{ll}h & 2 \cdot 78 \\ h & 2.92\end{array}$	an 2.82 h h 3	$\begin{array}{ll}l \\ l & 2 \cdot 68 \\ l & 2 \cdot 18\end{array}$	$\begin{array}{ll}l & 5 \cdot 26 \\ l \\ 4.22\end{array}$	l l l d	$l 3 \cdot 64$	$h 3.08$	$h 3.60$	h h 5 5	$\begin{array}{ll} h & 2.30 \\ 2 \end{array}$		
	$h^{2} \mathbf{2 9 2}$	h 30.8 h			d $3 \cdot 84$							
	29.92	2.91	$2 \cdot 66$	4•26	3•81	3'77	3 70	$2 \cdot 75$	4*34	3•12		
I \& III	$\begin{array}{ll} h_{16} 6 \cdot 74 & h_{14} \cdot 34 \\ h_{14} \cdot 08 & h_{14} \cdot 90 \\ h_{15} \cdot 28 & h_{14} \cdot 86 \\ h_{16} \cdot 04 & \end{array}$		${ }^{1} 11.34$	714.52	$l 15.42$	$l 15.04$	h 16.34	h 15.80	h13.60	${ }^{6} 14.58$	$\begin{aligned} & M=15^{\prime \prime} \cdot 12 \\ & w=13 \cdot 96 \\ & \frac{\mathbf{t}}{w}=0 \cdot 07 \\ & C=65^{\circ} 16^{\prime} 15^{\prime \prime} \cdot 11 \end{aligned}$	
			$l 15.16$	$l 15.30$	$l 15.60$	213.58	${ }_{2} 16 \cdot 68$	$h_{14}{ }^{1} \cdot 38$	$h 15.06$	$h_{14} \cdot 76$		
			$l 116.26$ $l 19.58$	$\begin{array}{ll}l 13.18 \\ l & 16.28\end{array}$	$l 15.18$	$l 16.18$ $l 14.04$	h $16 \cdot 86$	h15'10	h 12.34 $h 14.90$	$\begin{aligned} & h 14.72 \\ & h 15 \cdot 34 \end{aligned}$		
			21504	714.92								
	15*54	14*70	$15 * 48$	$14 * 84$	$15 \% 40$	14.71	16.63	15*09	13.97	14.85		
III \& V	h. $29 \cdot 32$ h $28 \cdot 58$ h $29^{\circ} 28$	$\begin{aligned} & h 3 x \cdot 16 \\ & h 30 \cdot 28 \\ & h_{29} 29.42 \end{aligned}$	$\begin{aligned} & l 28 \cdot 86 \\ & l \end{aligned} 27 \cdot 14$	$l 29.10$ $l 28.66$	229.28 $l 28 \cdot 04$ l 29 - 84	$\begin{aligned} & l \\ & l \end{aligned} 29.32$	$\begin{aligned} & h_{28} 28 \cdot 50 \\ & h_{28} 8 \cdot 58 \\ & h_{29} 9.34 \end{aligned}$	$\begin{aligned} & h_{2} 8 \cdot 58 \\ & h_{2} 30 \cdot 48 \\ & h_{28} 8 \cdot 26 \\ & h_{28} 8 \cdot 14 \end{aligned}$	h30.02 h $26 \cdot 82$ h28.46 h27.90	$\begin{aligned} & h 27 \cdot 78 \\ & h 26 \cdot 80 \\ & h 28 \cdot 44 \\ & h 27 \cdot 54 \\ & h 28.36 \end{aligned}$	$\begin{aligned} & M=28^{\prime \prime} \cdot 79 \\ & w=16 \cdot 20 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=81^{\circ} 14^{\prime} 28^{\prime \prime} \cdot 77 \end{aligned}$	
				${ }_{7} 27.48$								
	29*06	30.29	28.11	28.58	29.05	29*09	28•8	$28 \cdot 87$	28.30	27.78		

Elorz.-Stations XLI and XIIV appertain to the Kariohi Longitudinal Serios.

February and March 1873; observed by Lieut. M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.											
Angle between	$0^{\circ} 1^{\prime}$	$180^{\circ} 1^{\prime}$	$\underset{79^{\circ} 12^{\prime}}{\mathrm{Ci}}$	rcle readin $259^{\circ} 12^{\prime}$	ngs, teles $158^{\circ} .25^{\prime}$	cope being $838^{\circ} 25^{\prime}$	set on $237^{\circ} 37^{\prime}$	$57^{\wedge} 37^{\prime}$		$136{ }^{\circ} 49^{\prime}$	$M=$ Menn of Groups ${ }^{20}=$ Relative Weight $C=$ Concluded Angle
VI \& VII		$\begin{aligned} & h_{37 \cdot 96} \\ & h_{39} \cdot 26 \\ & h_{37} \cdot 26 \end{aligned}$		$\begin{array}{r} l 37 \\ l 37.98 \\ l 37.86 \\ l 38.86 \end{array}$	$\begin{gathered} \prime \prime \\ l 37 \cdot 10 \\ l+40 \cdot 80 \\ l 36 \cdot 02 \\ l 39 \cdot 72 \\ l 39 \cdot 12 \\ l 39 \cdot 50 \end{gathered}$	$\begin{gathered} " \prime \\ h_{39} \cdot 74 \\ h_{38} 8 \cdot 98 \\ h_{39} \cdot 72 \end{gathered}$	$\begin{gathered} \prime \prime \\ h_{38} 8 \cdot 60 \\ h_{3} 38 \cdot 16 \\ h 37 \cdot 36 \\ d 38 \cdot 71 \end{gathered}$	$\begin{gathered} " \\ h_{3} 37 \cdot 96 \\ h_{3} 8 \cdot{ }^{\prime} 88 \\ h_{38} \cdot 12 \end{gathered}$	$\begin{gathered} \prime \prime \\ l 39 \cdot 66 \\ l .39 \cdot 22 \\ l 37 \cdot 30 \\ l \\ l 9 \cdot 06 \end{gathered}$	$\begin{gathered} \prime \prime \\ l 38 \cdot{ }^{\prime 2} \\ l 39 \cdot 94 \\ l \\ l \end{gathered}$	$\begin{aligned} & M=3^{8 \prime \prime} \cdot 60 \\ & w=18 \cdot 47 \\ & \frac{1}{w}=0 \cdot 05 \end{aligned}$
	39*3.	$38 \cdot 16$	$37 \cdot 86$	38: 3	38\%1	$3{ }^{3} \cdot 48$	$38 \cdot 21$	$38 \cdot 15$	38•8	39.03	
VII \& V	$h_{45}{ }^{\circ}+{ }^{+}$ $h_{43} \cdot{ }^{\circ}$ $h_{46} \cdot 0$ $h_{44} \cdot 8$ $h_{44} \cdot 88$	$h_{4}+3 \cdot 38$ $h_{4}+3.3$ $h_{43} \cdot 0$	$l+4 \cdot 62$ $l+4$ $l+68$ l	$\begin{aligned} & l+5 \cdot 56 \\ & l+{ }^{2} \cdot 82 \\ & l+4 \cdot 68 \\ & l+4.08 \\ & d_{42} \cdot 81 \end{aligned}$		$h_{4+}+52$ $h_{4+} \cdot 70$ $h_{+4} \cdot 88$		$h_{43} \cdot 96$ $h_{4+} \times 54$ $h_{44} \cdot 88$			$\begin{aligned} & M=44^{\prime \prime \cdot} \cdot 44 \\ & w=20 \cdot 42 \\ & \frac{1}{v}=0 \cdot 05 \end{aligned}$
	$45^{\circ} \mathrm{O}$	$4.3 \cdot 24$	$44^{\prime} 7^{2}$	43*99	$44^{\circ} 07$	$45^{\circ} 03$	44*68	$44^{\prime} 19$	$45 \cdot 21$	$4+30$	$C=43^{\circ} \quad 5^{\prime} 44^{\prime \prime} \cdot 44$
V \& II	$\begin{aligned} & h+9^{\circ} 74 \\ & h+80^{9} 94 \\ & h+80^{90} \\ & h+99^{\circ} \end{aligned}$	$h_{4}+\sigma_{4} \cdot{ }_{4}$ $h_{46}+{ }^{8}$ $h_{48}{ }^{6} 6_{4}$ $h+6 \cdot 82$	$l+7 \cdot 62$ $l+8 \cdot 02$ l l	l l l $49 \cdot 62$ l $l+9.82$ ${ }^{d}+77^{\circ} 99$	$\begin{aligned} & l+4760 \\ & l+48 \cdot+6 \\ & l_{46}+70 \end{aligned}$	$h_{4} 8 \cdot 86$ $h_{47} \cdot 00$ $h_{48}{ }^{\text {a }}$	$h_{49}{ }^{6}{ }^{2}$ $h+8 \cdot 74$ $h_{47}{ }^{5} 5$	$h_{47} 770$ $h_{47} 70$ $h_{45} 78$	$\begin{aligned} & l+46 \cdot 66 \\ & l \\ & l \\ & l \\ & l \\ & 46 \cdot 60 \end{aligned}$	$\begin{aligned} & l \\ & l \\ & l+6 \cdot 70 \\ & l+6.98 \end{aligned}$	$\begin{aligned} & M=47^{\prime \prime} \cdot 91 \\ & w=12 \cdot 31 \end{aligned}$
	$49^{\circ} 15$	$47^{\circ}+0$	$47^{\circ} 63$	49^{10}	47*59	$48 \cdot 13$	48.58	$47^{\circ} 06$	$46 \cdot 76$	$47 \cdot 67$	$\stackrel{w}{C}=50^{\circ} 3^{8^{\prime} \cdot 47^{\prime \prime} \cdot 92}$
II \& I	$\begin{aligned} & h_{32} \cdot 88 \\ & h_{3.3} \cdot 2 \\ & h_{32} \cdot 90 \end{aligned}$	h3I•62 h 33.08 $h_{33} .06$	$\begin{aligned} & l .32 \cdot 60 \\ & l 32 \cdot \sigma_{4} \\ & l 32 \cdot 14 \end{aligned}$	$\begin{aligned} & l .35 \cdot 76 \\ & l .32 \cdot 26 \\ & l 32 \cdot 12 \end{aligned}$	$\begin{aligned} & l .33 \cdot 06 \\ & l \\ & l \\ & l \\ & l \\ & 32 \cdot 8 \cdot 30 \end{aligned}$	$\begin{array}{r} h 32 \cdot 14 \\ h 31 \cdot+0 \\ h 31 \cdot 58 \end{array}$	h.31.40 h 34 .04 h.3.3.12 31.74	$\begin{aligned} & h_{32} \cdot+2 \\ & h_{32} \cdot 94 \\ & h_{32} \cdot 72 \end{aligned}$	$\begin{aligned} & l 33.34 \\ & l 33.82 \\ & l 33.48 \end{aligned}$	$\begin{aligned} & l 32: 00 \\ & l .33 .52 \\ & l 32.66 \end{aligned}$	$\begin{aligned} & M=32^{\prime \prime} \cdot 64 \\ & \boldsymbol{w}=27 \cdot 96 \end{aligned}$
	$32 \cdot 9$	32*59	$32^{\circ}+6^{\circ}$	$32 \cdot 05$	$33 \cdot 08$	317\%	$32 \cdot 58$	32.59	$33 * 55$	32*73	$C=52^{\circ} 3^{8} 32^{\prime \prime} \cdot 64$
1 \& IV	$\begin{aligned} & h 28 \cdot 4 \\ & h_{3} .60 \\ & h 27.8 \\ & h 28.6 \end{aligned}$	l28•; 8 $l 30 \cdot 72$ l 29 •32	$l_{28} 286$ $l 28.86$ l 29.32	$\begin{aligned} & l 29.80 \\ & l 28.96 \\ & l 28.32 \end{aligned}$		$\begin{aligned} & h 29 \cdot 98 \\ & h .30 \cdot 38 \\ & h 27 \cdot 46 \\ & h_{30} \cdot 16 \end{aligned}$	$\begin{aligned} & h_{28} 28 \\ & h_{29} 98 \\ & h_{29} 9.50 \end{aligned}$	$\begin{aligned} & h_{28} 8 \cdot 32 \\ & h_{28} 8 \cdot 14 \\ & l 28 \cdot 34 \end{aligned}$	$\begin{aligned} & l 27.90 \\ & l 27.02 \\ & l 29.24 \\ & l 29.34 \end{aligned}$	$\begin{aligned} & l 28 \cdot 26 \\ & l 27 \cdot 82 \\ & l 29.66 \end{aligned}$	$\begin{aligned} & M=28^{\prime \prime} \cdot 98 \\ & w=23 \cdot 02 \end{aligned}$
	$28 \cdot 8$	$29^{\circ} 54$	28.9.5	29*03	$29^{\circ}+4$	$29^{\circ} 49$	29'19	28.27	$28 \cdot 38$	$28 \cdot 58$	$C=82^{\circ} 22^{\prime} 28^{\prime \prime} \cdot 98$
IV \& VI	$\begin{aligned} & h_{46} 6^{\circ} \\ & h_{49}{ }^{\circ} \\ & h_{48} 9 \\ & \hline 7 \end{aligned}$	$\begin{aligned} & l+8 \cdot 12 \\ & l 48 \cdot 22 \\ & l+6 \cdot 38 \end{aligned}$	$\begin{aligned} & l 48 \cdot 72 \\ & l+7 \cdot 96 \\ & l_{48} \cdot 30 \end{aligned}$		$\begin{aligned} & l+7.76 \\ & l+5.50 \\ & l+5 \cdot 26 \\ & l+47.18 \end{aligned}$	$\begin{aligned} & h_{46 \cdot 32} \\ & h_{47} \cdot 82 \\ & h_{4 j} \cdot 74 \\ & h_{49} \cdot 56 \end{aligned}$	$\begin{aligned} & h 45.96 \\ & l \\ & l 9.62 \\ & l+7.38 \\ & l 47.32 \end{aligned}$	$\begin{aligned} & h_{49}{ }_{4} \cdot 06 \\ & h_{48} \cdot 40 \\ & l_{4} \cdot 08 \end{aligned}$		$\begin{aligned} & l+8 \cdot 80 \\ & l+i=22 \\ & l 47.30 \end{aligned}$	$\begin{aligned} M & =47^{\prime \prime} \cdot 76 \\ w & =17 \cdot 81 \\ \frac{1}{w} & =0 \cdot 06 \\ C & =71^{\circ} 15^{\prime} 47^{\prime \prime} \cdot 74 \end{aligned}$
	$48 \cdot 1$	47*57	48:33	47`93	$46 \cdot 67$	4786	$47 \cdot 57$	48.51	4732	47×7	

At IV (Mandaula)

February 1873 ; observed by Lieut. M. W. Rogers, R.E., with Barrovo's 24-inch Theodolite No. 2.

At V (Bhádrajan)

March 1873; observed by Lieut. M. W. Rogers, R. E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on II										$M=$ Mean of Groups ${ }^{\infty}=$ Relative Weight $\boldsymbol{C}=$ Conchuded Angle
	$256{ }^{\circ} 52^{\circ}$	$76^{\circ} 52^{\prime}$	$336^{\circ} 3^{\prime}$	$156^{\circ} 3^{\prime}$	$55^{\circ} 16^{\circ}$	$235{ }^{\circ} 16^{\prime}$	$184^{\circ} 28^{\prime}$	$314^{\circ} 28^{\prime}$	$218^{\circ} 39^{\prime}$	33 ${ }^{\text {a }} 9^{\prime}$	
II \& III	"	"	"	"	"			"	"	"	$\begin{aligned} M & =48^{\prime \prime} \cdot 31 \\ w & =28 \cdot 59 \\ \frac{1}{w} & =0 \cdot 03 \\ C & =48^{\circ} 6^{\prime} 48^{\prime \prime} \cdot 30 \end{aligned}$
	${ }^{6} 46.88$	$h_{4} 6 \cdot 66$	148.32	$l 49 \cdot 32$	$l 49 \cdot 24$	$l 47$-86	$248 \cdot 10$	$247 \cdot 22$	$h+8 \cdot 96$	$\mathrm{h}_{48} \cdot 7+$	
	$h_{47}{ }^{4} 28$	$h_{4} 8 \cdot 96$	$l+8 \cdot 22$	$l+9 \cdot 76$	$l{ }^{2} 46 \cdot 26$	$l 49.34$	l l8.16	$l+77^{\circ} 92$	$h 48 \cdot 46$		
	$h 49.34$ $h_{48}{ }^{5} 58$		$l 49$ '36	$l+i \cdot 82$		$l 49{ }^{\circ}{ }^{8}$	$l 47$ 90	$l{ }^{6} \mathbf{8} \cdot 2$	$h 47 \cdot 24$	h 4 7 ${ }^{\text {96 }}$	
	48.02	48•15	48•63	+8•97	48.05	48•89	48.05	$47 \cdot 8 \mathrm{r}$	48.22	48•28	
III \& VII	h23.86	h $25 \cdot 00$	$l 25.66$	$l 25.30$	$l 26.92$	l24.20	$l 26.24$	$l 25.22$	h $25 \cdot 72$	h27.14	$\begin{aligned} & M=25^{\prime \prime} \cdot 76 \\ & w=12 \cdot 93 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=55^{\circ} 2^{\prime} 25^{\prime \prime} \cdot 75 \end{aligned}$
	h 23.94	$h_{25} 5^{12}$	$l 26 \cdot 32$	$l 26.46$	$l 26 \cdot 06$	$l 25.76$	$l 26 \cdot 82$	$l 27.22$	${ }^{2} 24.36$	$h_{25}{ }^{\text {a }} 76$	
	${ }^{\text {h } 23.64}$	h24.26	$l 26.30$	l26.06	$l 25$ \% 04	l24*40	$l 27.26$	${ }^{l} 27.18$	h26.20	h25.76	
	${ }^{\text {h } 25} 5 \cdot 38$										
	h25 30										
	24.53	$25 \cdot 00$	$26 \cdot 09$	$25 * 94$	$26 \cdot 01$	24*79	26.77	$26 \cdot 84$	$25 * 43$	$26 \cdot 22$	

At VI (Nagar)

March 1873; observed by Lieut. 直. W. Rogers, R.E., vith Barrow's 24-inch Theodolite No. 2.

Angle between	$312^{\circ} 10^{\prime}$	$132^{\circ} 10^{\prime}$	${ }_{31^{\bullet} 22^{\prime}}^{\mathrm{Ci}}$	Circle readings, telescope being set on IX					$268{ }^{\circ} 57^{\prime}$	$88^{\circ} 58^{\prime}$	$M=$ Mean of Groups ${ }^{2}=$ = Relative Weight $C=$ Concluded Δ aglo																				
				$211^{\circ} 22^{\prime}$	$110^{\circ} 33^{\prime}$	$290^{\circ} 33^{\prime}$	$189^{\circ} 45^{\circ}$	$9^{\circ} 45^{\prime}$																							
IX \& VIII	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=12^{\prime \prime} \cdot 25 \\ & w=21 \cdot 48 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=47^{\circ} 51^{\prime} 12^{\prime \prime} \cdot 26 \end{aligned}$																				
	h 12.90	$h_{12} .58$	$212 \cdot 44$	l11.26	$l 12 \cdot 88$	$h_{12}{ }^{24}$	hrir_{14}	$h_{13} \cdot 22$	h 11.94	$l 12.78$																					
	h 12.28 $h i 162$	$h_{11}{ }^{\text {d }}$. 64	$l 11.66$	${ }_{l} 11114$	$l 13.00$	$h_{12}{ }^{\text {O }}$ O2	312.20	${ }_{1} \mathrm{I} 3.80$	$h_{12} 18$	$l 12 \cdot 46$																					
	$h_{11} 1{ }^{\text {62 }}$	$l 12.66$	211.86	$112 \cdot 04$	$l 11 \times 74$	hıi'98	$h 13 \cdot 18$	$h 13.44$	$l 12.26$	$l 10 \cdot 98$																					
	$12 \cdot 27$	12.29	11*99	[148	12.54	12.08	11•88	13.79	12.13	12.07																					
VIII \& VII	${ }^{1} 3.30 \cdot 92$	$l 30 \cdot 88$	$131 \cdot 64$	$133 \cdot 82$	l31-56	h $32 \cdot 00$	$h_{32} \cdot 82$	/232.48	h31.20	$130 \cdot 74$	$\begin{aligned} & M=31^{\prime \prime} \cdot 61 \\ & w=16 \cdot 16 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=48^{\circ} 42^{\prime} 31^{\prime \prime} \cdot 60 \end{aligned}$																				
	h 32.30 $h 32$	$l 30 \cdot 26$	$l 31 \cdot 52$	$l .31 \cdot 86$	$l 31.40$	h $32 \cdot 76$	$h_{30} 3 \cdot 8$	h 31.90	$h_{31}{ }^{\text {a }}$ - 08	$131 \cdot 40$																					
	${ }^{6} 32 \cdot 90$	$13 \mathrm{I} \cdot 28$	l 31-34	$l 31 \cdot 88$	l $32 \cdot 90$	$h_{32}{ }^{12}$	h $32 \cdot 52$	$\begin{aligned} & h 31 \cdot 86 \\ & h 28 \cdot 84 \end{aligned}$	$h_{30} 68$	$l 30 \cdot 88$																					
	$32 \cdot 04$	$30 \cdot 8 \mathrm{r}$	31•50	32.52	31'95	32-29	32-06	30\%91	30'99	31*01																					
VII \& III	$h_{12} 10$	114.44	$l 12 \cdot 84$	$l 12.42$	$l 13.76$	$h_{12} 12$	${ }_{1} 13.46$	$h_{12}{ }^{\text {a }} 96$	${ }_{1} 13.76$	212.62	$\begin{aligned} & M=13^{\prime \prime} \cdot 47 \\ & w=32 \cdot 90 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=67^{\circ} 47^{\prime} 13^{\prime \prime \prime} \cdot 4 . \end{aligned}$																				
		$l 13.82$ $l 13.60$	$l 14^{\prime} 76$ $l 14.30$	l l l 13.	${ }_{l}^{l} 13^{\prime} 68$		$h_{14} \cdot 24$ $h_{12} \cdot 18$	hri'76		$\begin{array}{lll}l & 13.18 \\ l & 13.06\end{array}$																					
	$h_{14}{ }^{\circ} 5$						$h_{12}{ }^{5} 8$	$\begin{aligned} & 113.52 \\ & h 13.96 \\ & h_{13}: 20 \end{aligned}$	h\%																						
	13•19	13.95	13*97	13.26	$14^{\circ} 02$	13.10	$13 \cdot 12$	13*08	13*80	13.25																					
III \& IV	${ }_{6} \mathbf{5 5} 98$	h $55 \cdot 76$	$157 \cdot 82$	$156 \cdot 32$	$l{ }_{5}{ }^{\text {P }} 84$	${ }^{\text {h }} 57 \cdot 88$	${ }_{\text {h }}^{58}$ - 36	${ }_{4}{ }_{5} 8 \cdot 18$	${ }_{4} 57 \cdot 58$	$l 58 \cdot 42$	$\begin{aligned} & M=57^{\prime \prime} \cdot 57 \\ & w=20 \cdot 98 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=62^{\circ} 3^{8^{\prime}} 57^{\prime \prime \prime} \cdot 54 \end{aligned}$																				
	$h_{4} 57 \cdot 10$ $h_{5} 8 \cdot 62$	${ }^{2} 557.92$	${ }_{l}^{l} 557074$	${ }_{l}^{l}{ }_{l}^{58 \cdot 14}$		${ }_{\text {h }}^{5} 58.36$	${ }_{h}{ }_{\text {h }}^{57}{ }_{59} 74$	${ }_{\text {h }}^{\text {h }} 56{ }^{\text {c }}$																							
	${ }_{h}{ }_{57} 68$	$\underline{256.8+}$					h $59{ }^{3}$																								
		$h_{5} 8.20$						$h_{56} \cdot 06$																							
	57`35 & 56.82 & \(57 * 45\) & \(57 \times 43\) & 57'99 & \(57 \cdot 88\) & \(58 \cdot 47\) & 56•66 & 57•67 & 57-96 & \\ \hline \multicolumn{12}{\|r	}{\multirow[b]{2}{*}{March 1873; observed by Lieut, M. W. Rogers, R. E., with Barrow's 24-inch Theodolite No. 2.}} \\ \hline & & & & & & & & & & & \\ \hline \multirow[t]{2}{*}{\[\underset{\substack{\text { Angle } \\ \text { between }}}{\text { attwe }} \]} & \multicolumn{10}{	c	}{Circle readings, telescope being set on V} & \multirow[t]{2}{*}{\begin{tabular}{l} \(M=\) Mean of Groups \\ \(v=\) Relative Weight \\ \(C=\) Concluded Angle \end{tabular}} \\ \hline & \(0^{\circ} 0^{\circ}\) & \(180^{\circ} 0^{\prime}\) & \(79^{\circ} 12^{\prime}\) & \(259^{\circ} 12^{\prime}\) & \(158^{\circ} 25^{\prime}\) & \(388^{\circ} 25^{\circ}\) & \(237^{\circ} 37^{\circ}\) & \(57^{\circ} 37^{\prime}\) & \(316^{\circ} 49^{\prime}\) & \(136^{\circ} 49^{\prime}\) & \\ \hline \multirow{6}{*}{V \& III} & " & " & " & " & " & " & " & " & " & " & \multirow{6}{*}{\[\begin{aligned} & M=53^{\prime \prime} \cdot 67 \\ & w=25 \cdot 5^{2} \\ & \frac{\mathbf{I}}{w}=0 \cdot 04 \\ & C=81^{\circ} 51^{\prime} 53^{\prime \prime} \cdot 67 \end{aligned} \]} \\ \hline & 252.30 & \(\underline{53} \cdot 64\) & 753.72 & 2.53 .90 & \({ }^{\boldsymbol{h}} .54 .98\) & \({ }_{\text {h } 53.16}\) & 751.60 & l,53•88 & \(l .53 .48\) & \({ }_{\text {h }}^{54}\). 12 . & \\ \hline & \({ }^{l} 53.50\) & \({ }^{1} 54 \cdot 12\) & \({ }^{1} 54.52\) & \(l .55 \cdot 42\) & \({ }_{\text {h }}^{53} 5.58\) & \({ }^{\text {k }} 533 \cdot 80\) & \({ }^{2} 52.38\) & \(l{ }^{1} 52.30\) & \(l .52 .96\) & h \(55^{\circ} 10\) & \\ \hline & l 53.26 65 & & 52 7 53 & \begin{tabular}{l} l 52.90 \\ \hline 4.84 \end{tabular} & \({ }^{53} 32\) & \({ }^{5} 52 \cdot{ }_{4}\) & \begin{tabular}{l} 153.98 \\ 153 \\ \hline \end{tabular} & l 54.78 64 & \({ }^{53} 38\) & \(h .54 * 90\) \(h_{52} \cdot 6_{4}\) & \\ \hline & & & & & & & & & & & \\ \hline & 53*53 & 54*00 & \(53 \cdot 55\) & \(54 \times 27\) & 53.96 & 53.20 & 52'98 & 53*75 & \(53 \cdot 27\) & \(54 \cdot 19\) & \\ \hline \end{tabular} \begin{tabular}{	c	c	c	c	c	c	c	c	c	c	c	c	} \hline \multicolumn{12}{	c	}{At VII (Samdari)-(Continued).} \\ \hline Angle between & \multicolumn{10}{	c	}{Circle readings, telescope being set on \(\mathbf{V}\)} & \begin{tabular}{l} M \(=\) Menn of Groups \\ \(w=\) Kelative Weight \\ \(c=\) Concluded \(\Delta\) ngle \end{tabular} \\ \hline \multirow[t]{2}{*}{III \& VI} & & & & \(\prime \prime\) \(l\) \(l\) \(10 \cdot 30\) & " \(h 12.98\) \(h 11.50\) \(h 11944\) \(h 10.82\) & " \(h_{11} \cdot 12\) \(h_{11} \cdot 22\) \(h_{11} \cdot 96\) & & \(\begin{array}{cc} & \prime \prime \\ l & 10 \cdot 88 \\ l & 11.58 \\ l & 10 \cdot 64\end{array}\) & \[\begin{array}{ll} l & 11 \cdot 92 \\ l & 12 \cdot 0+ \\ l & 11 \end{array} \] & & \multirow[t]{2}{*}{\[\begin{aligned} & M=11^{\prime \prime} \cdot 55 \\ & w=37 \cdot 42 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=52^{\circ} 14^{\prime} 11^{\prime \prime} \cdot 5^{6} \end{aligned} \]} \\ \hline & \(12 \cdot 0\) & 11*59 & 11*37 & 10.98 & 11•68 & \(11 \cdot 43\) & 11`79	11*01	11^{172}	11.92							
VI \& VIII		l l 49.92		l l l 1×96 41	$h 52 \cdot 12$ $h_{50}+46$ $h_{50} \cdot 62$	$h_{52} \cdot 38$ $h_{52} \cdot 54$ $h_{52} \cdot 00$	l l $2 \cdot 50$	l l l $50 \cdot 36$ l l	l $52 \cdot 24$ l 61 7102		$\begin{aligned} & M=50^{\prime \prime} \cdot 96 \\ & w=13 \cdot 14 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=57^{\circ} 47^{\prime} 50^{\prime \prime} \cdot 94 \end{aligned}$																				
	$50 \cdot 8$	50•09	$50 \cdot 65$	51*58	$51 \cdot 07$	52.31	51.15	50'59	51.58	49\% 70																					
VIII \& X	$l 37.10$ $l 3728$ $l 37$ 37		$h_{36} 368$ $h_{35} \cdot 98$ $h_{37} \cdot 12$	$h 36 \cdot 12$ $h 38 \cdot 12$ $h 35 \cdot 72$ $h 36 \cdot 64$ $h 38 \cdot 82$	$h 36 \cdot 98$ $h 37 \cdot 32$ $h 37 \cdot 72$	$\begin{aligned} & h .37 \cdot 58 \\ & h 3.512 \\ & h .34 \cdot 30 \\ & h 36 \cdot 02 \\ & h_{36} 6 \cdot 62 \end{aligned}$	$l .36 \cdot 02$ $l 36 \cdot 70$ $l 36 \cdot 36$	l l l l $36 \cdot 20$	l l $35 \cdot 06$	$\begin{aligned} & \boldsymbol{h}_{3} 6 \cdot 62 \\ & h_{38} 8 \cdot 36 \\ & h_{37} \cdot 62 \end{aligned}$	$\begin{aligned} & M=3^{\prime \prime \prime} \cdot 9 \mathrm{I} \\ & w=14 \cdot 01 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=78^{\circ} 5^{\prime} 36^{\prime \prime} \cdot 9 \text { י } \end{aligned}$																				
	$37 \% 4$	38-16	36.54	$37^{\circ} 08$	37 34	35*93	36.36	$36 \cdot 83$	$35 \cdot 89$	37•53																					
March 1873 ; observed by Lieut. MI. W. Rogers, R. E., with Barrow's 24-inch Theodolite No. 2.																															
Angle between	Circle readings, telescope being set on VII										$M=$ Mean of Groups wo Relative Weight c = Concluded Angle																				
VII \& VI	$h_{4} \mathrm{I}^{\circ} 9^{\circ}$ $h 40.96$ ${ }^{h}{ }^{3} 9^{\circ} 44$ $h_{40} .60$	$\begin{aligned} & h 40 \cdot 08 \\ & l \begin{array}{l} h 3 \cdot 72 \\ l \\ l \\ l 0 \cdot 10 \\ l \end{array} 37 \cdot 94 \end{aligned}$	$\begin{aligned} & h_{4} 40 \cdot 44 \\ & h_{42} \cdot 0 \cdot 08 \\ & h_{40} \cdot 18 \\ & h_{40} \cdot 22 \end{aligned}$	$\begin{aligned} & l+0 \cdot 98 \\ & l 40 \cdot 74 \\ & l 38.98 \end{aligned}$	$\begin{aligned} & h_{39 \cdot 22} \\ & n_{4 I} \cdot 16 \\ & h_{41} \cdot 62 \\ & h_{40} \cdot 04 \end{aligned}$	$\begin{aligned} & h_{4}+\cdot 66 \\ & h_{41} \cdot 66 \\ & l_{41} \cdot 46 \end{aligned}$	$\begin{aligned} & h 40 \cdot 54 \\ & h_{4} \cdot 58 \\ & h+1 \end{aligned}$	$\begin{aligned} & h_{40 \cdot 22} \\ & h_{40}+10 \\ & h_{40} \cdot 26 \end{aligned}$	$h_{41} \cdot 04$ $h_{42} \cdot 16$ $h 40 \cdot 66$	$\begin{aligned} & h 39 \cdot 20 \\ & h+0 \cdot 60 \\ & h+0 \cdot 08 \\ & l 39 \cdot 36 \end{aligned}$	$\begin{aligned} & M=40^{\prime \prime} \cdot 53 \\ & \boldsymbol{w}=17 \cdot 85 \\ & \frac{\mathbf{I}}{\boldsymbol{w}}=0 \cdot 06 \\ & \boldsymbol{C}=73^{\circ} 29^{\prime} 40^{\prime \prime} \cdot 5^{2} \end{aligned}$																				
	40'73	$39 * 46$	$40 \cdot 73$	40.23	$40 \cdot 51$	4'59	40*75	40'19	41•29	$39 \cdot 8 \mathrm{r}$																					
VI \& IX	$\begin{aligned} & h 55 \cdot 10 \\ & h_{54} .88 \\ & h_{55}+64 \\ & h_{55} \cdot 30 \end{aligned}$			l l	$\begin{aligned} & h_{57} \cdot 62 \\ & h_{55} \cdot 24 \\ & h_{57} \cdot 48 \\ & h_{55} \cdot 06 \end{aligned}$	$\begin{aligned} & l .56 \cdot 72 \\ & h 55^{\circ} \cdot 96 \\ & h 55 \cdot 30 \end{aligned}$	$h_{57}{ }^{\prime} 08$ $h_{57} 000$ $h_{57} 54$		$\begin{aligned} & h_{56 \cdot 46} \\ & h_{5 j} \cdot 38 \\ & h_{57} \cdot 84 \end{aligned}$	h 56. 24 h.5.5.50 h $56 \cdot 86$ h 55 군	$\begin{aligned} & M=56^{\prime \prime} \cdot 04 \\ & w=14 \cdot 86 \\ & \frac{1}{w}=0 \cdot 07 \quad \cdot \\ & C=72^{\circ} 36^{\prime} 56^{\prime \prime} \cdot 03 \end{aligned}$																				
	$55 \cdot 23$	$55^{\circ}+4$	56•04	$55^{\circ} 27$	$56 \cdot 35$	55*99	$57^{\circ 21}$	55*55	57^{23}	$56 \cdot 08$																					

At VIII (Thob)-(Continued).											
Angle between	Circle readings, telescope being set on VII										$\boldsymbol{M}=$ Mena of Groupe $w^{w}=$ Relative Weight C - Conoluded Angle
IX \& XI		$\prime \prime$ $h 39 \cdot 82$ l l $40 \cdot 82$ $42 \cdot 20$		$\prime \prime$ l $40 \cdot 10$ $l 38 \cdot 16$ $l 30^{\circ} 24$		$\begin{aligned} & h 38 \cdot 94 \\ & h 38 \cdot 50 \\ & h 38 \cdot 58 \end{aligned}$	$\begin{aligned} & h 40 \cdot 02 \\ & h 37 \cdot 88 \\ & h 38 \cdot 52 \\ & h 37 \cdot 38 \end{aligned}$	$\begin{aligned} & h 38 \cdot 94 \\ & h 40 \cdot 36 \\ & h 39 \cdot 34 \end{aligned}$	$\begin{aligned} & h 39 \cdot 84 \\ & h 37.54 \\ & h 38 \cdot 44 \\ & h 39^{\circ} \cdot 78 \end{aligned}$	$\begin{aligned} & h 40 \cdot 12 \\ & h 38 \cdot 70 \\ & h 37 \cdot 94 \\ & h 38 \cdot 94 \end{aligned}$	$\begin{aligned} & M=39^{\prime \prime} \cdot 45 \\ & w=12 \cdot 42 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=65^{\circ} 7^{\prime} 39^{\prime \prime} \cdot 43 \end{aligned}$
	$39 \cdot 5$	40'95	40*20	39 ${ }^{17}$	$39^{\prime 25}$	$38 \cdot 67$	$38 \cdot 45$	$39 \cdot 55$	38.90	$38 \cdot 83$	
XI \& XII		$h 18.92$ $l 19.18$ $l .17$.78	$\begin{aligned} & h_{17} 1 \cdot 32 \\ & h_{20} 20.46 \\ & l_{20} 20 \cdot 98 \\ & h_{21} \cdot 76 \end{aligned}$	l l l $10 \cdot 06$ $l 21$ l	$\begin{aligned} & h_{18} 8 \cdot 14 \\ & h_{18} 8 \cdot 46 \\ & h_{19} \cdot 52 \\ & h_{19} \cdot 50 \end{aligned}$		$\begin{aligned} & h 20 \cdot 52 \\ & h 20 \cdot 42 \\ & h_{19}{ }^{\prime} \cdot 48 \\ & h 20 \cdot 42 \end{aligned}$	$h_{18} 8.42$ $h_{17} 7.44$ $l 19.50$	$\begin{aligned} & h_{17} \cdot 96 \\ & h_{18} 8 \cdot 76 \\ & h_{19} \cdot 76 \end{aligned}$	$\begin{aligned} & h_{18} 8 \cdot 76 \\ & h_{19} \cdot 08 \\ & h_{19} \cdot 14 \\ & h_{18} 8 \cdot 42 \end{aligned}$	$\begin{aligned} & M=19^{\prime \prime} \cdot 27 \\ & \left.w=\frac{7}{2}\right]^{\prime} \cdot 46 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=54^{\circ} 17^{\prime} 19^{\prime \prime \prime} \cdot 28 \end{aligned}$
	$19^{\circ} 18$	18.63	20•13	20'37	18.91	19^{12}	20.21	18.45	18.83	$18 \cdot 85$	
XII \& X	$\begin{array}{ll} h & 1 \cdot 7 \\ h & 20 \\ h & 30 \\ l & 3.4 \\ 4 & 4 \end{array}$	$\begin{array}{ll}h & 3 \cdot 68 \\ l & 3 \cdot 84 \\ l & 4.3 \\ \\ & \\ & \end{array}$	$\begin{array}{ll} h & 4^{\circ} 90 \\ h & 2.92 \\ h & 3.44 \\ 7 & 3.40 \\ 3^{\circ} 04 \end{array}$	$\begin{array}{ll}l & 4.44 \\ l & 4.46 \\ l & 3.60\end{array}$	h 3 ${ }^{\circ} \cdot 26$			$\begin{array}{ll}l & 3.90 \\ h & 3.02 \\ h & 2.84 \\ & 2.84\end{array}$	$\begin{array}{ll}h & 4.04 \\ h & 3.60 \\ h & 2.90\end{array}$	$\begin{array}{ll} \begin{array}{ll} h & 4.76 \\ h & 2.70 \\ h & 2.86 \end{array} \\ \hline \end{array}$	$\begin{aligned} M & =3^{\prime \prime} \cdot 4 \mathrm{I} \\ w & =23 \cdot 78 \\ \frac{\mathrm{I}}{w} & =0 \cdot 04 \\ \boldsymbol{C} & =40^{\circ} 23^{\prime} \quad 3^{\prime \prime} \cdot 39 \end{aligned}$
	$2 \cdot 90$	3.95	$3{ }^{40}$	4*17	3.44	3*50	$2 \cdot 54$	3.25	$3 \cdot 51$	3.44	
X \& VII	h $20 \cdot 96$ $h 21.95$ $h 21.54$	$h 21 \cdot 38$ $l 21 \cdot 02$ $l 21 \cdot 98$ $l 20.58$		$\begin{aligned} & l 20.42 \\ & l 21.48 \\ & l 20.46 \end{aligned}$	h23.44 h $19{ }^{-1} 32$ h 19.06 ${ }^{h} 19{ }^{\circ} 58$ h $20 \cdot 58$	$\begin{aligned} & h 20 \cdot 74 \\ & h 20 \cdot 34 \\ & l 21 \cdot 24 \end{aligned}$	$\begin{aligned} & h 20 \cdot 96 \\ & h_{22} 22 \cdot 00 \\ & h_{20} \cdot 18 \end{aligned}$	$\begin{aligned} & l 22 \cdot 38 \\ & h_{22} 22 \cdot 42 \\ & h_{23} 23 \cdot 06 \\ & h_{21} \cdot 22 \\ & h_{18} \cdot 62 \end{aligned}$	$\begin{aligned} & h_{21 \cdot 04} \\ & h_{21} \cdot 76 \\ & h 20 \cdot 16 \end{aligned}$	$\begin{aligned} & h 20 \cdot 36 \\ & h_{22} 22 \cdot 04 \\ & h 21 \cdot 06 \end{aligned}$	$\begin{aligned} & M=20^{\prime \prime} \cdot 93 \\ & w=21 \cdot 18 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=54^{\circ} 5^{\prime} 20^{\prime \prime} \cdot 92 \end{aligned}$
	2134	21.24	20.08	20'79	20*40	20'77	21.05	21'54	20•99	21.15	
March 1873; observed by Lieut. M. W. Rogers, R. E., with Barrow's 24-inch Theodolite No. 2.											
Angle between	Circle readings, telescope being set on XI										$M=$ Mean of Groupe ${ }^{\text {ro }}=$ Kelative Weight $C=$ Concluded Angle
XI \& VIII		$\prime \prime$ $k 12.90$ $k 13.08$ $h 13.86$	$\prime \prime$ $h_{11} \cdot 60$ $h_{12} \cdot 38$ $h_{13} \cdot 22$	$\begin{aligned} & h_{12} \cdot 88 \\ & h_{11} \cdot 86 \\ & h_{1} \cdot 8 \cdot 04 \end{aligned}$	$\begin{array}{lll} h_{1} & 13 \cdot 26 \\ h_{1} & 12 \cdot 92 \\ h_{1} & 1 \end{array}$		$\begin{aligned} & l 12 \cdot 14 \\ & l 12 \cdot 60 \\ & l 12 \cdot 16 \end{aligned}$	$\begin{aligned} & l 13.16 \\ & l 13.46 \\ & h 1 I \cdot 88 \end{aligned}$	$\begin{aligned} & h_{11} \cdot 16 \\ & h_{12} \cdot 12 \\ & h_{11} \cdot 46 \end{aligned}$	K $12 \cdot 20$ k $12 \cdot 98$ h $10 \cdot 80$ h $12 \cdot 86$	$\left\{\begin{array}{l} M=12^{\prime \prime} \cdot 47 \\ w=27 \cdot 76 \\ \frac{1}{w}=0 \cdot 04 \\ C=57^{\circ} 4^{\prime} 12^{\prime \prime} \cdot 47 \end{array}\right.$
	12.40	13*28	12.40	$12 \cdot 59$	12.59	12.54	$12 \cdot 30$	12:83	11.58	12.21	

At XIII (Ketu)-(Continued).													
Angle between	$359^{\circ} 59$	Circle readings, telescope being set on XII									$M=$ Mean of Groups $v=$ Relative Weight C - Concluded Anglo		
		$179^{\circ} 59^{\prime}$	$79^{\circ} 11^{\prime}$	$259^{\circ} 10^{\prime}$	$158^{\circ} 23^{\prime}$	$338^{\circ} 23^{\prime}$	$237{ }^{\circ} 38^{\prime}$	$57^{\circ} 38$	$316^{\circ} 49^{\prime}$	$136^{\circ} 49^{\prime}$			
XI \& XIV	"	"	"	"	"	-"	"	"	"	"	$\begin{aligned} & M=26^{\prime \prime} \cdot 48 \\ & w=25 \cdot 84 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=48^{\circ} 51^{\prime} 26^{\prime \prime} \cdot 47 \end{aligned}$		
	l 25.66	${ }^{2} 24.60$	h $26 \cdot 86$	227.82	K 25.98	$l 25.56$	h 26.06	h $26 \cdot 52$	l28.10	h 25.90			
	$h 25 \cdot 88$ $h 27$	$l 26 \cdot 72$ $l 26.68$	h $25^{\circ} \mathrm{Co}$ l	l	h $26 \cdot 20$ $h 26.44$	$l 25 \cdot 60$	$h 25^{\circ} 74$	h 26.34	$h^{26 \cdot 12}$	h25.82			
	$h 27.84$ $h 26.66$	$\begin{aligned} & l 26 \cdot 68 \\ & d 26 \cdot 63 \end{aligned}$	$l 27^{\circ} 0$	$l 27.06$	h 26.44	$l 27 \cdot 22$		l $25{ }^{\circ} 74$	h 28.12	12714			
	26.51	26-16	$26 \cdot 35$	27•26	26.21	26'13	26•19	26•20	$27 \cdot 45$	$26 \cdot 29$			
XIV \& XVI	$h 51.52$	$l 53.90$	$h_{52} \cdot 16$	l $72 \cdot 28$ 72.5	${ }_{2} 52 \cdot 20$	l l l 52. 7		$h_{52} 2.58$ $h \mathbf{5 2}$	${ }_{7}^{2} 53 \cdot 06$	$h_{53.48}$	$\begin{aligned} & M=52^{\prime \prime} \cdot 66 \\ & w=118 \cdot 90 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=49^{\circ} 3^{\prime} 52^{\prime \prime} \cdot 65 \end{aligned}$		
	$h_{51} 52 \cdot 58$ h 52	$\begin{array}{r} l 51 \cdot 46 \\ 752 \cdot 64 \end{array}$	$\begin{aligned} & h 54.70 \\ & h_{52} \cdot 22 \end{aligned}$	$\begin{aligned} & l 52 \cdot 54 \\ & l \\ & l \end{aligned}$	$\begin{aligned} & h_{51} \cdot 40 \\ & h_{52} \cdot 94 \end{aligned}$	$\begin{aligned} & l 52.70 \\ & l 52 \cdot 20 \end{aligned}$	$\begin{aligned} & h{ }_{52 \cdot 74}{ }_{54} .74 \end{aligned}$	$h_{52} \cdot 34$ l 51	$\begin{aligned} & h_{54} \cdot 12 \\ & h_{54} \cdot 10 \end{aligned}$	$h 53 \cdot 62$ l 75×9			
	W 5	$\boldsymbol{l} 53.08$	$250 \cdot 80$										
		${ }^{\text {d }} 53.40$	$l 50 \cdot 92$										
	52.25	52•90	52.16	52.27	52.18	52.47	$53^{*} 42$	52-18	$53 \cdot 76$	$53^{\circ} 02$			
XVI \& XVII	$h 18.40$ $h 18.86$	$l 19044$ $h_{19} 98$ l	$h_{19} 954$ $h_{17} 96$	$l 20094$ $l 19$ l	$h_{19} 68$ $h_{19} 64$	$l 18 \cdot 38$ $l 20.12$	$h_{19} 9^{2} 24$ $h_{19} 90$	h 18.40 $h_{20} 28$	$\begin{aligned} & l 18 \cdot 86 \\ & h 18 \cdot 90 \end{aligned}$	$h_{18} 8.42$ $h_{18} 8.54$	$\begin{aligned} & M=19^{\prime \prime} \cdot 29 \\ & w=20 \cdot 13 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=62^{\circ} 5^{\prime} 19^{\prime \prime} \cdot 29 \end{aligned}$		
	h 19.08	l19•18	$\begin{aligned} & l 8 \cdot 76 \\ & 78 \cdot 6 \end{aligned}$	$721 \cdot 18$	h $20 \cdot 12$	$l{ }_{19}{ }^{88}$	h $17^{\circ} 96$	$l 20 \cdot 12$	h 19.94	$l 18.62$			
	18.78	$19^{\prime} 47$	18.55	20*49	19*81	19×46	19*03	$19^{\circ 60}$	$19^{\circ} 23$	18•53			
XVII \& XV	h 27.74 h	h28.78 729.86	h 29.72	$l 27.96$	$h 27.72$ $h 28.36$	l l 30.20	h $28 \cdot 16$	h 28.48 $h 27$ 8	$l 29^{\circ} 40$	${ }^{\text {h } 29.48}$	$\begin{aligned} & M=28^{\prime \prime} \cdot 83 \\ & w=25 \cdot 28 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=71^{\circ} 51^{\prime} 28^{\prime \prime} \cdot 83 \end{aligned}$		
	${ }_{h} 29.50$	${ }_{6} 29.52$	$l 30 \cdot 56$	$l 29.40$	h 28.82	$l 28.40$	$h 28 \cdot 78$	${ }^{29} 294$	${ }_{\text {h } 27} 4$	$l 29.30$			
	28:85	29'39	29.61	$28 \cdot 83$	$28 \cdot 30$	29.09	$28 \cdot 36$	$28 \cdot 66$	$28 \cdot 15$	29.06			
XV \& XII	${ }^{\text {h }} 34.08$	$433 \cdot 72$	${ }^{\prime} 30 \cdot 98$	${ }^{2} 31 \cdot 04$	$h 31 \cdot 60$	$l 32.22$	h 33.70	${ }^{4} 33 \cdot 90$	${ }^{1} 32 \cdot 02$	433.20	$\begin{aligned} & M=32^{\prime \prime} \cdot 32 \\ & w=16 \cdot 62 \\ & \frac{\mathrm{I}}{}=0 \cdot 06 \\ & w=55^{\circ} 44^{\prime} 32^{\prime \prime} \cdot 32 \end{aligned}$		
	h 31.40 $h 32.24$	$l 330$ $l 31$	k $31 \cdot 86$ l 31	${ }_{l}^{l} 33 \cdot 60$	$h 31 \times 98$ $h 33 \cdot 06$	${ }_{l}^{l} 31 \cdot 86$	${ }_{2} 32 \cdot 64$	${ }_{7}{ }_{23} 3.14$	${ }_{7} 31.60$	${ }^{2} 33 \cdot 26$			
	h 32.24 $h 3080$	$l 31 \times 94$	$l 3$-86	$\begin{aligned} & l 32 \cdot 88 \\ & l \\ & l 22.76 \end{aligned}$	$h 33 \cdot 06$	$l 32 \cdot 96$	l $32 \cdot 28$	$l 32 \cdot 66$	$h^{30} 72$	$l 33 \cdot 34$			
	32.13	31-53	31•57	$32 \cdot 57$	$32 \cdot 21$	$32 \cdot 35$$\quad 32 \cdot 87$		33^{23}	31*45	$33 \cdot 27$			
December 1873 ; observed by Lieut. J. Hill, R. E., with Barrow's 24-inch Theodolite No. 2.													
Anglo between	$0^{\circ} 0^{\prime}$	Circle readings, telescope being set on XVI							$316^{\circ} 48^{\prime}$	$136^{\circ} 47^{\prime}$	$M=$ Mean of Groups $v=$ Relative Weight C = Concluded Angle		
		$179{ }^{\circ} 59^{\prime}$	$79^{\circ} 13^{\prime}$	$259^{\circ} 13^{\prime}$	$158^{\circ} 25^{\prime}$	$338^{\circ} 24^{\prime}$	$237^{\circ} 35^{\prime}$	$57^{\circ} 34^{\prime}$					
XVI \& XIII	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=50^{\prime \prime} \cdot 71 \\ & w=12 \cdot 78 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=67^{\circ} 55^{\prime} 50^{\prime \prime} \cdot 74 \end{aligned}$		
	${ }^{7} 52.12$	${ }_{\text {h }}^{51}$-18	${ }^{\text {h }} 50 \cdot 54$	$h_{52.24}$	h $50 \cdot 20$	$l 49.22$	$h_{49}{ }^{\text {a }} 50$	${ }_{\text {h }}^{50} 5 \cdot 0$	${ }^{7} 49 \cdot 48$	$h^{49} 74$			
		h $50 \cdot 52$ h 50		$h 50 \cdot 58$ h $50 \cdot 06$	l l $70 \cdot 00$ 49			h $52 \cdot 14$ $h_{51} \cdot 28$	$h 50 \cdot 42$ $h 50 \cdot 16$	$h_{4} 49.58$ $h_{50} \cdot 98$			
	$\begin{aligned} & h_{53 .} 22 \\ & h_{52} \cdot 82 \end{aligned}$		h $50 \cdot 40$	$h_{50}{ }^{\prime} 2$				$h_{52}{ }^{26}$					
	51*99	50.74	51*65	50'90	50*00	49*90	$50 \cdot 41$	5142	$50 \cdot 02$	50'10			

- At XVI (Loharan) - (Continued).											
Angle between		$180^{\circ} 0^{\prime}$	$79^{\circ} 12^{\prime}$	cle readings, telescope being set on $259^{\circ} 12^{\circ}$ $158^{\circ} 24^{\prime}$ $338^{\circ} \mathbf{2 4}$ $237^{\circ} 39^{\prime}$				$57^{\circ} 38^{\prime}$	$316^{\circ} 49^{\prime}$	$136^{\circ} 49^{\prime}$	M = Mean of Groups $w_{c}=$ Relative Weight $\boldsymbol{C}=$ Concluded Angle
XVIII \& XVII	$\prime \prime$ $h_{49} \cdot 08$ $h_{48} .48$ $h_{49}{ }^{28} 28$	$*$ $h_{49} \cdot 06$ $h_{49} 98$ $h_{49} 96$			$\prime \prime$ l $70 \cdot 86$ l $790 \cdot 24$ $h 49$ 7	$\prime \prime$ $h_{50} \cdot 60$ $h_{49}{ }^{\circ} 56$ $h_{50} \cdot 08$		$"$ $h_{49} \cdot 68$ $h_{51} \cdot 08$ $h_{49} \cdot 88$			$\begin{aligned} & M=49^{\prime \prime} \cdot 77 \\ & w=17 \cdot 70 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=61^{\circ} 47^{\prime} 49^{\prime \prime} \cdot 77 \end{aligned}$
	48*95	$49^{\circ} 60$	49*77	$50 \cdot 61$	49`94	50•08	$49^{\circ} 14$	50.21	50\%7	$48 \cdot 73$	
XVII \& XIII	$h 50.9$ $h 5086$ $h_{50} 0^{\circ} 2$	$h 50 \cdot 36$ $h 50.86$ $h 50 \cdot 60$	$\begin{aligned} & l 49 \cdot 56 \\ & h_{51} \cdot 08 \\ & h_{49} \cdot 18 \\ & h_{50} \cdot 26 \end{aligned}$	$h_{51} \cdot 24$ $h_{49} \cdot 88$ l 51	$7.50 \cdot 12$ $h 49 \cdot 2$ $h+9 \cdot 30$	h_{48} 82 ${ }^{h}$ 50.04 h51•04. h 49 .76	l l $70 \cdot 68$ 706 49.96	$\begin{aligned} & h_{49} h_{49} \cdot 68 \\ & h_{49} \cdot 36 \end{aligned}$	$\begin{aligned} & h 49 \cdot 46 \\ & l 50 \cdot 16 \\ & l 49 \cdot 50 \end{aligned}$		$\begin{aligned} & M=50^{\prime \prime} \cdot 07 \\ & w=31 \cdot 70 \\ & \frac{\mathbf{I}}{w}=0 \cdot 03 \\ & C=50^{\circ} 21^{\prime} 50^{\prime \prime} \cdot 07 \end{aligned}$
	$50 \cdot 6$	$50 \cdot 61$	$50^{\circ} 02$	$50^{\circ} 71$	$49^{\circ} 4^{8}$	49*92	50*33	$49^{*} 43$	$49^{\circ} 11$	49*79	
XIII \& XIV	$h_{17} 98$ $h_{17} 7$ $h_{15} 9$	$\begin{aligned} & l 17 \cdot 00 \\ & l \begin{array}{l} 15 \cdot 92 \\ h_{1} 6 \cdot 00 \\ h_{1} 8 \cdot 76 \end{array} \end{aligned}$	$h_{17} 900$ $h_{17} 950$ $h_{17} 942$	$h_{17} \cdot 82$ $h_{17} \cdot 18$ $l 17$ 17	$l 17 \cdot 36$ $h 18.44$ $h 17$	$h_{18} 818$ $h_{1} 7112$ $h_{18} \cdot 12$	$\begin{array}{ll}l & 16 \cdot 72 \\ l & 17 \\ l & 178 \\ l\end{array}$	$h_{18} 8 \cdot 04$ $h_{1} 6.58$ $h_{17} 906$	l l l 18.90	$\begin{aligned} & h_{18} 8 \cdot 18 \\ & h_{17} 90 \\ & h_{17} \cdot 00 \end{aligned}$	$\begin{aligned} & M=17^{\prime \prime} \cdot 43 \\ & w=36 \cdot 30 \\ & \frac{\mathbf{I}}{w}=0 \cdot 03 \\ & C=63^{\circ} 50^{\prime} 17^{\prime \prime} \cdot 42 \end{aligned}$
	17:15	16.92	17.35	$17 \% 40$	57*83	17.81	17\%04	17•23	17*94	1770	
January 1874; observed by Lieut. J. Hill, R.E., with Barrow's 24-inch Theodolite No. 2.											
Angle between	Circle readings, telescope being set on XV										$M=$ Mean of Groups $w_{0}=$ Relative Weight $C=$ Concluded Angle
XV \& XIII	$\begin{array}{ll}\boldsymbol{h} & 4.34 \\ h & 3.86 \\ h & 3.36\end{array}$	h 3.92 h $2 \cdot 76$ ${ }^{h} 4.78$ h 3 . 36	$\begin{array}{ll} l & 2.68 \\ l & 2.8 \\ h & 2.84 \\ h & 2.9+ \end{array}$	$\begin{aligned} & h 7 \cdot 26 \\ & h 4 \cdot 56 \\ & h 3.56 \end{aligned}$	$\begin{array}{cc} h & 2 \cdot 78 \\ h & 2 \cdot 78 \\ l & 4 \cdot 12 \end{array}$	$\begin{array}{lll} l & 4.56 \\ l & 2.84 \\ l & 3 . & .18 \end{array}$	$\begin{aligned} & l \\ & l \\ & l .94 \\ & l \\ & h .00 \\ & h \\ & 4.66 \end{aligned}$	$\begin{aligned} & h+40 \\ & h 2 \cdot 96 \\ & h 3 \\ & h \cdot 78 \end{aligned}$	$\begin{array}{cc} l & " \\ l & 2.98 \\ l & 2.98 \\ l & 3.94 \\ d & 3.04 \\ d & 3.47 \end{array}$	K $1 \cdot 74$ h 3 . 14 h 3・プ	$\begin{aligned} & M=3^{\prime \prime} \cdot 59 \\ & w=25 \cdot 40 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=67^{\circ} 6^{\prime} 3^{\prime \prime} \cdot 59 \end{aligned}$
	$3 \cdot 85$	3.71	2.82	$4 * 46$	3.23	3.53	$4 \cdot 20$	3*7	3.51	$2 \cdot 86$	
XIII \& XVI			$\begin{aligned} & l 50 \cdot 88 \\ & l_{5 I \cdot 08}^{h_{51}} 5 \end{aligned}$	$\begin{aligned} & h 52 \cdot 80 \\ & h_{52} \cdot 30 \\ & h_{51} \cdot{ }_{52} \end{aligned}$	$\begin{aligned} & h 50 \cdot 72 \\ & h 52 \cdot 68 \\ & l \\ & 71.34 \end{aligned}$	$\begin{aligned} & l .52 \cdot 38 \\ & l \\ & l \\ & l 51 \cdot 40 \\ & l \end{aligned}$	$\begin{aligned} & l 52 \cdot 22 \\ & l_{50 \cdot 20}^{l_{5}} \\ & h_{51}{ }_{51} \cdot 06 \\ & h_{51} \cdot 54 \end{aligned}$	$\begin{aligned} & h_{50 \cdot} \cdot 52 \\ & h_{51} \cdot 88 \\ & h_{50} \cdot 36 \end{aligned}$	$\begin{aligned} & l 52 \cdot 82 \\ & l \\ & l \\ & l \\ & l 5 \cdot .50 \\ & d 2 \cdot 12 \\ & d 52 \cdot 10 \end{aligned}$	$\begin{aligned} & h 50 \cdot 60 \\ & h_{52} \cdot 52 \\ & h_{51} \cdot{ }_{36} \end{aligned}$	$\begin{aligned} & M=51^{\prime \prime} \cdot 58 \\ & w=30 \cdot 57 \\ & \frac{\mathbf{I}}{\mathbf{w}}=0 \cdot 03 \\ & C=66^{\circ} 39^{\prime} 51^{\prime \prime} \cdot 5^{8} \end{aligned}$
	517	51•33	51•17	52.2r	51•58	51•95	51.25	50'92	$52 \cdot 14$	$50^{\circ} 49$	
At XVII (Chamu)-(Continued).											
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
$\underset{\text { Between }}{\text { bengle }}$		Circle readings, telescope being set on XV									
XVI \& XVIII				$\begin{gathered} \prime \prime \\ h_{3} 38 \cdot 98 \\ h_{38} 8 \cdot{ }^{22} \\ h_{40} \cdot 16 \end{gathered}$		$\begin{gathered} " \prime \\ l 39 \cdot 10 \\ l 40 \cdot 06 \\ l 39 \cdot 34 \end{gathered}$		$\begin{gathered} " \\ h_{39} \cdot 68 \\ h_{3} 9 \cdot \cdot 12 \\ h_{39} \cdot{ }^{\prime} \cdot 30 \end{gathered}$	$\begin{aligned} & h_{3} 38.54 \\ & l_{3} 9.42 .42 \\ & { }_{38} 8.44 \end{aligned}$		$\begin{aligned} & M=39^{\prime \prime} \cdot 74 \\ & w=15 \cdot 7 \mathrm{I} \\ & \frac{1}{w}=0 \cdot 06 \\ & C=51^{\circ} 41^{\prime} 39^{\prime \prime} \cdot 74 \end{aligned}$
	38.95	39'75	$40 \cdot 36$	39•19	41.05	39.50	$40 \cdot 07$	39'37	38.80	$40 \cdot 3 \mathrm{r}$	
XVIII \& XX	$h 57.86$ $h_{56}^{6.90}$ $h_{57} \cdot 88$	$h_{56} \cdot+0$ l $h_{57} 7^{2}$ l $h_{56} 90$	$\begin{aligned} & l \\ & l\end{aligned}{ }_{5}^{57} \times 16$	$h 57.90$ $h_{58} 9.70$ $h_{57} 82$	$h 57 \cdot 56$ $h_{55} 56$ $l_{57} .30$		l l 27.76 $h_{5} .00$ $5^{8.06}$	$h 57 \cdot 62$ $h_{55} 88$ $h_{58} 88$		$\begin{aligned} & h_{5} 5 \cdot 58 \\ & h_{5} \cdot 34 \\ & h_{5}^{5} 5 \cdot 30 \\ & h_{5} 5 \cdot 64 \\ & h_{5} \cdot 48 \end{aligned}$	$\begin{aligned} & M=57^{\prime \prime} \cdot 43 \\ & w=16 \cdot 6 \mathbf{I} \\ & \frac{\mathbf{1}}{w}=\circ \cdot 06 \\ & C=58^{\circ} 51^{\prime} 57^{\prime \prime} \cdot 43 \end{aligned}$
	57×55	$57^{\circ} \mathrm{Or}$	56.07	$58 \cdot 14$	56.8I	57\%71	$57 \cdot 61$	$58 \cdot 03$	58.07	$57^{\prime 26}$	
January 1874; observed by Lieut. J. Hill, R.E., with Barrow's 24-inch Theodolite No. 2.											
$\underset{\text { Anglo }}{\text { between }}$											
XXI \& XXII	${ }_{\text {a }}^{\prime \prime}{ }^{\prime \prime}$	$\begin{array}{cc}\prime \prime \\ h_{44} \cdot 34 & \\ h_{46}+12 \\ h_{4+}+18 & \\ \\ \end{array}$			$\begin{gathered} \prime \prime \\ h_{44} \cdot 3+ \\ h_{46} 642 \\ h_{44} \cdot 52 \\ h_{44} \cdot 46 \end{gathered}$	$\begin{gathered} \prime \prime \\ h_{46} \cdot 82 \\ h_{44} \cdot 08 \\ h_{45} \cdot 94 \\ h_{44} \cdot 54 \end{gathered}$		$\begin{gathered} 1 " \\ c_{44} \cdot 06 \\ l^{4+5 \cdot 18} \\ l_{44} \cdot{ }_{40} \end{gathered}$			$\begin{aligned} & M=44^{\prime \prime} \cdot 97 \\ & w=35 \cdot 94 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=49^{\circ} \mathbf{1}^{\prime} 44^{\prime \prime} \cdot 98 \end{aligned}$
	$45 \cdot 37$	44^{-88}	45^{11}	44^{68}	$44 \cdot 94$	$45 \cdot 34$	$45 \cdot 35$	$4+55$	$44 \cdot 53$	44.97	
XXII \& XX	$\begin{aligned} & l_{17 \%} 3760 \\ & h_{3} 6 \cdot 92 \\ & h_{37} \cdot 22 \end{aligned}$	$\begin{aligned} & h_{37}+70 \\ & h_{36} \cdot 00 \\ & h_{36} 68 \end{aligned}$	$\begin{aligned} & l_{3} 37 \cdot 60.60 \\ & l_{35} 96.90 \end{aligned}$	$\begin{aligned} & h_{35} \cdot 82 \\ & h_{3}{ }_{23} 7+2 \\ & h_{3} 6 \cdot 04 \end{aligned}$	$\begin{aligned} & l_{36} 6 \cdot 22 \\ & h_{36} 6 \cdot 48 \\ & h_{37} \cdot 26 \end{aligned}$	$\begin{aligned} & h_{36} \cdot 32 \\ & h_{35} 5 \cdot 54 \\ & h_{36} \cdot{ }_{36} \end{aligned}$			$\begin{aligned} & h_{36} \cdot 78 \\ & h_{3} \cdot 7 \cdot 04 \\ & l_{38} 8.60 \end{aligned}$		$\begin{aligned} & M=36^{\prime \prime \prime} \cdot 77 \\ & w=45 \cdot 5^{0} \\ & \frac{1}{w}=0 \cdot 02 \\ & C=57^{\circ} 22^{\prime} 36^{\prime \prime} \cdot 77 \end{aligned}$
	$37 \cdot 25$	${ }^{36 \cdot 76}$	$36 \cdot 85$	36.43	$36 \cdot 65$	36.41	$36 \cdot 39$	36.71	$37 \cdot 47$	$36 \cdot 75$	
XX \& XVII		$\begin{array}{ll} h_{37} \cdot 44 \\ h_{3} 37 \\ h_{3} \cdot \sigma_{4} & l \\ l 36 \cdot{ }^{8} & h \end{array}$	$\begin{aligned} & l .35 .84 \\ & l_{3}^{36.74} \\ & h_{36} .746 \end{aligned}$	$\begin{aligned} & h_{3} 36 \cdot 56 \\ & h_{3} 37.56 \\ & h_{37} 76 \end{aligned}$	$\begin{aligned} & h_{36} 368 \\ & h_{36}^{66} \cdot 34 \\ & l_{35} 96 \end{aligned}$	$\begin{aligned} & h_{37} \cdot 68 \\ & h_{3} \cdot 68 \\ & h_{3} 8 \cdot{ }_{12} \end{aligned}$	$\begin{aligned} & h_{3} 37.90 \\ & l_{37} 88 \\ & l_{36}^{6} 96 \end{aligned}$		$\begin{aligned} & 738 \cdot 18 \\ & \begin{array}{l} 38 \\ y_{3} 74 \\ 36 \cdot 24 \end{array} \end{aligned}$		$\begin{aligned} & M=37^{\prime \prime} \cdot 03 \\ & w=29 \cdot 40 \\ & \frac{1}{w}=0 \cdot 03 \\ & \boldsymbol{C}=61^{\circ} 22^{\prime} 37^{\prime \prime} \cdot 03 \end{aligned}$
	37×59	$37 \cdot 19$	36.35	$37 \cdot 23$	$36 \cdot 33$	37.55	37.58	$36 \cdot 6 r$	$37 \cdot 27$	36.61	
At XVIII (Pelu)-(Continued).											
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	
$\underset{\text { Angle }}{\text { Anten }}$	Circle readings, telescope being set on $\mathbf{X X}$									$M=$ Mean of Groups ${ }^{v} \boldsymbol{C}=$ Relative Weight	
XVII \& XVI	$\begin{array}{cc} \prime \prime & \prime \prime \\ l_{31} \cdot 78 & h_{31} \cdot 12 \\ h_{31} \cdot 86 & h_{31} \cdot 08 \\ h_{31} \cdot 00 & l .31 \cdot 86 \end{array}$	$\begin{gathered} " \\ l .30 \cdot 80 \\ l 31 \cdot 92 \\ l 32.02 \end{gathered}$	$\begin{gathered} " \\ l_{30}{ }_{30} \cdot 8_{4} \\ h_{31} \cdot 40 \\ h_{31} \cdot 40 \end{gathered}$	$\begin{gathered} " \\ h_{32} \cdot 20 \\ h_{31} \cdot 3+ \\ l_{31} \cdot 76 \end{gathered}$	$\begin{gathered} \prime \prime \\ h_{3} r \cdot 24 \\ h_{3} r \cdot 50 \\ h_{3} r \cdot 08 \end{gathered}$		$\begin{gathered} 1 \prime \\ l 30 \cdot 18 \\ l 31.18 \\ l 31.18 \\ l 32.22 \\ l 3010 \end{gathered}$		$\begin{gathered} 11 \\ 230.08 \\ 331.36 \\ 230.90 \end{gathered}$	$\begin{aligned} & M=31^{\prime \prime} \cdot 42 \\ & w=4.5 \cdot 95 \\ & \frac{1}{w}=0 \cdot 02 \\ & C=66^{\circ} 30^{\prime} 31^{\prime \prime} \cdot 41 \end{aligned}$	
	$31.55 \quad 31.35$	31.58	31.21	$31 \cdot 77$	$31 \cdot 27$	31'79	$30^{\circ} 92$	$31^{\circ} 93$	$30 \cdot 78$		
XVI \& XIX		l l	$l+4 \cdot 70$ $h_{45}+16$ $h+4$	$h_{45}+18$ $h+4$ $h+4{ }^{+1}$ $h+i+$	$h+5.68$ $h+5$ $h+3$ $h+82$				$\begin{aligned} & l^{2} 4 \cdot 82 \\ & l^{44} \cdot 82 \\ & l_{4}^{4} \cdot 20 \\ & 45 \cdot 10 \end{aligned}$	$\begin{aligned} & M=44^{\prime \prime} \cdot 94 \\ & w=3^{1} \cdot 62 \\ & \frac{1}{w}=0 \cdot \circ 3 \\ & C=62^{\circ} 50^{\prime} 44^{\prime \prime} \cdot 95 \end{aligned}$	
	$44^{\prime} 79 \quad 45{ }^{\prime}{ }^{8}$	$44^{\prime} 90$	$4+87$	$4+78$	45*03	$4+68$	45.92	44.25	44^{71}		
XIX \& XXI					$\begin{array}{ll}h_{4+}+16 & l\end{array}{ }^{44}+{ }^{+0}$			$\begin{aligned} & h_{43 \cdot} \cdot 72 \\ & y^{4+} \cdot 68 \\ & 4_{4} \cdot 56 \end{aligned}$		$\begin{aligned} & M=44^{\prime \prime} \cdot 46 \\ & w=10 \cdot 42 \\ & \frac{1}{w}=0 \cdot \cdot 10 \\ & C=62^{\circ} 55^{\prime} 44^{\prime \prime} \cdot 46 \end{aligned}$	
	$43 \cdot 27 \quad 43 \cdot 98$	44•86	$43 \cdot 21$	$44 \cdot 55$	$43^{\prime} 99$	$44^{\prime} 74$	45*54	$44 \cdot 32$	$46 \cdot 17$		
January 1874; observed by Lieut. J. Hill, R.E., with Barrow's 24-inch Theodolite No. 2.											
$\begin{gathered} \text { Angle } \\ \text { betwoen } \end{gathered}$	$0^{\circ} 0^{\prime} \quad 1800^{\circ} 0^{\prime}$	Circle readings, telescope being set on XXI						$316^{\circ} 48^{\prime}$	136 ${ }^{\circ} 9^{\prime}$	$\begin{aligned} M & =\text { Mean of Groups } \\ w & =\text { Relative Weight } \\ C & =\text { Concluded Angle } \end{aligned}$	
XXI \& XVIII	$\begin{array}{ll} h_{4+}+10 & h_{45} \cdot 44 \\ h_{4+} \cdot 26 & h_{45} \cdot{ }^{10} \\ h_{45} \cdot 74 & h_{45}+4+ \end{array}$		$\begin{gathered} 1 " \\ l+24 \\ l+{ }^{4+2+0} \\ l+\cdots \cdot 00 \end{gathered}$		$\begin{gathered} 11 \\ l^{4+40}+ \\ l^{+3 \cdot} 98 \\ l_{44} \cdot 9 \end{gathered}$	$\begin{gathered} 1 " \\ l+3 \cdot 28 \\ l+4+40 \\ l+4 \cdot 42 \end{gathered}$		$\begin{aligned} & h_{4+} \cdot 78 \\ & h_{3+3} \cdot 9+9+ \\ & h_{4+} \cdot 34 \end{aligned}$	$\begin{aligned} & h+3 \cdot 36 \\ & h_{4+}+98 \\ & h_{4+} \cdot 12 \end{aligned}$	$\begin{aligned} & M=44^{\prime \prime} \cdot 5 \mathbf{1} \\ & w=37 \cdot 00 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=63^{\circ} \quad 2^{\prime} 44^{\prime \prime} \cdot 5^{1} \end{aligned}$	
	$44 \cdot 70 \quad 45 \cdot 33$	$44 \cdot 60$	+ ${ }^{+} 40$	44^{+4}	44^{17}	$44^{\circ} 03$	$44^{\prime 9} 9$	$44^{3} 35$	44×15		
XVIII \& XVI	$\begin{array}{ll} h_{14} \cdot 22 & h_{12} \cdot \sigma_{2} \\ h_{14}+48 & h_{12} \cdot 98 \\ h_{13} \cdot 80 & h_{12} \cdot 98 \end{array}$		$\begin{aligned} & l \\ & l \end{aligned}$	$\begin{aligned} & l 13 .+4 \\ & l_{12}^{21 .} 8+8+ \\ & l_{13} .96 \end{aligned}$		$\begin{aligned} & l \\ & l \\ & l \end{aligned} 1.06$	$\begin{aligned} & l \mathrm{I2} \cdot 54 \\ & l_{12} .9+9+ \\ & l_{13} .36 \end{aligned}$	$\begin{aligned} & h+\cdots 18 \\ & h_{1+}+\cdots+4 \\ & h_{1+} \cdot 50 \end{aligned}$	$\begin{aligned} & h_{13} \cdot 34 \\ & h_{13} \cdot 7+7+ \\ & h_{3} \cdot 18 \end{aligned}$	$\begin{aligned} & M=13^{\prime \prime} \cdot 7^{8} \\ & w=21 \cdot 3^{\circ} \\ & \frac{1}{w}=0 \cdot 05 \cdot \\ & C=61^{\circ} 13^{\prime} 13^{\prime \prime \prime} \cdot 7^{8} \end{aligned}$	
	$14 \cdot 17 \quad 12 \cdot 83$	14•88	$13 \cdot 79$	13.41	+ ${ }^{\circ} 90$	13.66	12.95	$14 \cdot 37$	13.42		

At XX (Sorau)

February 1874; observed by Lieut.J. Hill, R. E., with Barrow's 24-inch Theodolite No. 2.

Anglo between	$234{ }^{\circ} 42^{\prime}$	Circle readings, telescope being set on XVII									$M=$ Mean of Groups ${ }^{*}=$ Relntive Weight C = Concluded Angle
		$54^{\circ} 41^{\prime}$	$318^{\circ} 54^{\prime}$	$133^{\circ} 53^{\prime}$	$33^{\circ} 3^{\prime}$	$213^{\circ} 3^{\prime}$	$112^{\circ} 16^{\prime}$	$292^{1} 16^{\prime}$	$191^{\circ} 30^{\circ}$	$11^{\bullet} 30^{\prime}$	
$\begin{gathered} \text { XVII \& } \\ \text { XVIII } \end{gathered}$	"	"	"	"							$\begin{aligned} & M=26^{\prime \prime} \cdot 48 \\ & w=14 \cdot 08 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=59^{\circ} 45^{\prime} 26^{\prime \prime} \cdot 48 \end{aligned}$
	h $25{ }^{\circ} \mathrm{O}$	${ }^{\text {h } 27.44}$	h25.62	l25.52	${ }^{2} 27.52$	127.64	l25.78	$l 26 \cdot 12$	$l 25.60$	h 27.82	
	h 26.38	${ }^{\text {h } 25.54}$	${ }^{\text {h } 26.72}$	$l 25.48$	${ }^{2} 27.20$	$l 24.94$	$l 25 \cdot 16$	$l 26 \cdot 08$	l26.84	${ }^{2} 28 \cdot 84$	
	$l 27.46$	h 25.52	h $26 \cdot 74$	125.98	h 26.06	$l 27.56$	$l_{27} 12$	$l 25.86$	$l 25.74$	$h 28.02$	
	h $27 \cdot 98$					$l 26.46$					
	$26 \cdot 72$	26•17	26•36	25.66	26•93	$26 \cdot 65$	26.02	$26 \cdot 02$	26•06	$28 \cdot 23$	
$\underset{\text { XXII }}{\text { XVIII }}$	${ }^{6} 7.20$	h 6.20	${ }_{\text {h }} 8 \cdot 82$	${ }^{l} 9 \times 12$	$l 8.76$	$l 6.70$	${ }^{1} 7 \times 98$	$l 8.40$	17×76	${ }^{\text {h }} 8.14$	$\begin{array}{\|l\|} \hline M=7^{\prime \prime} \cdot 65 \\ w=15 \cdot 20 \\ \frac{1}{w}=0 \cdot 07 \\ C=65^{\circ} 34^{\prime} 7^{\prime \prime} \cdot 65 \end{array}$
	h 7.42	h $5 \cdot 86$	h $8 \cdot 82$	$l 8.36$	h 7×0	$l 712$	$l 7.58$	¢ 7×74	$l 7.28$	$h 6.88$	
	$l 8.58$	h $6 \cdot 92$	$h 9.22$	$l 8 \cdot 28$	$h^{7} 736$	$l 7 \cdot 68$	$l 7 \cdot 06$	$l 8 \cdot 30$	l l $6 \cdot 8$	h $7 \cdot 10$	
	7`73	$6 \cdot 33$	$8 \cdot 95$	$8 \cdot 59$	7.71	717	7.21	$8 \cdot 15$	$7 \cdot 29$	$7 \cdot 37$	

At XXI (Jalora)

February 1874; observed by Lieut. J. Hill, R. E., with Barrow's 24-inch Theodolite No. 2.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{$$
\begin{gathered}
\text { Angle } \\
\text { between }
\end{gathered}
$$} \& \multicolumn{10}{|c|}{Circle readinge, telescopo being set ou XXI} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& M=\text { Mean of Groups } \\
& w=\text { Cenito Weit } \\
& C=\text { Conclududed } A \text { nagle }
\end{aligned}
$$}

\hline \& 1829 ${ }^{\circ} 14^{\prime}$ \& 312 ${ }^{\circ} 14^{\prime}$ \& $211^{\circ} 27^{\prime}$ \& ${ }^{31}{ }^{26} 6^{\prime}$ \& $290{ }^{\circ 3} 9^{\prime}$ \& $110^{\circ} 40^{\circ}$ \& $9^{\circ} 50^{\circ}$ \& $189^{\circ} 0^{\prime}$ \& $89^{\circ} \mathrm{O}$ \& $269^{\circ} 0^{\circ}$ \&

\hline \multirow{4}{*}{$\underset{\text { XXIV }}{\text { XXIII }}$} \& \& \& \& \& \& \& \& \& \& \& \multirow[t]{4}{*}{$$
\begin{aligned}
& \dot{M}=47^{\prime \prime} \cdot 97 \\
& \boldsymbol{w}=22 \cdot 20 \\
& \frac{1}{w}=0 \cdot 05 \\
& \boldsymbol{w}=49^{\circ} 15^{\prime} 47^{\prime \prime} \cdot 97
\end{aligned}
$$}

\hline \& ${ }^{6} 47.38$ \& ${ }^{6} 47.34$ \& ${ }^{4} 48.48$ \& ${ }^{\frac{1}{49}}{ }^{\circ} \times$ \& $l 48.52$ \& ${ }_{4} 48.78$ \& ${ }_{4} 47.74$ \& ${ }^{4} 48.26$ \& ${ }^{6} 46 \cdot 20$ \& ${ }^{\text {h }} 46 \cdot 18$ \&

\hline \& \& ${ }_{l}{ }_{47} 47 \cdot 82$ \& ${ }^{h_{47} 88 \cdot 62}$ \& h 48.10
$l 48.88$ \& ${ }^{4} 47 \times 16$ \& \& \& ${ }^{l}{ }_{48}^{48}{ }_{4}^{48}$ \& ${ }^{h} 474.94$ \& $h_{47}{ }^{\prime} \cdot 86$
$h_{47} \cdot 88$ \&

\hline \& $47 \cdot 8 \mathrm{I}$ \& 47:51 \& $48 \cdot 26$ \& 48.66 \& 48.02 \& $48 \cdot 59$ \& $48 \cdot 19$ \& $48 \cdot 57$ \& $46 \cdot 91$ \& 47° \&

\hline \multirow{4}{*}{$\underset{\text { XXII }}{\text { XXIV }}$} \& ${ }_{4} \mathrm{IO}^{2} 2$ \& ${ }^{h} 9.30$ \& h 9.06 \& $h_{10} 1064$ \& $l 8.68$ \& h 8.36 \& ${ }_{111} \cdot \infty$ \& ${ }^{9} 62$ \& $h_{10}{ }^{\circ} 8$ \& ${ }_{1} 10$ \& \multirow[t]{4}{*}{$$
\begin{aligned}
& M=9^{\prime \prime} \cdot 77 \\
& w=28 \cdot 75 \\
& \frac{1}{w}=0 \cdot 03 \\
& C=49^{\circ} 40^{\prime} 9^{\prime \prime} \cdot 77
\end{aligned}
$$}

\hline \& h $10 \cdot 16$
h
9 \& ${ }_{l}^{l} 9.808$ \& \& \& \& ha

C
9 \& ${ }_{\text {h }}^{\text {h }} 8.9 .96$ \& \& \& \&

\hline \& \& \& ${ }_{h} 9.9$ \& \& \& \& $l_{10} 06$ \& \& ${ }_{\text {d }}{ }_{9}^{9} 6.61$ \& \&

\hline \& 10\%07 \& $10 \cdot 12$ \& $9 \cdot 61$ \& $10 \cdot 55$ \& 9.05 \& 9.2 \& $9 \cdot 77$ \& $9 \cdot 23$ \& $9 \cdot 89$ \& $10 \cdot 20$ \&

\hline \multirow{4}{*}{$$
\frac{\text { xXII\& }}{\text { XVIII }}
$$} \& ${ }_{4} 45^{\circ} 48$ \& ${ }^{1} 45{ }^{7}{ }^{2}$ \& ${ }^{h} 47^{\circ} \times$ \& $h_{46} \cdot 84$ \& $l{ }^{46} 24$ \& ${ }^{6} 45 \cdot 78$ \& $h_{45} .28$ \& ${ }_{4} 5_{5}{ }^{\circ} 90$ \& $l{ }^{1} 6.58$ \& ${ }_{4} 46 \cdot 60$ \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& M=45^{\prime \prime} \cdot 85 \\
& w=57 \cdot 00 \\
& \frac{1}{w}=0 \cdot 02 \\
& C=74^{\circ} 44^{\prime} 45^{\prime \prime} \cdot 85
\end{aligned}
$$
\]}

\hline \& \& \& $h_{45} \cdot 22$
$h_{45} \cdot 44$ \& $h 46 \cdot 12$
l
$45 \cdot 50$ \& ${ }^{l} \begin{aligned} & 46 \cdot 18 \\ & l \\ & 45 \cdot 78\end{aligned}$ \& ${ }^{h_{44}+1{ }^{\text {a }} \text {, }}$ \& \& ${ }^{l}{ }^{1} 45^{5} \cdot 42$ \& $h 45 \cdot 38$
$h 46.54$ \& \&

\hline \& ${ }^{45} 48$ \& | d 44.68 |
| :--- | \& $h^{45} 44$ \& ${ }^{45} 50$ \& ${ }^{45} 78$ \& $h_{45} 66$ \& $h_{46} 72$ \& l_{45} '10 \& \[

$$
\begin{aligned}
& h 46 \cdot 54 \\
& d 45.79
\end{aligned}
$$
\] \& $h_{45}{ }^{\text {'18 }}$ \&

\hline \& $45 \cdot 83$ \& $45 \cdot 85$ \& $45 \cdot 89$ \& $46 \cdot 15$ \& 46.07 \& $45^{\prime 2}$ \& 46.05 \& 45.47 \& 46.07 \& 45° \&

\hline \multirow{4}{*}{$$
\underset{\text { XIX }}{\text { XIII }}
$$} \& ${ }_{4} 3_{12} 66$ \& ${ }^{4} 32 \cdot 10$ \& ${ }^{1} 32.54$ \& ${ }_{\text {h } 29.80}$ \& $l 30 \cdot 82$ \& $h_{30} 98$ \& ${ }_{2} 31 \cdot 36$ \& ${ }_{2} 32.08$ \& \& \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& M=31^{\prime \prime} \cdot 92 \\
& w=17 \cdot 30 \\
& \frac{1}{w}=0 \cdot 06 \\
& C=54^{\circ} 5^{\prime} 31^{\prime \prime \prime} \cdot 92
\end{aligned}
$$
\]}

\hline \& \& \& \& $h 30 \cdot 24$
$h 30 \cdot 18$ \& ${ }_{l}{ }_{3}^{2} 32 \cdot 5$ \& h 31×70
$h_{32} \cdot 08$ \& \& ${ }_{l}^{l}{ }_{l}^{\text {l }} 32 \cdot 86$ \& $h 32.48$
$h 33.06$ \& \&

\hline \& \& ${ }_{\text {d }}^{31}$ - 84 \& \& \[
l_{31} \cdot 72

\] \& \& \& \& ¢33 30 \& \[

$$
\begin{aligned}
& h 33.00 \\
& h_{31} \times 42
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n_{31} 3 \cdot 44 \\
& h 1 \cdot 28
\end{aligned}
$$
\] \&

\hline \& 31.52 \& 32 -1 \& $32 \cdot 91$ \& $30 \cdot 48$ \& $31 \cdot 81$ \& 31.52 \& $3{ }^{1} 88$ \& $32^{2} 75$ \& $32 \cdot 27$ \& 32.05 \&

\hline
\end{tabular}

At XXII (Loháwat)

February 1874; observed by Lieut. J. Hill, R.E., with Barrow's 24-inch Theodolite No. 2.

$\underset{\text { between }}{\text { Angle }}$	Circle readings, telescope being set on $\mathbf{X X}$										$M=$ Mean of Groups $w_{0}=$ Relative Weight $C=$ Concluded Angle							
	$0^{\circ} 1^{\prime}$	$180^{\circ} 1^{\prime \prime}$	$79^{\circ} 13^{\prime}$	$2599^{\circ} 13^{\prime}$	$158^{\circ} 27^{\circ}$	$338^{\circ} 7^{\prime}$	$237^{\circ} 36^{\prime}$	$57^{\circ} 36^{\prime}$	$316^{\circ} 45^{\prime}$	$1366^{\circ} 45^{\circ}$								
XX \& XVIII	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=16^{\prime \prime} \cdot 64 \\ & w=3^{2} \cdot 18 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=57^{\circ} 3^{\prime} 16^{\prime \prime} \cdot 64 \end{aligned}$							
	$h_{17}{ }^{\text {O }}$ +	h15.86	$l 17.52$	216.46	h17.04	$l 16 \cdot 18$	l 17.68	hr_{15}-04	h17.26	l1714								
	$h_{151}{ }^{1}+$	${ }^{2} 17.34$	$l 15.78$	$h_{17} 7.94$	$h_{1} 16.30$	$l 16 \cdot 58$	$l 17 \times 66$	$h_{16} 16.24$	$l 15.62$	$l 16.76$								
	$\begin{aligned} & h_{17} \cdot 92 \\ & h 16.36 \end{aligned}$	$l 16 \cdot 26$	$l 16.90$	$h_{16} 5^{2}$	$\begin{array}{ll} h_{15} \cdot \sigma_{4} \\ h 1_{7} \cdot \sigma_{2} \end{array}$	$116 \cdot 34$	$l 16 \cdot 04$	h 16.26	$l 16.28$	117.6								
	$16 \cdot 62$	$16 \cdot 49$	$16 \cdot 73$	16.97	$16 \cdot 65$	$16 \cdot 37$	17×13	15.85	$16 \cdot 39$	17-18								
XVIII \& XXI	h 29.60	$l 29.44$	$1.32 \cdot 10$	$130 \cdot 48$	h28.76	$130 \cdot 6$	128.52	h 29.36	$l 30 \cdot 30$	$l 29.78$	$\begin{aligned} & M=30^{\prime \prime} \cdot 01 \\ & w=15 \cdot 60 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=5^{\circ} 13^{\prime} 30^{\prime \prime} \cdot 01 \end{aligned}$							
	h30.3+	$i 30 \cdot 64$	$l 31^{\circ} 42$	h 30.06	h29.78	$l 30 \cdot 32$	$l 28 \cdot 82$	${ }^{2} 29 \cdot 54$	$l 30 \cdot 88$	$l 28 \cdot 88$								
	${ }^{6} 29.74$	$l 29.46$	$l 30 \cdot 78$	$h_{30}{ }_{4} 6$	$h_{30}{ }^{\text {a }}$ 4	$l 3060$	l28.94	h $30 \cdot 5$	$l 30 \cdot 86$	$l 28.96$								
	$29 \cdot 89$	$29 \cdot 85$	31'43	30'33	$29 \cdot 63$	$30 \cdot 52$	28.76	$29 \cdot 83$	30•68	$29^{\circ} 2 \mathrm{I}$								
XXI \& XXIII	h $50 \cdot 00$	$l 49$ 30	$l 47 \times 7$	$l 49.86$	$h_{48}{ }^{5}$	$l 50 \cdot 00$	$l 50 \cdot 46$. $\mathrm{h}_{49} \cdot 32$	$h_{49}{ }^{1} 4$	${ }^{2} 47 \times 84$	$\begin{aligned} & M=49^{\prime \prime} \cdot 28 \\ & w=13 \cdot 25 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=37^{\circ} 25^{\prime} 49^{\prime \prime} \cdot 28 \end{aligned}$							
	${ }_{1} 50 \cdot 46$	$l+8 \cdot 78$	$l{ }_{48} 68$	$h+8 \cdot 56$	${ }^{h} 47 \cdot 36$	$l_{50 \cdot 64}$	$l 49 \cdot 66$	${ }_{4}+8 \cdot 82$	$l 49.4$	$l+9 \cdot 10$								
	${ }^{\text {h }} 49$ - 34	$6+9$ •34	$l+486$	$h+8 \cdot 00$	$\begin{aligned} & h_{49} \cdot 42 \\ & h_{47} \cdot{ }_{72} \end{aligned}$	$l 5^{\circ}{ }^{52}$	$l{ }_{51}{ }^{\text {¢ }}$ 8	h $50 \cdot 30$	$l 49.40$	$l 48 \cdot 44$								
	49*93	49'14	48.46	48:85	$4^{8 \cdot 25}$	50'39	50'53	$49^{\circ} 4^{8}$	49`33 & 48*46 & \\ \hline \multirow[t]{4}{*}{\[\begin{gathered} \text { XXIII \& } \\ \text { XXIV } \end{gathered} \]} & \({ }_{\text {L }} 3.5 .82\) & \({ }^{l} 36.04\) & \(l 35 \cdot 98\) & l 34-80 & h 3.5 . 78 & l 35.56 & l \(35 \cdot 72\) & \({ }^{7} 35.54\) & h 37.08 & \({ }^{2} 37 \times\) & \multirow[t]{4}{*}{\[\begin{aligned} & M=35^{\prime \prime} \cdot 94 \\ & w=17 \cdot 20 \\ & \frac{\mathbf{1}}{w}=0 \cdot 06 \\ & C=33^{\circ} 40^{\prime} 35^{\prime \prime} \cdot 94 \end{aligned} \]} \\ \hline & \({ }_{\text {h }} 36 \cdot 8\) & \(l 35.56\) & \(l 3]^{\circ}{ }^{2}\) & \(h 3+\cdot 32\) & \(h 35.62\) & \(l 34 \cdot 86\) & \(l 34.88\) & \(h_{36 \cdot 24}\) & \(h_{36} 366\) & \(l 38 \cdot 28\) & \\ \hline & \(\mathrm{h}_{3+}{ }^{\text {8 }}\) + & \(l 36 \cdot 18\) & \(l 35{ }^{\circ}\) & \(h_{35}{ }^{\text {92 }}\) & \(\mathrm{h}_{37}{ }^{\text {5 }}\) 0 & \(l 35 \cdot 38\) & '35*72 & \(h_{35}{ }^{2} 2\) & \(l_{36 \cdot 12}\) & \(l 36 \cdot 32\) & \\ \hline & \(35 * 58\) & 35`93	36•30		$36 \cdot 30$	$35^{\prime 27}$	$35^{\circ} 44$	$35 \cdot 67$	$36 \cdot 62$	37×23	

At XXIII (Ekka)

February 1874; observed by Lieut. J. Hill, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XXV										$\boldsymbol{M}=$ Mean of Groups $\stackrel{n}{c}=$ Relative Weight $C=$ Concluded Anglo
	$0^{\circ} 1^{\prime}$	$180^{\circ} 0^{\circ}$	$79^{\circ} 13^{\prime}$	$259{ }^{\circ} 13^{\prime}$	$158^{\circ} 9^{\prime}$	$3388^{\circ} 23^{\prime}$	$237^{\circ} 35^{\prime}$	$57^{\circ} 35^{\prime}$	$316^{\circ} 49^{\circ}$	$136^{\circ} 48^{\prime}$	
$\underset{\text { XXVI }}{\text { XXV }}$	"	"	"	"	"	"	\prime	"	"	"	$\begin{aligned} & M=5^{\prime \prime \prime} \cdot 86 \\ & w=25 \cdot 78 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=36^{\circ} \cdot 4^{\prime} 56^{\prime \prime} \cdot 86 \end{aligned}$
	h $56.7+$	$h_{58} \cdot 08$	$l 5.506$	${ }_{4} 56.82$	${ }_{4} 56 \cdot 36$	${ }_{\text {h }}^{57}$-60	$l{ }_{58}{ }^{10}$	$l 56 \cdot 26$	${ }_{\text {h }}^{58}$ \% 70	${ }^{6} 55 \cdot 84$	
	$h_{5} 6.98$	${ }_{4} 5788$	$l 56.52$	$h_{57} 568$	$h 57.34$	${ }_{4}{ }_{57}{ }^{\circ} \mathrm{O}$	$l 56.32$	$h 5.5{ }^{\circ} 48$	${ }^{5} 57{ }^{\circ} \mathrm{O}$	$h_{57}{ }^{\circ} 20$	
	${ }^{\text {h }} 57.08$	${ }^{6} 57{ }^{\circ} \mathrm{O}$		${ }_{\text {\% }}^{5} 6.96$	$h_{56}{ }_{38}$	$h_{56}{ }^{2}$	${ }^{1} 5^{\circ} 40$	$h_{56}{ }^{\text {c }} 94$	${ }_{\text {h }} 55.56$	$h_{55}{ }^{42}$	
	56•93	57•66	56•99	$57 \cdot 15$	56•69	57•05	56•94	$56 \cdot 23$	56•80	$56 \cdot 15$	

At XXIII (Ekka)-(Continued).											
$\underset{\substack{\text { Angle } \\ \text { between }}}{\substack{\text { n } \\ \text {. }}}$	Circle readings, telescope being set on XXV										$\begin{aligned} & M=\text { Menn of Grouns } \\ & w=\text { Relatire Weight } \\ & C=\text { Concluded } \Delta \text { ngle } \end{aligned}$
XXVIdxXIV		$\begin{gathered} " \\ h_{13} \cdot 3^{36} \\ h_{14} \cdot \infty \\ h_{14} \cdot 98 \end{gathered}$		$\begin{gathered} " \\ h_{14} \cdot 80 \\ h_{14} \cdot 87 \\ h_{14} \cdot 72 \end{gathered}$	$\begin{gathered} " \\ h_{14} \cdot 78 \\ h_{13} \cdot 76 \\ h_{14} \cdot{ }^{54} 9 \end{gathered}$	$\begin{gathered} " \\ h_{15} \cdot 56 \\ h_{16} 5.56 \\ h 16.56 \end{gathered}$			$\begin{gathered} " 1 \\ h_{13} \cdot 0 \\ h_{15} .0 \\ h_{14} \cdot 66 \end{gathered}$		$\begin{aligned} & M=15^{\prime \prime} \cdot 3^{1} \\ & w=9 \cdot 8_{3} \\ & \frac{1}{w}=0 \cdot 10 \\ & C=3^{8^{\circ}} 24^{\prime} 15^{\prime \prime} \cdot 3^{2} \end{aligned}$
	16.53	14.11	$15 \cdot 32$	14.82	14*19	16•19	15 ¢97	15'99	14.23	$15^{\prime} 72$	
XXIV \& XXII	$\begin{array}{ll}h & 2.34 \\ h & 4.92 \\ h & 3.92 \\ h & 3.94 \\ & 2.14\end{array}$	$\begin{array}{ll}h & 4 \cdot 78 \\ h & 7.94 \\ h & 4.64\end{array}$	$\begin{array}{ll} l & 4.94 \\ l & 4.94 \\ h & 5.04 \\ h & 3 \cdot 70 \\ h & 4 \cdot 40 \\ h & 3.22 \end{array}$	h h h h h .18		$\begin{array}{ll}h & 3.02 \\ h & 3.36 \\ h & 3 \\ h & 40\end{array}$	$\begin{array}{ll}l \\ l & 4.22 \\ l & 3.04 \\ l & 2.76\end{array}$	$\begin{array}{ll}l & 2.54 \\ l & 3.50 \\ h & 3 \\ h & 30 \\ & \end{array}$	h h 3.38 h 4		$\begin{aligned} & M=3^{\prime \prime \prime} \cdot 67 \\ & w=14 \cdot 06 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=35^{\circ} 22^{\prime} \quad 3^{\prime \prime} \cdot 67 \end{aligned}$
	$3 \cdot 34$	$4 \cdot 79$	4-26	$4 \cdot 83$	$3 \cdot 83$	2.59	$3 \cdot 34$	$2 \cdot 96$	3.75	$3 \cdot 02$	
XXII \& XXI			$\begin{aligned} & l_{12} \cdot 76 \\ & h_{12} \cdot 88 \\ & h_{14} \cdot 54 \\ & h_{14} \cdot 98 \end{aligned}$	$h_{13} \cdot 34$ $h_{14} .588$ $h_{14} 0.04$	$h_{14} \cdot 64$ $h_{13} \cdot 48$ $h_{13} \cdot 92$	$h_{14} \cdot 18$ $h_{15} .30$ $h_{14} .80$		l l 1.84	$h_{15} \cdot 64$ $h_{14} \cdot 94$ $h_{13} \cdot 94$ 98	$\begin{aligned} & h_{12}, 88 \\ & h_{13} .22 \\ & h_{14} \cdot 42 \end{aligned}$	$\begin{aligned} & M=14^{\prime \prime} \cdot 00 \\ & w=22 \cdot 64 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=43^{\circ} 3^{8^{\prime}} 14^{\prime \prime} \cdot \circ 0 \end{aligned}$
	14.20	13.40	14.04	13.99	14.01	14.76	13.15	14*10	14.85	13.51	

At XXIV (Omlo)

February 1874; observed by Lieut. J. Hill, R.E., with Barrow's 24-inch Theodolite No. 2.

Anglebetween	Circle readings, telescope being set on XXII										$M=$ Mean of Groups ${ }^{20}=$ Relative Weight $C=$ Concluded Angle
	$0^{\circ} 1^{\prime}$	$180^{\circ} 1^{\prime}$	$79^{\circ} 13^{\prime}$	$259{ }^{\circ} 13^{\prime}$	$168^{\circ} 6^{\prime}$	$338^{\circ} 26^{\prime}$	$2377^{\circ} 34^{\prime}$	$57^{\circ} 34^{\prime}$	$316^{\circ} 48^{\prime}$	$186^{\circ} 48^{\prime}$	
XXII \& XXI	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=25^{\prime \prime} \cdot 65 \\ & w=54 \cdot 3 \mathrm{I} \\ & \frac{1}{w}=0 \cdot 02 \\ & C=59^{\circ} 13^{\prime} 25^{\prime \prime} \cdot 64 \end{aligned}$
	h 25.02	${ }_{2} 26 \cdot 06$	h $26 \cdot 32$	l $26 \cdot 20$	h $26 \cdot 30$	h25.62	${ }^{2} 24^{\prime} 78$	h25.32	h 26.00	h 25.52	
	$h 25.68$ l 26.84	${ }_{7} 25^{\circ}{ }^{32}$	h $26 \cdot 62$	$l 24.94$	h 25.62	h26.48	$l 25^{\prime} 16$	h 25.96	h 24.30	$l 25.60$	
	$l 26 \cdot 84$	h 26.14	$\begin{array}{r} h 24.50 \\ h 25.64 \end{array}$	h25 70	h 26.40	$l 24.88$	$l 25.96$	h $24 \cdot 80$	$\begin{aligned} & h 24 \cdot 98 \\ & l 25 \cdot 64 \end{aligned}$	$l 26 \cdot 08$	
	$25 \cdot 85$	$25 \cdot 84$	25'77	$25^{\circ} 61$	26.11	$25 \cdot 66$	$25^{\circ} 30$	$25 * 36$	25*23	25*73	
XXI \& XXIII	${ }^{6} 54.90$	${ }^{6} 54.94$	$h_{54} \cdot 84$	$l 56 \cdot 22$	h $55 \cdot 34$	h $55 \cdot 58$	l 55.58	${ }^{4} 55.30$	${ }^{2} 56 \cdot 30$	$h 56 \cdot 00$	$\begin{aligned} & M=55^{\prime \prime} \cdot 24 \\ & w=25 \cdot 11 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=5^{\circ} 43^{\prime} 55^{\nu} \cdot 23 \end{aligned}$
	$h 55 \cdot 32$ $l 56 \cdot 22$				1555^{26} $h 55 \cdot 90$	$h 56 \cdot 54$ l 55	l l $l 54.68$ 54.78	$h 55 \cdot 50$ h 54.			
	$\begin{aligned} & l 56.22 \\ & d 54.66 \end{aligned}$	h54*76	$\begin{aligned} & h 54.48 \\ & d \\ & \hline 53.53 \end{aligned}$	$\begin{aligned} & h_{54} \cdot 98 \\ & h_{54} \cdot 16 \end{aligned}$	h 55 '90	$l 55 \cdot 86$	${ }^{54} 78$	${ }^{6} 54 \cdot 52$		$\mathrm{h}_{54}{ }^{\circ} \mathrm{O}$	
	$55 * 28$	$55^{\circ} 05$	54*09	$54 \cdot 85$	55*50	55*99	$55^{\circ} 35$	55*11	$55 * 86$	$55^{\circ} 27$	

At XXIV (Omlo)-(Continued).											
Angle between	$0^{\circ} 1^{\prime}$	$\begin{array}{rr} & \mathrm{Cir} \\ 180{ }^{\circ} 1^{\prime} & 79^{\circ} 13^{\prime}\end{array}$		rcle readings, telescope being set on XXII							$M=$ Mean of Groups w = Relatire Weight C = Concluded Angle
$\underset{\mathbf{X X V}}{\text { XXIII \& }}$	$\begin{gathered} \prime \prime \\ h_{55 \cdot 22} \\ h_{55} 5 \cdot 40 \\ l{ }_{54}{ }^{40} \\ d_{54} \cdot 36 \end{gathered}$	$\prime \prime$ $h_{54} \cdot 20$ $h_{54} \cdot 62$ $h_{54} \cdot 16$	$\begin{gathered} " \\ h_{54}^{\prime \prime} 96 \\ h 54 \cdot 82 \\ h 55 \cdot 44 \\ d_{54} \cdot 33 \end{gathered}$	$\prime \prime$ l l l l $52 \cdot 30$ l 53.96	$\prime \prime$ $h 53 \cdot 58$ $h 53 \cdot 12$ $h 52 \cdot 98$	$\prime \prime$ $h 52 \cdot 88$ $h 53 \cdot 14$ l 52	$\prime \prime$ l l l l 53.82 l 54 548		$\prime \prime$ $h 55 \cdot 58$ $h 54.20$ $h 55.64$	$\begin{gathered} \prime \prime \\ h 53 \cdot 08 \\ l \\ l \\ l \\ l \\ 52 \cdot 48 \end{gathered}$	$\begin{aligned} & M=53^{\prime \prime} \cdot 99 \\ & w=13 \cdot 06 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=64^{\circ} 22^{\prime} 53^{\prime \prime} \cdot 99 \end{aligned}$
	54.98	54*33	$54 * 89$	53.50	53^{23}	52•79	$53 * 97$	53*99	$55^{\prime 14}$	53'12	
$\underset{\mathbf{X X V I}}{\mathrm{XXV}}$	h 10 h 46 h 9 h 98 7 7 l 7	$h 8.86$ h	h 7.32 $h_{1} 0$ 18 h 9.60 h 9 58	$l 8.24$ l l l 9.04 8.12	$\begin{array}{ll}h & 9.20 \\ h & 9.78 \\ h & 9.68\end{array}$	$\begin{array}{cr}h & 9.40 \\ h & 1020 \\ l \\ l & 8.26\end{array}$	l l l l l l 9.96	h h		$\begin{gathered} h 8 \cdot 18 \\ l \\ l \\ l \\ l \\ 7 \cdot 46 \end{gathered}$	$\begin{aligned} & M=9^{\prime \prime} \cdot 09 \\ & w=17 \cdot 77 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=47^{\circ} 2^{\prime} 9^{\prime \prime \prime} \cdot 09 \end{aligned}$
	8.99	$8 \cdot 85$	9.17	8.47	9*55	9•29	$9 \cdot 56$	$9^{\cdot 20}$	9*95	7•83	
MLarch 1874; observed by Lieut. J. Hill, R.E., with Barrow's 24-inch Theodolite No. 2.											
$\begin{gathered} \text { Angle } \\ \text { between } \end{gathered}$	$234{ }^{1} 19$	$54^{\circ} 18^{\prime}$	$\begin{gathered} \text { Circl } \\ 313^{\circ} 32^{\prime} \end{gathered}$	reading $133^{\circ} 33^{\prime \prime}$	s, telescope $32^{\circ} 43^{\prime}$	ebeing se $212^{\circ} 43^{\prime}$	$\begin{gathered} \text { t on } X X 1 \\ 111^{\circ} 56^{\prime} \end{gathered}$	III $291^{\circ} 56^{\prime}$		$11^{\circ} 9^{\prime}$	$M=$ Mean of Groups $w=$ Relative Weight $C=$ Concluded Angle
$\underset{\text { XXVII }}{\text { XXVIII }}$		l 8.20 h $10 \cdot 38$ h 9.22 h 7.60	$\begin{aligned} & h 10 \cdot 66 \\ & h 8 \cdot 90 \\ & h_{10} 8 \cdot 22 \end{aligned}$	$\begin{aligned} & h 10 \cdot 06 \\ & h \\ & h \\ & h \\ & h_{1} \cdot 22 \end{aligned}$		$\begin{aligned} & h_{10} \cdot 28 \\ & h \\ & h \\ & h_{10} \cdot 42 \end{aligned}$	$\begin{array}{ll} h & 10 \cdot 04 \\ h & 8 \cdot 58 \\ l & 9 \cdot 42 \end{array}$		$\begin{aligned} & h_{12} \cdot 46 \\ & h_{11} \cdot 26 \\ & h_{10} \cdot 60 \end{aligned}$	$\begin{aligned} & h_{1 I \cdot 02} \\ & h_{I I} \cdot 36 \\ & h_{I I} \cdot 42 \end{aligned}$	$\begin{aligned} & M=10^{\prime \prime} \cdot 16 \\ & w=12 \cdot 37 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=59^{\circ} 47^{\prime} 10^{\prime \prime} \cdot 15 \end{aligned}$
	9'60	$8 \cdot 85$	9•93	10.17	10\%61	$10 \cdot 17$	$9 \cdot 35$	10*19	11*44	11'27	
$\underset{\text { XXVI }}{\text { XXVII }}$	$\begin{aligned} & k 50 \cdot 62 \\ & h_{51} \cdot 0 \\ & h_{51} \cdot 38 \end{aligned}$	$\begin{aligned} & h_{52} \cdot 68 \\ & h_{52} \cdot 20 \\ & h_{53} \cdot 20 \end{aligned}$	$h 53.22$ $h_{51} \cdot 94$ h_{51}-84	$\begin{aligned} & h_{51} \cdot 16 \\ & h_{52} \cdot 50 \\ & l \\ & l \end{aligned}$	$\begin{aligned} & h_{52} \cdot 08 \\ & h_{52} \cdot 02 \\ & h_{53} \cdot 26 \end{aligned}$	$\begin{aligned} & h 52 \cdot 26 \\ & h_{52} \cdot 78 \\ & h 52 \cdot 70 \end{aligned}$	140.98 h_{51}-06 l49'94	$\begin{aligned} & l 51 \cdot 56 \\ & h 52 \cdot 90 \\ & h 53.22 \end{aligned}$	$\begin{aligned} & h_{51} \cdot 78 \\ & h_{51} \cdot 80 \\ & h_{51} \cdot 48 \end{aligned}$	$h_{52} \cdot 5$ $h_{51} \cdot 34$ l_{52}.88	$\begin{aligned} & M=52^{\prime \prime} \cdot 01 \\ & w=17 \cdot 20 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=65^{\circ} 53^{\prime} 52^{\prime \prime} \cdot 01 \end{aligned}$
	51*0	$52 \cdot 69$	52.33	51•86	52.45	52.58	50*66	52.56	51.69	52.26	
$\begin{aligned} & \text { XXVI \& } \\ & \text { XXIV } \end{aligned}$	$\begin{aligned} & h 26 \cdot 0 \\ & h_{24} \cdot 8 \\ & h 25^{\circ} 70 \end{aligned}$	$\begin{aligned} & l 25 \cdot 68 \\ & k 24.44 \\ & k 24.94 \end{aligned}$	$h 24 \cdot 32$ $h_{25} 28$ $h 25 \cdot 98$	h 24 - ${ }^{16}$ h 23.94 h $25^{\circ} 24$	$\begin{aligned} & h 23 \cdot 36 \\ & h 25 \cdot 62 \\ & h 24 \cdot 52 \\ & h 25 \cdot 88 \\ & h 25 \cdot 8 \end{aligned}$	h $26 \cdot 34$ h 24^{-12} h $25^{\circ} 00$ h 25 12	$\begin{aligned} & h 24 \cdot 10 \\ & h 25 \cdot 20 \\ & l 25 \cdot 82 \end{aligned}$	$\begin{aligned} & l 24.92 \\ & h 23.80 \\ & h 25.08 \end{aligned}$	$\begin{aligned} & h_{25} 2 \cdot 36 \\ & h_{25} 5^{\prime} 80 \\ & h_{23} \cdot 62 \\ & l_{25} 5^{\circ} \cdot 96 \end{aligned}$	425 5 52 h $27^{\circ} 06$ h $25^{\circ} 28$	$\begin{aligned} & M=25^{\prime \prime} \cdot 1 \mathrm{I} \\ & w=27 \cdot 4 \mathrm{I} \\ & \frac{1}{w}=0 \cdot 04 \\ & C=54^{\circ} 21^{\prime} 25^{\prime \prime} \cdot 11 \end{aligned}$
	$25^{\circ} 5$	$25^{\circ} 02$	25•39	$24 * 45$	$24 \cdot 85$	$25^{1} 14$	$25^{\circ} 04$	24*60	25'19	25*95	

At XXV (Khirwa)-(Continued).

$\underset{\text { Angle }}{\text { between }}$	Circle readings, telescope being set on XXVIII										$M=\text { Mean of Groups }$$\begin{aligned} v o & =\text { Relative Weight } \\ C & =\text { Concluded A ngle } \end{aligned}$
	$2344^{\circ} 9^{\prime}$	$64^{\circ} 18^{\prime}$	313 ${ }^{\text {a }} 3{ }^{\prime}$	$133^{\circ} 3^{\prime}$	$320^{\circ} 43^{\prime}$	$219^{\circ} 43^{\prime}$	$111{ }^{\circ} 56^{\prime}$	$291{ }^{\circ} 56^{\prime}$	$191^{\circ} 9^{\prime}$	$11^{\circ} 9^{\prime}$	
$\underset{\text { XXIV \& }}{\substack{\text { XXII }}}$	"	"	"							*	$\begin{aligned} & M=54^{\prime \prime} \cdot 72 \\ & w=29 \cdot 34 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=40^{\circ} 25^{\prime} 54^{\prime \prime} \cdot 72 \end{aligned}$
			${ }_{h 55}{ }_{5}{ }_{5} 82$	${ }_{\text {h }} h_{54}{ }_{5} 3^{32}$		$h_{55} 00$ $h_{55} \cdot 62$	$h_{54}{ }_{5} / 86$	25×72 $h 54.80$			
	h $h_{54} 53.78$		h $h_{54}+80$		h 55.10 53 54 $\mathbf{5} 5.56$	has $h_{54} .80$				hat $h_{53} \cdot 92$	
					${ }^{55} \cdot 66$						
	53'99	54.20	$54 \cdot 89$	$54 \cdot 58$	54.74	55^{14}	54.45	$55^{\prime 3} 3$	55*29	$54 \cdot 57$	

At XXVI (Jambo)

February and March 1874; observed by Lieut. J. Hill, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XXIV										$M=$ Mean of Groups $\omega_{0}=$ Relative Weight $C=$ Concluded Angle
	$0^{\circ} 0^{\prime}$	$179^{\circ} 59^{\prime}$	$79^{\circ} 11^{\prime}$	$259^{\circ} 11^{\prime}$	$158^{\circ} 26^{\prime}$	$338^{\circ} 26^{\prime}$	$237^{\circ} 38^{\prime}$	$57^{\circ} 38^{\prime}$	$310^{\circ} 47^{\prime}$	$136^{\circ} 47$	
$\begin{aligned} & \text { XXIV \& } \\ & \text { XXIII } \end{aligned}$	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=42^{\prime \prime} \cdot 39 \\ & w=12 \cdot 70 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=30^{\circ} 10^{\prime} 42^{\prime \prime} \cdot 39 \end{aligned}$
	${ }_{6} \mathbf{4}^{4} \cdot 62$	$h_{42} \cdot 64$	$h^{40} 34$	$h_{42} \cdot 2$	$h_{40} 74$	${ }^{4} 43 \cdot 38$	$h_{43} \cdot 68$	$h_{43} 62$	$h_{42}{ }^{\prime \prime} 46$	$h_{41} \cdot 86$	
	${ }^{\text {h }} 43 \cdot 68$	$h_{40} 50$	h_{41} 1 30	$h_{42}{ }^{10}$	h_{41} - 86	${ }^{\text {h }} 43 \cdot 34$	$h_{44}{ }^{\circ} \mathrm{O}$	$h_{42}{ }^{\text {2 }} 14$	$h_{42}{ }^{\text {92 }}$	$h_{42} \cdot 88$	
	$h_{42} \mathbf{2} \mathbf{2 0}$	$h_{42} 70$	h_{41}-60	$h_{42}{ }^{\text {9 }}$ 8	$h_{41}{ }^{\text {5 }}$ 4	$h 43 \cdot 58$	$h_{43}{ }^{\circ} \mathrm{O}$	$h_{42}{ }^{1} 14$	$h_{42} 70$	$h 40 \cdot 94$	
	$42 \cdot 83$	41•95	41*08	42*43	41*38	$43^{*} 43$	43*58	$42 \cdot 63$	42•69	41*89	
$\underset{\text { XXIII \& }}{\text { X }}$	$l 43 \cdot 84$	${ }^{4} 45.22$	h 43.88	${ }^{\text {h }} 44 \times 06$	h $44 \cdot 26$	${ }^{44} 4{ }^{3}$	$h^{42} 28$	${ }_{4}{ }^{2} 2 \cdot 96$	h 43.90	${ }^{4} 43 \cdot 76$	$\begin{aligned} & M=44^{\prime \prime} \cdot 05 \\ & w=17 \cdot 20 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=48^{\circ} 25^{\prime} 44^{\prime \prime} \cdot 05 \end{aligned}$
	${ }^{\text {h }} 44 \cdot 16$	$h^{44} \cdot 14$	$h_{45}{ }^{2} 2$	$h_{43} \cdot 38$	$h_{44} \cdot 14$	$h_{45}{ }^{\circ} 70$	$h_{42}{ }^{4} 46$	${ }_{4} 43 \cdot 42$	$h_{43} \cdot 22$	$h_{43} \cdot 28$	
	${ }^{6} 43.66$	$h_{43}{ }^{12}$	$h_{45}{ }^{52}$	h44*60	$h_{44} 74$	$h^{45}{ }^{\prime} 72$	h 43.86	$h_{43}{ }^{72}$	$h_{44} \mathbf{2 8}$	$h_{44}{ }^{64}$	
	$43^{* 89}$	44^{16}	$44 * 87$	$44^{\circ} \mathrm{OI}$	44*38	$45^{\circ} 27$	$42 \cdot 87$	$43 * 37$	$43^{\circ} 80$	$43 \cdot 89$	
$\begin{aligned} & \text { XXV \& } \\ & \text { XXVII } \end{aligned}$	h 27.42	h $30 \cdot 36$	h29.52	h 28.34	$l 27 \cdot 56$	228.84	h 27.34	h 29.34	h 29.54	h27.14	$\begin{aligned} & M=28^{\prime \prime} \cdot 43 \\ & w=15 \cdot 28 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=61^{\circ} 40^{\prime} 28^{\prime \prime} \cdot 44 \end{aligned}$
	h 29.12 $h 27$	${ }_{1} 28.04$	$h 29.62$	${ }^{2} 29.24$	$l 28.08$	$l 29.12$ l	h 28.56	h 26.82	h29.16	$l 27.86$	
		${ }^{\text {h } 29.66}$	${ }_{\text {h } 27.48}$	h $27 \cdot 94$	$128 \cdot 22$	$l 27 \times 88$	h $26 \cdot 62$	${ }^{2} 30^{\circ} 04$	h 28.50	$l 27.58$	
	d 28.67							d 26.90 d			
	28.34	29-68	28*58	28.51	27`95	28.61	27*51	28.51	29*07	27*53	
 R. M.	\% 9.78	$h^{10} 70$	${ }^{6} 9.32$	h 9.66	$\boldsymbol{l} 970$	$l 9.20$	$1210 \cdot 46$	${ }^{\text {h }} 9.24$	h 9.84	$l 9.80$	$\begin{aligned} & M=9^{\prime \prime} \cdot 66 \\ & w=26 \cdot 93 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=3^{\circ} 19^{\prime} 9^{\prime \prime} \cdot 66 \end{aligned}$
		${ }_{6}{ }^{6} 9.22$	h $10 \cdot 28$	${ }^{h} 9.52$	$l{ }^{l} 9.20$	$l{ }^{l} 9.46$	h 9.88	$h_{10} 102$	$h 9.46$	l l $10 \cdot 14$	
	$\begin{array}{r} h 8.54 \\ d \\ d r 0.45 \\ d \quad 9.83 \end{array}$		h $10 \cdot 92$					c d 10.88			
	9×50	9.65	10•17	9*41	9'15	$9 * 47$	10•69	$10 \cdot 0$	9'15	9×45	

Notr.-R.M. denotes Referring Mark.

At XXVI (Jambo)-(Continued).																						
Angle between		Circle readings, telescope being set on XXI ${1709^{\circ} 59^{\prime}}^{\prime 2} \quad 79^{\circ} 11^{\prime} \quad 259^{\circ} 11^{\prime} \quad 158^{\circ} 26^{\prime} \quad 338^{\circ} 26^{\prime} \quad 237^{\circ} 38^{\prime}$						XIV 67 ${ }^{\mathbf{3}} \mathbf{8 8}{ }^{\boldsymbol{\prime}}$	$316^{\circ} 47^{\prime}$	$186^{\circ} 47^{\prime}$	$M=$ Mean of Groups ${ }^{*}=$ Relative Weight $C=$ Concluded Angle											
$\begin{aligned} & \text { R.M. \& } \\ & \mathbf{X X I X} \end{aligned}$	$\begin{gathered} " \prime \\ h 10 \cdot 04 \\ h 99 \cdot 74 \\ h 1 I \cdot 94 \end{gathered}$		$\begin{array}{lc} & \prime \prime \\ h & 10 \cdot 18 \\ h & 8 \cdot 68 \\ h & 8 \cdot 78 \end{array}$	$\prime \prime$ $h \begin{gathered}\prime \prime \\ 9.20 \\ h_{1} 0 \cdot 08 \\ h 10 \cdot 28\end{gathered}$			$\begin{gathered} \prime \prime \\ h \\ h \\ h_{10} \cdot 70 \\ h_{11} \cdot 56 \\ h_{10} \cdot 16 \end{gathered}$	$\begin{array}{lc} & \prime \prime \\ h & 9 \cdot 60 \\ h & 90 \cdot 14 \\ h & 8 \cdot 26 \end{array}$	$\begin{array}{ll} h & \prime \prime \\ h & 0 \cdot 64 \\ h & 8 \cdot 84 \\ h & 9 \cdot 82 \end{array}$	$\begin{array}{cc} & \prime \prime \\ h & 8 \cdot 7^{2} \\ h & 10 \cdot 44 \\ h & 9 \cdot 20 \end{array}$	$\begin{aligned} & M=9^{\prime \prime} \cdot 84 \\ & w=19 \cdot 28 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=49^{\circ} 17^{\prime} 9^{\prime \prime} \cdot 85 \end{aligned}$											
	10`57	10*45	$9^{\cdot 21}$	9.85	10.59	9.05 10.10		$9 \cdot 33$	9•77	$9 * 45$												
March 1874; observed by Lieut. J. Hill, R.E., with Barrow's 24-inch Theodolite No. 2.																						
Angle between	$0^{\circ} 0^{\prime}$		$\begin{array}{r} \mathrm{Cir} \\ 79^{\circ} 13^{\prime} \end{array}$	rele readings, telescope being set on XXIX					$816^{\circ} 47^{\prime}$	$136^{\circ} 47^{\prime}$	M = Mean of Groups ${ }^{*}=$ Kelative Weight $C=$ Concluded Angle											
$\underset{\text { XXVI }}{\text { XXIX }}$	$\prime \prime$ $h 54 \cdot 84$ $h_{54} \cdot 46$ $h 55 \cdot 22$	$\begin{gathered} " \\ l 55 \cdot 68 \\ h 54 \cdot 16 \\ h 53.58 \\ h 53.90 \end{gathered}$	$\begin{gathered} \prime \prime \\ l_{53 \cdot 84}^{h_{54} \cdot 70} \\ h_{55} \cdot 12 \\ h_{56} \cdot 70 \end{gathered}$	$\prime \prime$ $h 55 \cdot 40$ $h 55.66$ $h 55.20$		$\prime \prime$ l $54 \cdot 30$ $h 53.96$ $h 55$		$\prime \prime$ $h 55 \cdot 02$ $h 54 \cdot 76$ h n 53	$\prime \prime$ $h 53 \cdot 80$ $h 55 \cdot 08$ $h 5^{\circ} \cdot 10$	$\begin{gathered} \prime \prime \\ h 53 \cdot 90 \\ l 56 \cdot 14 \\ l 53 \cdot 96 \\ l 53 \cdot 86 \end{gathered}$	$\begin{aligned} & M=54^{\prime \prime} \cdot 63 \\ & w=25 \cdot 84 \\ & \frac{\mathbf{1}}{w}=0 \cdot 04 \\ & C=63^{\circ} 28^{\prime} 54^{\prime \prime} \cdot 63 \end{aligned}$											
	$54 \cdot 84$	54*33	$55^{\circ} 09$	$55 * 42$	$55^{\circ} \mathrm{O}$	54.65	$53 \cdot 75$	54*44	54*33	54*47												
$\underset{\mathbf{X X V}}{\mathrm{XXVI}}$	$\begin{aligned} & h_{41} \cdot 44 \\ & h_{41} \cdot{ }_{5} \end{aligned}$ $h_{40} \cdot 10$	$\begin{aligned} & h 39 \cdot 34 \\ & h_{39} 39 \cdot 72 \\ & h_{41} \cdot 16 \end{aligned}$	$\begin{aligned} & l 41 \cdot 30 \\ & h 39 \cdot 62 \\ & h 40 \cdot 16 \end{aligned}$	$\begin{aligned} & h 39 \cdot 42 \\ & h 40 \cdot 36 \end{aligned}$ $h 39 \cdot 18$	$h_{41} \cdot 36$ ${ }^{2} 39^{\circ}{ }^{48}$ $h 40^{\circ} 04$	$\begin{aligned} & l_{41} 4 \cdot 26 \\ & h_{40} \cdot 50 \\ & h_{41} \cdot 46 \end{aligned}$	$\begin{aligned} & h_{41} \cdot 84 \\ & h_{40} \cdot 46 \\ & h_{40} \cdot 02 \end{aligned}$	$h 40 \cdot 90$ h $40 \cdot 46$ $h_{41}{ }^{\prime}{ }^{2}$	$\begin{aligned} & h_{40 \cdot 18} \\ & h_{40 \cdot} .56 \\ & h_{40} \cdot 04 \end{aligned}$	h $40 \cdot 02$ $l 40^{\prime \prime} 16$ $l 40 \cdot 24$	$\begin{aligned} & M=40^{\prime \prime} \cdot 45^{\circ} \\ & w=29 \cdot 40 \\ & \frac{1}{w}=0 \cdot{ }^{\circ}{ }^{\circ} 3 \\ & C=52^{\circ} 25^{\prime} 40^{\prime \prime} \cdot 45 \end{aligned}$											
	41*04	40*07	40*36	$39 \cdot 65$	40'29	41*07	40'77	$40 \cdot 89$	40 26	40'14												
$\begin{gathered} \text { XXV \& } \\ \text { XXVIII } \end{gathered}$	$\begin{aligned} & h 26 \cdot 52 \\ & h_{26} \cdot 76 \\ & h_{27} \cdot 44 \end{aligned}$	$\begin{aligned} & h 26 \cdot 82 \\ & h 25 \cdot 98 \\ & h 28 \cdot 12 \\ & h 25 \cdot 18 \end{aligned}$	$\begin{aligned} & l 27 \cdot 96 \\ & h_{25}{ }^{25} 74 \\ & h_{24} \cdot 90 \\ & h_{24} \cdot 74 \\ & h_{26} \cdot{ }^{2} \cdot 58 \end{aligned}$	$\begin{aligned} & h_{27} 270 \\ & h_{25} \cdot 62 \\ & h_{26} 6.14 \end{aligned}$	h 26.44 h 28.08 h 27.78	$\begin{aligned} & l 27.46 \\ & h 27.52 \\ & h 26 \cdot 26 \end{aligned}$	$\begin{aligned} & h_{26} 26.58 \\ & h_{27} 27 \\ & h 28 \cdot 20 \end{aligned}$	$\begin{aligned} & h 26 \cdot 96 \\ & h_{28} 28 \cdot 10 \\ & h 27 \cdot 24 \end{aligned}$	$\begin{aligned} & h 28 \cdot 20 \\ & h_{26} 26 \cdot 96 \\ & h 26 \cdot 84 \end{aligned}$	$\begin{aligned} & h 27 \cdot 60 \\ & l 28 \cdot 22 \\ & l 27 \cdot 26 \\ & l 27 \cdot 26 \\ & l 27 \cdot 16 \end{aligned}$	$\begin{aligned} M & =27^{\prime \prime} \cdot 01 \\ w & =20 \cdot 82 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =66^{\circ} 37^{\prime} 26^{\prime \prime} \cdot 99 \end{aligned}$											
	26.91	$26 \cdot 53$	$25 * 98$	$26 \cdot 35$	27*43	27•08	27×48	27×43	27×33	27•56												
$\underset{\text { XXX }}{\text { XXVIII }}$	$\begin{aligned} & h_{41} \cdot 88 \\ & h_{40} \cdot 38 \\ & h_{41} \cdot{ }_{40} \end{aligned}$	$\begin{aligned} & h 40 \cdot 12 \\ & h 39 \cdot 42 \\ & h_{40 \cdot 82} \\ & h_{40} \cdot 06 \end{aligned}$	$\begin{aligned} & l 39 \cdot 84 \\ & h_{40} \cdot 8_{4} \\ & h_{42} \cdot 00 \\ & h_{41} \cdot 68 \end{aligned}$	$\begin{aligned} & h_{40 \cdot 84} \\ & h_{40 \cdot} 76 \\ & h_{39} \cdot 86 \end{aligned}$	h $40 \cdot 60$ h 39.82 $h_{40}{ }^{24}$	$\begin{aligned} & l 41 \cdot \infty \\ & h_{4 I} \cdot 44 \\ & h_{41} \cdot 18 \end{aligned}$	$\begin{aligned} & h_{41} \cdot 26 \\ & h_{40} \cdot 48 \\ & h_{41} \cdot 10 \end{aligned}$	h $39 \cdot 48$ h $39^{\circ} 60$ $h_{41} \cdot 54$ $h_{42}{ }^{22}$	$h_{41} \cdot 02$ $h_{41} \cdot 20$ $h_{40}{ }^{40}$	$\begin{array}{r} l 40 \cdot 00 \\ l \\ l \\ l \\ l 0 \cdot 49 \end{array}$	$\begin{aligned} & M=40^{\prime \prime} \cdot 69 \\ & w=31 \cdot 20 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=53^{\circ} 19^{\prime} 40^{\prime \prime} \cdot 69 \end{aligned}$											
	4122	$40^{\prime} 11$	41*09	40*49	40'22	41•21	40'95	40'71	$40 \cdot 87$	40•08												
At XXVII (Sirad)-(Continued).																						
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:											
Angle between	Circle readings, telescope being set on XXIX										$\boldsymbol{M}=$ Mean of Groups * - Relative Weight $\boldsymbol{C}=$ Cuncluded Angle											
	$0^{\circ} 0^{\prime}$	$180^{\circ} 0^{\prime}$	$79^{\circ} 13^{\prime}$	$259^{\circ} 13^{\prime}$	$158^{\circ} 26^{\prime}$	$338^{\circ}{ }^{25}$	$237^{\circ} 37^{\prime}$	$57^{\circ} 37^{\prime}$	$316^{\circ} 47^{\prime}$	$136^{\circ} 47^{\prime}$												
$\begin{gathered} \mathbf{X X X X} \& \\ \mathbf{X X X} \end{gathered}$	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=25^{\prime \prime} \cdot 66 \\ & w=31 \cdot 82 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=47^{\circ} 29^{\prime} 25^{\prime \prime} \cdot 66 \end{aligned}$											
	$h_{25}{ }^{\text {. } 66}$	h25.24	l25.58	h25.38	h25.16	$l 25.70$	h24*9+	${ }^{\text {h } 25 \%} 90$	h25.12	$126 \cdot 14$												
	$h_{2}+40$	h $26 \cdot+4$	${ }^{2} 25.90$	h 25.30	h 26.28	$h_{26} 64$	${ }^{\text {2 } 25} 36$	h 24.94	$h_{2} 5 \cdot 64$	$l 26.34$												
	hl2S.02	h25 20	$\begin{aligned} & h 25 \cdot 24 \\ & h 27 \cdot 56 \end{aligned}$	h26.46	h 25.70	h25 22	h25.60	$\begin{aligned} & h_{24} \cdot y_{4} \\ & h_{24} \cdot 82 \end{aligned}$	h $25 \cdot 86$	22715												
	$25 \cdot 36$	$25 \cdot 63$	$26 \cdot 07$	$25^{\prime 7}$	25.71	$25 \cdot 85$	25.27	$24 \cdot 8$	25*54	$26 \cdot 55$												
$\underset{\text { XXIX }}{\text { XXX }}$	h. 50 . 70 ${ }^{6}{ }^{50} 30$ h $50 \cdot 30$ h $51 \cdot 26$	$\begin{aligned} & h_{52} \cdot+8 \\ & h_{51} \cdot 00 \\ & h_{50} \cdot 98 \end{aligned}$	$\begin{aligned} & l 50 \cdot 48 \\ & h_{55} \cdot 96 \\ & h_{52} \cdot 66 \\ & h_{52} \cdot 74 \end{aligned}$	$\begin{aligned} & h_{51} \cdot 50 \\ & h_{52} \cdot 98 \\ & h_{51} \cdot 48 \end{aligned}$	$\begin{aligned} & h_{51} \cdot 50 \\ & h_{51} \cdot 76 \\ & h_{52} \cdot 26 \end{aligned}$	$\begin{aligned} & l 50 \cdot 26 \\ & l \\ & l_{51 \cdot 16} \\ & h 51 \cdot 50 \end{aligned}$	${ }^{h} 5.3 .24$ h $50 \cdot 86$ ${ }^{1} 50 \cdot 80$ ${ }^{h} 5.3^{\circ} 28$	$\begin{aligned} & h_{52} \cdot 32 \\ & h_{52} \cdot 20 \\ & h_{52} \cdot 26 \end{aligned}$	$\begin{aligned} & h_{51} \cdot 00 \\ & h_{51} \cdot O_{+} \\ & h_{f 1} \cdot 98 \end{aligned}$	$\begin{aligned} & l 51 \cdot 52 \\ & l 51 \cdot 84 \\ & l 50 \cdot 30 \\ & l \\ & l \end{aligned}$	$\begin{aligned} & M=51^{\prime \prime} \cdot 60 \\ & w=21 \cdot 68 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=76^{\circ} 38^{\prime} 51^{\prime \prime} \cdot 60 \end{aligned}$											
	$50 \cdot 64$	51*49	$5^{2} \cdot 21$	51*99	$51 \cdot 84$	50*97	$52 \cdot 05$	$52 \cdot 26$	5134	51.17												
At XXVIII (Harban)April 1874; observed by Lieut. J. Hill, R.E., with Barrow's 24-inch Theodolite No. 2.																						
Angle between	00^{2}	Circle readings, telescope being set on $\mathbf{X X X}$							$316^{\circ} 49^{\prime}$	$136^{\circ} 48^{\prime}$	$M=$ Mean of Groups ${ }^{10}=$ Kelative Weight $C=$ Concluded Angle											
		$180^{\circ} 1^{\prime}$	$79^{\circ} 13^{\prime}$	$259^{\circ} 13^{\prime}$	$158^{\circ} 27^{\prime}$	$338{ }^{\circ} 27^{\prime}$	$237^{\circ} 37^{\prime}$	$57^{\circ} 36^{\prime}$														
XXX \&	$\begin{aligned} & h_{42} \cdot 00 \\ & h_{40} \cdot 96 \\ & h_{42} \cdot 44 \end{aligned}$	$\begin{aligned} & h_{43} \cdot 28 \\ & h_{42} \cdot 7+ \\ & h_{41} \cdot 76 \end{aligned}$	"	$\begin{aligned} & h_{42} \cdot 86 \\ & h_{40} \cdot{ }^{\circ} \\ & h_{40} \\ & h_{42} \cdot 80 \end{aligned}$	$\begin{aligned} & h_{40 \cdot} \cdot 84 \\ & h_{43} \cdot 00 \\ & h_{42} \cdot 66 \\ & l+2 \cdot 14 \end{aligned}$		$\begin{array}{rl} l+43 \cdot 28 & h+43 \cdot 02 \\ l 39 \cdot 82 & h_{42} \cdot 12 \\ h+2 \cdot 86 & h+2 \cdot 42 \\ h+2 \cdot 80 & \\ h_{40} \cdot 20 & \end{array}$		$\begin{gathered} h+2 \cdot 66 \\ h+0 \cdot 60 \\ h l+2 \cdot 14 \\ l_{41} \cdot 38 \end{gathered}$	$\begin{aligned} & l+{ }^{42 \cdot 56} \\ & l+2 \cdot 06 \\ & l+1 \cdot 82 \end{aligned}$	$\begin{aligned} & M=42^{\prime \prime} \cdot 08 \\ & w=27 \cdot 59 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=73^{\circ} 37^{\prime} 42^{\prime \prime} \cdot 06 \end{aligned}$											
			$h_{42} \cdot 78$																			
			$h_{41}{ }^{\text {3 }} 32$																			
	41.80	42*59	41×82	$41 \cdot 67$	42•16	42 ${ }^{\circ} 8$	4179	42.52	$41^{\prime} 70$	$42 \cdot 15$												
$\underset{\text { XXV }}{\text { XXVII }}$		$\begin{aligned} & h 23 \cdot 32 \\ & h_{2} 3 \cdot 44 \end{aligned}$$h_{25} \cdot 08$	$\begin{aligned} & h_{24} 4^{\prime \cdot 00} \\ & h_{23} \cdot 4 \\ & h_{22} \cdot{ }_{22} \end{aligned}$	$\begin{aligned} & h_{22} \cdot 9+ \\ & h_{23} \cdot 78 \\ & h_{23} \cdot 26 \end{aligned}$	$\begin{aligned} & h_{22} \cdot 62 \\ & h_{21} \cdot 86 \\ & h_{22} \cdot 76 \\ & l_{24} \cdot 7_{4} \end{aligned}$	$\begin{aligned} & l 24 \cdot 06 \\ & l 24 \cdot 34 \\ & l 23 \cdot 98 \end{aligned}$	$l 24 \cdot 82$ $h_{22} \cdot 70$ h $24+38$ h $23^{\circ} 4^{8}$	$\begin{aligned} & h_{24}+12 \\ & h_{23} \cdot 96 \\ & h_{22} \cdot{ }^{2} \cdot{ }^{2} \end{aligned}$	$\begin{aligned} & h_{2} 24 \cdot 00 \\ & h_{23} \cdot 4 \\ & l_{22} \cdot 22 \end{aligned}$	$\begin{aligned} & l 23 \cdot 02 \\ & l \\ & l \\ & l 23.4+ \\ & l 22.94 \end{aligned}$	$\begin{aligned} & M=23^{\prime \prime} \cdot 48 \\ & w=34 \cdot 34 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=53^{\circ} 35^{\prime} 23^{\prime \prime} \cdot 48 \end{aligned}$											
	$23 \cdot 19$	23.95	23.23	23.33	23.26. $24 \cdot 13$		23.85	$23 \cdot 50$	23.23	$23 \cdot 13$												
At XXIX (Bintli)March 1874; observed by Lieut. J. Hill, R.E., with Barrow's 24-inch Theodolite No. 2.																						
Angle between	$0^{\circ} 1^{\prime}$	$180^{\circ}{ }^{1}$	Circle readings, telescope being set on XXVI						$316^{\circ} 51^{\prime}$	$136^{\circ} 50^{\prime}$	$M=$ Mean of Groups $w^{*}=$ Relative Weight C = Concluded Angle											
			$79^{\circ} 14^{\prime}$	$259^{\circ} 14^{\prime}$	$158^{\circ} 24^{\prime}$	$338^{\circ} 24^{\prime \prime}$	$237{ }^{\circ} 36^{\prime}$	$57^{\circ} 35^{\prime}$														
$\underset{\mathbf{X X V I I}}{\text { XXVI }}$	$\begin{aligned} & h 4 \sigma^{\circ}+2 \\ & h_{4} \cdot{ }^{2} \\ & h_{4} \cdot 72 \end{aligned}$	$\begin{aligned} & h_{45 \cdot 06} \\ & h_{47} \cdot 18 \\ & l 45 \cdot 78 \\ & l+56 \cdot 82 \end{aligned}$	"	"	"		"	"	"	"	$\begin{aligned} & M=46^{\prime \prime} \cdot 4 \mathrm{I} \\ & w=23 \cdot 99 \\ & \frac{\mathrm{I}}{w}=0 \cdot 64 \\ & C=63^{\circ} 54^{\prime} 46^{\prime \prime} \cdot 40 \end{aligned}$											
			$l 4 i .46$	$l 46 \cdot 16$	$h_{46} 16$	$h 4.5$. 58	$h+5.56$	$h_{47} \cdot 60$	${ }^{2} 46 \cdot 94$	$h+7 \cdot 28$												
			$l 46 \cdot 80$	$l+6 \cdot 70$	$h+7 \times{ }^{8}$	$h_{46}{ }^{\circ} 90$	$h_{45} \cdot 18$	$h_{4.5} \cdot 20$	$h_{46}{ }^{\text {a }} 72$	$h+6 \cdot 48$												
			l 46*90	$l 47$ 74	$h_{46} 90$	$h_{46}{ }^{2}$	$\begin{aligned} & h_{4} 5^{\circ} \cdot 1+ \\ & h_{4} \cdot{ }^{\prime \cdot} \end{aligned}$	$\begin{aligned} & h_{45} \cdot 54 \\ & h_{4+} \cdot 90 \end{aligned}$	$h 45{ }^{\circ}$	$h_{47}{ }^{3} 6$												
	$45^{\circ} 81$	46.21	+7*05	$46 \cdot 87$	$46 \cdot 85$	+6.40	$45^{\circ} 70$	$45^{\circ} 8 \mathrm{I}$	+6•39	4700												
At XXIX (Bintli)-(Continued).																						
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:											
Angle between		Circle readings, telescope being set on XXVI									$\boldsymbol{M}=$ Mean of Groups $w_{0}=$ Relative Weight $\boldsymbol{C}=$ Concluded $\boldsymbol{\Delta}$ ngle											
$\underset{\text { XXXI }}{\text { XXVII }}$		$\prime \prime$ $h 26 \cdot 88$ l l 25.84	$\prime \prime$ $l 26 \cdot 24$ $l 27 \cdot 16$ $l 25^{\circ} 70$	$\prime \prime$ $l 25.78$ l l $l 26 \cdot 48$ $l 26.44$	$\prime \prime$ $h 27 \cdot 84$ $h 28 \cdot 64$ $h 26 \cdot 02$ $h 25 \cdot 86$	$\prime \prime$ $h 25 \cdot 82$ $h 26 \cdot 70$ $h 26 \cdot 82$	$\prime \prime$ $h 25 \cdot 78$ $h 27 \cdot 02$ $h 26 \cdot 84$	$\prime \prime$ $h 24.52$ $h 25 \cdot 58$ $h 24 \cdot 60$ $h 25.48$	$\prime \prime$ $h 24.60$ $h 26.48$ $h_{24} 2^{46} 46$ $h 25.60$	$\prime \prime$ $h 26 \cdot 04$ $h 25 \cdot 10$ $h 26 \cdot 26$	$\begin{aligned} M & =26^{\prime \prime} \cdot 24 \\ w & =16 \cdot 18 \\ \underline{1} & =0 \cdot 06 \end{aligned}$											
	27•23	$26 \cdot 37$	26.37. $26 \cdot 23$		27*09	$26 \cdot 45$	$26 \cdot 55$. $25^{\circ} 05$	$25^{\circ} 28$	25.80												
At XXX (Nok) \dagger March 1874; observed by Lieut. J. Hill, R.E., with Barrow's 24-inch Theodolite No. 2. - December 1874; observed by Captain M. W. Roger's, R.E., with Barrow's 24-inch Theodolite No. 2.																						
Angle between	$241^{\circ} 34{ }^{\circ}$		Circl $820^{\circ} 46^{\prime}$	e readings, $140^{\circ} 46^{\prime}$, telescop $39^{\circ} 58^{\circ}$	e being s $219^{\circ} 58^{\prime}$	$119^{\circ} 11^{\prime}$	XIII $299^{\circ} 11^{\prime}$	$198^{\circ} 22^{\prime}$	$18^{\circ} 22^{\prime}$	$M=$ Mean of Groups ${ }^{v}=$ Relative Weight $C=$ Concluded Angle											
$\underset{\text { XXXII }}{\text { XXIII }}$	h 15 .72 h $15 \cdot 14$ h 14 "06	$\begin{gathered} " 1 \\ h_{14} \cdot 26 \\ h_{14} \cdot 74 \\ h_{15} 7^{*} 42 \end{gathered}$	$\begin{aligned} & h_{15} .52 \\ & h_{13} \cdot 02 \\ & h_{1} 6.60 \\ & l 1_{13} .52 \end{aligned}$	$\prime \prime$		$\begin{gathered} \prime \prime \\ h_{16} 6 \cdot 20 \\ h_{16} 6 \cdot 16 \\ k_{14} \cdot 60 \end{gathered}$	$\begin{aligned} & h_{15} \cdot 66 \\ & h_{16} \cdot 10 \\ & h_{14} \cdot 68 \end{aligned}$	$\begin{gathered} \prime \prime \\ h_{15} \cdot 06 \\ h_{14} \cdot 86 \\ h_{14} \cdot 72 \end{gathered}$	$\begin{gathered} \prime \prime \\ h_{15} \cdot 44 \\ h_{15} \cdot 24 \\ h_{14} \cdot 60 \end{gathered}$	$\begin{gathered} " \\ h_{14} \cdot 04 \\ h_{15} \cdot 26 \\ h_{15} \cdot 64 \end{gathered}$	$\begin{aligned} & M=15^{\prime \prime} \cdot \circ 8 \\ & w=3^{1} \cdot 59 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=55^{\circ} 50^{\prime} 15^{\prime \prime} \cdot \circ 8 \end{aligned}$											
				$l 16.28$																		
				${ }_{l}^{16.38}$																		
				${ }_{2} 14.92$																		
				214.04 $715 \% 4$																		
	14*97	14.81	14.67	15.09	15.21	15.65	1548	14.88	15.09	14*98												
$\underset{\text { XXXII }}{\text { XXXI }}$		$\begin{aligned} & h_{11} \cdot 58 \\ & h_{12} \cdot 08 \\ & h_{10} 0.52 \\ & h_{12} \cdot 52 \\ & h_{10} \cdot 74 \end{aligned}$	$\begin{aligned} & h_{13} 13 \cdot 86 \\ & h_{13} \cdot 04 \\ & h_{12} \cdot 30 \\ & h_{10} \cdot 76 \end{aligned}$	$\begin{aligned} & l 11.40 \\ & l 113.70 \\ & l 15.28 \\ & l 15.20 \\ & l 13.20 \\ & l 11.430 \end{aligned}$	$\begin{aligned} & l_{10 \cdot 16} \\ & h_{12} \cdot 06 \\ & h_{11} \cdot 70 \end{aligned}$	$\begin{array}{r} \left.\begin{array}{r} h_{11} \cdot 80 \\ h_{10} \cdot 18 \\ h_{10} \\ \hline \end{array}\right) .82 \end{array}$	$\begin{aligned} & h_{13} \cdot 72 \\ & h_{12} .62 \\ & h_{13} .06 \end{aligned}$	$\begin{aligned} & h_{12} \cdot 18 \\ & h_{12} \cdot 82 \\ & h_{11} \cdot 48 \\ & h_{15} \cdot 26 \end{aligned}$	h 14.52 $h_{13} \cdot 22$ h 13.82	$\begin{aligned} & h_{12} \cdot 34 \\ & h_{12} \cdot 86 \\ & h_{11} \cdot 24 \\ & h_{11} \cdot 28 \\ & h_{12} \cdot 04 \end{aligned}$	$\begin{aligned} & M=13^{\prime \prime} \cdot 15 \\ & w=7 \cdot 02 \\ & \frac{1}{w}=0 \cdot 14 \\ & C=62^{\circ} 3^{\prime} 12^{\prime \prime} \cdot 14 \end{aligned}$											
	11.08	11*49	12.49	$12 \cdot 71$	11*31	10.60	13*13	12.94	$13 \cdot 85$	11*95												
$\stackrel{+}{\text { XXXI \& }}$ XXVII	$0^{\circ} \mathbf{z}^{\prime}$	$180^{\circ} 2^{\prime}$	Circle readings, telescope being set on XXXI						$816^{\circ} 50^{\prime}$	$136^{\circ} 50^{\prime}$	$\begin{aligned} & M=47^{\prime \prime} \cdot 46 \\ & w=11 \cdot 84 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=68^{\circ} 24^{\prime} 47^{\prime \prime} \cdot 46 \end{aligned}$											
			$79^{\circ} 11^{\prime}$	$259^{\circ} 11^{\prime}$	$158^{\circ} 24^{\prime}$	$338^{\circ} 24^{\prime}$	$237{ }^{\circ} 37{ }^{\prime}$	$57^{\circ} 36^{\prime}$														
	"	"	"	"	"	"	"	"	"	"												
	$l 48.68$	747.78	$l 46 \cdot 76$	$h_{45}{ }^{\circ} 40$	$h_{47}{ }^{\circ} 56$	$h_{48}{ }^{1} 72$	$l 46 \cdot 66$	h 47.58	${ }_{4} 46 \cdot 22$	${ }^{6} 47 \cdot 04$												
	l l l 48.78	l 7 78.68 48			${ }^{h} 446 \cdot 80$	$h l_{49}{ }^{36}$ $l 48$ 48	${ }^{l}{ }_{4}^{46 \cdot 54}$		$h 47 \cdot 20$ $h_{47} 70$													
	248.80	24810	$\begin{aligned} & h_{47} h_{47} 76 \\ & h_{7} .68 \end{aligned}$	${ }^{46 \cdot 80}$	$h_{47}{ }^{\text {P }}$	${ }^{48} 32$		$k_{47}{ }^{4} 12$	h 4770	$h^{47} 10$												
	48.73	$48 \cdot 19$	$47 \cdot 54$	46.21	$47^{*} 41$	48•80	$46 \cdot 77$	$46 \cdot 60$	47*04	47•26												
$\begin{gathered} \dot{\text { XXVIII \& }} \\ \text { XXVIII } \end{gathered}$	$\begin{aligned} & l 37 \cdot 66 \\ & l \\ & l \\ & l \end{aligned} 37 \cdot 12$	$\begin{aligned} & l 37 \cdot 54 \\ & l 37 \cdot 14 \\ & l 37 \cdot 14 \\ & l 36 \cdot 94 \end{aligned}$	$\begin{aligned} & l 39 \cdot 30 \\ & l 38 \cdot 72 \\ & l 38 \cdot 14 \end{aligned}$	$\begin{aligned} & h 38.40 \\ & h 39^{\circ} 44 \\ & h 39^{\circ} 12 \end{aligned}$	$\begin{aligned} & h 38 \cdot 60 \\ & h 37 \cdot 52 \\ & h 37 \cdot 62 \end{aligned}$	$\begin{aligned} & h 38 \cdot 14 \\ & h 38 \cdot \circ 6 \\ & l \\ & 79 \cdot 86 \end{aligned}$	$\begin{aligned} & l 38 \cdot 88 \\ & l 38 \cdot 36 \\ & h 37 \cdot 56 \end{aligned}$	$\begin{aligned} & h 38 \cdot 68 \\ & h 38 \cdot 44 \\ & h 38 \cdot 48 \end{aligned}$	$\begin{aligned} & h_{38} 38 \cdot 82 \\ & h_{39} 39 \cdot 08 \\ & h_{38} \cdot 18 \end{aligned}$	$\begin{aligned} & h 37 \cdot 68 \\ & h 36 \cdot 42 \\ & h 37 \cdot 40 \end{aligned}$	$\begin{aligned} & M=38^{\prime \prime \prime} \cdot 17 \\ & w=18 \cdot 50 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=53^{\circ} 2^{\prime} 3^{8^{\prime \prime} \cdot 17} \end{aligned}$											
	37*47	37 21	$38 \cdot 72$	38.99	37*91	$38 \cdot 69$	$38 \cdot 27$	$38 \cdot 53$	$38 \cdot 69$	$37 \cdot 17$												
At XXXI (Mongolia) †March 1874; observed by Lieut. J. Hill, R. E., with Barrow's 24-inch Theodolite No. 2. * December 1874; observed by Captain M. W. Rogers, R. E., with Barrow's 24-inch Theodolite No. 2.																						
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:											
$\begin{aligned} & \text { Angle } \\ & \text { botwoen } \end{aligned}$	$0^{08} 2^{\prime}$	$180^{\circ} \mathbf{z}^{\prime}$	Circl $79^{\circ} 14^{\prime}$	le reading $259^{\circ} 14^{\prime}$	s, telesco $158^{\circ} 24^{\circ}$	θ being $338^{\circ} 23^{\prime}$	set on XX $237^{\circ} 36^{\prime}$	IIX $57^{\circ} 35^{\prime}$	$316^{\circ} 49^{\circ}$	$136^{\circ} 49^{\prime}$	$M=$ Mean of Groups $w_{0}=$ Relative Weight C = Concluded Anglo											
$\underset{\text { XXIXII }}{\underset{\text { XXI }}{i}}$		h $42 \cdot 78$ $h^{\prime \prime} \cdot$ $43 \cdot 08$ $k_{42} \cdot 82$			$\quad "$ $h_{42} \cdot 78$ $h 43.36$ l 43	\% $h_{42} \cdot 14$ $h_{42} \cdot 96$ $h 43.34$	$\prime \prime$ $h_{43} \cdot 98$ $h_{42} \cdot 888$ $h_{42} \cdot 38$	$"$ $h_{42} \cdot 62$ $h_{43} \cdot 66$ $h_{43} \cdot 18$	$\prime \prime$ $h_{42} \cdot 22$ $h_{41} \cdot 06$ $h_{42} \cdot 90$	$\begin{aligned} & l 44 \cdot 08 \\ & l 42 \cdot 38 \\ & l 42 \cdot 20 \\ & l 44.52 \end{aligned}$	$\begin{aligned} & M=43^{11 \cdot 02} \\ & w=30 \cdot 72 \\ & \frac{1}{9}=0 \cdot 03 \end{aligned}$											
	42.94	$42 \cdot 89$	$43 \cdot 67$	$43^{\circ} 02$	$43^{\circ} 33$	$42 \cdot 81$	$43 \cdot 08$	$43 \cdot 15$	$42 \cdot 06$	$43^{\circ} 30$	$C=38^{\circ} 31^{\prime} 43^{\prime \prime} \cdot 02$											
$\underset{\text { XXVII }}{\underset{\text { XII }}{\text { I }}}$		$h_{49} \cdot 38$ $h_{48}^{8} \cdot 58$ $h_{48} 68$	$h 50 \cdot 42$ $h 49.88$ $h 50.04$	$h_{47} \cdot 26$ $h_{47} 82$ $h_{4} 8.52$.$h_{47} \cdot 86$ $h_{48} \cdot 7$ $h_{48} \cdot 68$	$h_{47} 4.46$ $h_{47} 66$ $h_{47} 50$		$h_{48}{ }^{\prime} 72$ $h_{49} 76$ $h_{49} 88$	$\begin{aligned} & l 47 \cdot 44 \\ & l 47 \cdot 06 \\ & l 46 \cdot 94 \end{aligned}$	$\begin{aligned} & M=48^{\prime \prime} \cdot 50 \\ & w=7 \cdot 90 \\ & \frac{1}{w}=0 \cdot 13 \\ & C=64^{\circ} 5^{\prime} 48^{\prime \prime} \cdot 50 \end{aligned}$											
	$49^{\circ} 6$ I	48•86	50\%11	$47 \cdot 87$	46•92	$48 \cdot 42$	47•54	49^{10}	$49^{\circ} 45$	47'15												
$\underset{\mathbf{X X X I I}}{\mathrm{XXX}}$	Circle readings, telescope being set.on $\mathbf{X X X}$										$\begin{aligned} & M=55^{\prime \prime} \cdot 70 \\ & w=12 \cdot 65 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=50^{\circ} 17^{\prime} 55^{\prime \prime} \cdot 70 \end{aligned}$											
	$0^{\circ} 0^{\circ}$	1800°	$79^{\circ} 13^{\prime}$	$259^{\circ} 13^{\prime}$	$158^{\circ} 25^{\prime}$	$888^{\circ} 25^{\prime}$	$237{ }^{\circ} 37^{\prime}$	$57^{\circ} 86^{\prime}$	$3^{316}{ }^{\circ} 49^{\prime}$	$\frac{1360}{} \frac{1888^{\prime}}{280^{\circ} 48^{\prime}}$												
	d	"			.	"	6	J	-	- 5												
	h 57.76 $h \quad 55.24$		754.68 l 74.82		l l 260.34		$\begin{aligned} & l 56 \cdot 64 \\ & h 55 \cdot 24 \end{aligned}$	$\begin{aligned} & h_{54} \cdot 92 \\ & h_{56} \cdot{ }^{2} 8 \end{aligned}$	$\begin{aligned} & h 54.72 \\ & l 53.30 \end{aligned}$	$\frac{h 53 \cdot 38}{55 \cdot 70}$												
	\$ $555^{\prime 9}$	${ }_{4}{ }_{57}{ }^{\text {c }} 14$	$l 55^{\circ} \mathrm{O}$	$l 55 \cdot 86$	$l 56.24$	${ }^{2} 55.42$	${ }^{1} 56.56$	$h_{55}{ }^{\text {- } 88}$	$\checkmark 54.10$	155.40												
		${ }_{h}{ }_{\text {h }}^{56 \cdot 12}$				$l{ }_{56}{ }^{42}$			$l 54 \cdot 84$													
	56.30	55.84	54.84	55*29	56•18	56•70	56•15	55\%73	54.24	55'73												
$\underset{\mathbf{X X X V}}{\operatorname{XXXII} \&}$		$h 16.28$ $h_{11}{ }^{2} 42$	$410 \cdot 18$ $l 12.76$	$\begin{array}{ll}l & 9.88 \\ l & 9 \\ l\end{array}$	$l 12.86$ $l 13.30$	$l 13.98$ $l 14.08$ l					$\begin{aligned} & M=13^{\prime \prime} \cdot 21 \\ & w=10 \cdot 14 \\ & \frac{1}{w}=0 \cdot 10 \\ & C=54^{\circ} 41^{\prime} 13^{\prime \prime \prime} \cdot 17 \end{aligned}$											
	h 12.12 $h 15.28$	h13.16 $h 11$	$l 14.38$ $l 14.22$	$l 11 \cdot 02$ $l 14.72$		114.42																
	$\begin{aligned} & h_{12} \cdot 50 \\ & h_{12} \cdot{ }^{2} 2 \end{aligned}$			$l 12.30$																		
	12•89	13.05	12.88	11*92	12*61	14*16	13*70	$12 \cdot 89$	13*77	14*17												
At XXXII (Pabusar) December 1874; observed by Captain M. W. Rogers, R. E., with Barrow's 24-inch Theodolite No. 2.																						
Angle betweon	$0^{\circ} 0^{\prime}$	Circle readings, telescope being set on XXXV							$816^{\circ} 48^{\prime}$	$186^{\circ} 48^{\prime}$	$M=$ Mean of Groups ${ }^{20}$ - $=$ Relative Weight C = Concluded Anglo											
		$180^{\circ} 0^{\prime}$	$79^{\circ} 13^{\prime}$	$259^{\circ} 13^{\prime}$	$158^{\circ} 24^{\prime}$	$338^{\circ} 24^{\prime}$	$237{ }^{\circ} 37^{\prime}$	$57^{\prime} 36^{\prime}$														
$\underset{\mathbf{X X X I}}{\operatorname{XXXV}} \&$	"	"		"		"	"	"	"	"	$\begin{aligned} & M=16^{\prime \prime} \cdot 87 \\ & w=22 \cdot 5^{2} \\ & \frac{1}{w}=0 \cdot 04 \\ & C=69^{\circ} 27^{\prime} 16^{\prime \prime} \cdot 87 \end{aligned}$											
	$h_{16} 16.70$	K17.04 $k 16.08$	h17.36	${ }^{6} 15 \cdot 78$	$h 16.08$	217.38	${ }^{l} 16 \cdot 84$	717.22 1717.72	h 18.98	h16.54												
	h 16.92 $h_{17} 98$	$h 16.08$ $h 16.60$	h15 $h 16$ 16	1515 $h_{17} 92$	h17.00 $l 15.38$		117.54 $l 15.72$	$l 17.72$ 717.34	h 18.94 $h_{16} 684$	$h 16.48$ $h 16.80$												
			h 16.90						h 16.78													
	$17 \cdot 20$	16.57	$16 \cdot 56$	16.21	$16 \cdot 15$	$17 \cdot 35$	16.70	17×43	17×88	16.61												

January 1875; observed by Captain M. W. Rogers, R.E., with Barrow's 24 -inch Theodolite No. 2.																						
$\underset{\substack{\text { Angle } \\ \text { between }}}{\text { and }}$	Circle readings, telescope being set on XXXI										$\underline{M}=$ Mean of Graps											
	859 ${ }^{\circ} 59^{\prime}$	$179^{\circ} 59^{\prime}$	$79^{\circ} 13^{\prime}$	$259^{\circ} 13^{\prime}$	$158^{\circ} 24^{\prime}$	$3388^{\circ} 4^{\prime}$	${ }^{237^{\circ} 37^{\prime}}$	$67^{\circ} 87^{\prime}$	$316^{\circ} 48^{\prime}$	$136^{\circ} 48^{\prime}$												
$\underset{\text { XXXIİ }}{ }$	"	"			"				"													
	${ }^{\text {h } 28.02}$	${ }^{3} 30 \cdot 30$	$l^{30.62}$	${ }^{2} 29.26$	$l 29.02$	${ }^{2} 29.12$	$h_{31} \cdot 26$	$l 31.02$	${ }_{3} 31.14$	128.72	$M=29^{\prime \prime} \cdot 86$											
	h27 $h_{31} \cdot 20$	${ }^{l}{ }^{3} 30 \cdot 32$	l 29.74	${ }_{l}^{l} 28.94$	l l l 29.38	$h 28 \cdot 12$ $h 27$		$l 28 \cdot 36$ $l 29$ 29	$l 29.86$ $l 30.08$	${ }_{l}^{128.64} \begin{aligned} & 30.22\end{aligned}$												
	${ }^{\text {h } 29.20}$			${ }^{\text {l2 }}$.92	$l 30 \cdot 16$		$\mathrm{ha}_{3}{ }^{\text {' }} 10$	${ }_{130}{ }^{\circ}$			$w=11 \cdot 42$											
											$\frac{1}{w}=0.09$											
	29\%5	30^{111}	30.09	29.90	29.97	28:31	31.32	29.86	$30 \cdot 36$	29'19												
$\begin{gathered} \text { XXXII \& } \\ \text { XXXI } \end{gathered}$			$l$$l$				$\begin{aligned} & h_{30} 3 \cdot 88 \\ & h_{3} \cdot 8 \\ & h_{31} \cdot 94 \end{aligned}$	$\begin{aligned} & l 28.90 \\ & l 3188 \\ & l 31.78 \\ & l \\ & l \end{aligned}$		$\begin{aligned} & l 3 r^{l}{ }^{88} \\ & l 31 \cdot 26 \\ & l 32 \cdot 44 \\ & l 32 \cdot 4+ \end{aligned}$	$\begin{aligned} & M=31^{\prime \prime} \cdot 5^{2} \\ & w=15 \cdot 62 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=44^{\circ} 59^{\prime} 31^{\prime \prime} \cdot 50 \end{aligned}$											
	31.60	32.09	31-38	31:39	32.08	$30 \cdot 32$	31×3	30.79	$32 \cdot 32$	${ }_{31} 81$												
$\underset{\text { XXXVI }}{ }$			$l 22 \cdot 52$$l_{23} 238$$l_{23} .62$		$l_{2} 23.18$$l_{22} 2.4+$$l_{22} \cdot 86$	$\begin{aligned} & h_{22} \cdot 96 \\ & h_{22} \cdot 20 \\ & h_{25} .30 \\ & h_{25} \cdot 38 \\ & h_{23} \cdot 94 \end{aligned}$			$\begin{aligned} & l 20.60 \\ & l 20.62 \\ & l 21.32 \\ & l 23.36 \\ & l 21.64 \end{aligned}$		$\begin{aligned} M & =22^{\prime \prime} \cdot 86 \\ w & =10 \cdot 14 \\ \frac{1}{w} & =0 \cdot 10 \\ C & =70^{\circ} 37^{\prime} 22^{\prime \prime} \cdot 86 \end{aligned}$											
	23.80	23.04	23.27	23.31	$22 \cdot 83$	$24 \cdot 26$	$22 \cdot 58$	$21.8+$	21'73	21.95												
XXXVI \& XXXVIII			$l$$l$ 28.54		127.102828.52629.00						$\begin{aligned} & M=28^{\prime \prime} \cdot 73 \\ & w=17 \cdot 75 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=73^{\circ} 44^{\prime} 28^{\prime \prime} \cdot 74 \end{aligned}$											
	28.03	$29 \cdot 46$	28.45	28.91	28.21	28:26	28.12	29.49	28.96	29.40												
At XXXVI (Mankasar) January 1875 ; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.																						
Angle	01^{1}	Circle readings, telescope being set on XXXV							$316^{\circ} 48^{\prime}$	$136{ }^{\circ} 48^{\prime}$	$\begin{aligned} & M=\text { Mean of Gropp } \\ & w=\text { Melanive Weipht } \\ & C=\text { Conclududed } \Delta n_{g} \text { en } \end{aligned}$											
between		$180^{\circ} 1^{\prime \prime}$	$79^{9}{ }^{19^{\prime}}$	$259{ }^{\circ} 12^{\prime}$	$158^{\circ} 95^{\prime}$	$339^{\circ} 5^{\prime}$	$2377^{\circ} 6^{\prime}$	57 36^{\prime}														
$\frac{\text { XXXV \& }}{\text { XXXIV }}$		"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=48^{\prime \prime} \cdot 49 \\ & w=3^{2} \cdot 78 \\ & \frac{1}{w}=\circ \cdot \cdot 3 \\ & C=51^{\circ} 24^{\prime} \cdot 8^{\prime \prime} \cdot 47 \end{aligned}$											
		$\begin{aligned} & l \\ & l_{47}+2 \cdot 00 \end{aligned}$	$\begin{aligned} & h_{4} h_{47} \cdot 6_{4} \\ & \hline 6 \end{aligned}$		$\begin{aligned} & k_{47} \cdot 92 \\ & 4_{4} 9.92 \end{aligned}$	$\begin{aligned} & { }^{2}+8 \cdot 60 \\ & 46 \cdot 90 \end{aligned}$	$\begin{aligned} & h_{46}{ }^{6} \cdot 30 \\ & h_{47} \cdot{ }_{52} \end{aligned}$			$\begin{aligned} & c_{48}^{48 \cdot 24} \\ & l \end{aligned}$												
		148.82	${ }^{4} 49 \cdot 20$	${ }^{6} 48{ }^{\circ} 4$	$l+9$	${ }^{4} 49.68$		${ }_{6} 88.95$	$l+8.00$	$148 \cdot 68$												
						$h_{47} \cdot 86$		$l_{48} \cdot 5_{2}$														
	$48 \cdot 63$	$48 \cdot 1$	$48 \cdot 50$	$48 \cdot 64$	48.84	48•26	48.09	48.24	49*09	48.60												
At XXXVI (Mankasar)-(Continued).																						
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:											
$\underset{\text { Angle }}{\text { An }}$ between	$0^{\circ} 1^{\prime}$	Circle readings, telescope being set on XXXV									$M=$ Mean of Groups *o = Relative Weight C = Conciuded Angle											
		$180^{\circ} 1^{\prime \prime}$	$79^{\circ} 12^{\prime}$	$259^{\circ} 12^{\prime}$	$158^{\circ} 25^{\prime}$	$338^{\circ} 25^{\prime}$	$237^{\circ} 36^{\prime}$	$57^{\circ} 36^{\prime}$	$316^{\circ} 48^{\prime}$	$136^{\circ} 48^{\prime}$												
$\underset{\text { XXXVII }}{\text { XXXIV }}$	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=22^{\prime \prime} \cdot 09 \\ & w=9 \cdot 46 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=45^{\circ} 4^{\prime} 22^{\prime \prime} \cdot 10 \end{aligned}$											
	h 22.80	$l 21.48$	h 22.04	h 20.68	$h 24.00$	$l 19.56$	h 22.72	l22.74	l23.88	l21.88												
	h22.68	${ }^{2} 20 \cdot 96$	$h^{22} 220$	h 20.46	$l^{22} 22$	h 21.80	h 22.26	l24.16	${ }^{2} 19.52$	l 24.14												
	h 24.02	h 20•14	h 21.82	h $20 \cdot 70$	$l 20 \cdot 34$	h 23.72 23.	h 20.86	$l 23.10$	$l 21.54$	${ }_{\text {l }} \mathbf{2 1}$ 182												
	$\begin{array}{r} l 20 \cdot 68 \\ l 20 \cdot 64 \end{array}$			$d 21 \cdot 50$	$\begin{array}{ll} l 19 \cdot 88 \\ l 21 & 10 \end{array}$	$\begin{aligned} & h 23 \cdot 10 \\ & h 24 \cdot 70 \end{aligned}$			$\begin{aligned} & h_{23} 2 \cdot 84 \\ & h_{23} \cdot 76 \end{aligned}$	h23.46												
						h 23.14			h 23.50													
	21:96	20•86	$22 \cdot 25$	$20 \cdot 84$	21.51	$22 \cdot 67$	21.95	23.33	$22 \cdot 67$	22.82												
$\underset{\text { XXXIX }}{\text { XXXVII }}$	$h 25.22$	h 21.74	h 23.86	h25.08	h21•74	123.80	$h 25 \cdot 46$	123.14	$l 25.66$	$l 23.20$	$\begin{aligned} M & =24^{\prime \prime} \cdot 3^{6} \\ w & =9 \cdot 59 \\ \frac{1}{w} & =0 \cdot 10 \\ C & =76^{\circ} 14^{\prime} 24^{\prime \prime \prime} \cdot 37 \end{aligned}$											
	${ }^{\text {h } 22.26}$	${ }^{\text {h } 23.04}$	${ }^{\text {h } 24.10}$	$h 23.50$	$l 22 \cdot 36$	$l 25^{\circ} 94$	h25.56	$l 24 \cdot 38$	$l 25.28$	$l 23.48$												
	$h_{25} \mathbf{3} \mathbf{3 2}$	h24.58	h 24.62	h 26.60	$l 22.06$	${ }^{\text {h } 27.02}$	h 25.14	l22.98	624.68	l23.12												
	h24.82	${ }^{2} 24.48$		h 25.48	h 23.36	h 26.44																
	h24.60	h $26 \cdot 54$		$h 23.96$ $d 25.81$	$\begin{aligned} & h 24.38 \\ & h 24.68 \end{aligned}$	h25.16 $h_{23}{ }^{\text {a }}$ (
	24.44	24.08	24•19	25.07	23•10	25.39	$25 \cdot 39$	$23 \cdot 50$	25.21	23.27												
$\underset{\mathbf{X L}}{\text { XXXIX }}$	${ }_{4} \mathbf{5} 8.34$	${ }^{\text {h }} 55.82$	$h 55 \cdot 78$	$h_{56} 50$	${ }_{2} 58.68$	$l 58.46$	${ }^{\text {h }} 57 \times 44$	${ }_{4} 58.04$	h 57-92	${ }^{6} 55.78$	$\begin{aligned} & M=57^{\prime \prime} \cdot 68 \\ & w=11 \cdot 20 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=89^{\circ} 43^{\prime} 57^{\prime \prime} \cdot 68 \end{aligned}$											
	${ }_{\boldsymbol{h}}^{58} \mathbf{7 8}$	$h_{57} 30$	$h 57 \cdot 78$	$h 59.32$	$l 59.52$	h $58 \cdot 98$	$h_{57}{ }^{\circ} 96$	$h_{57}{ }^{\circ} \mathrm{O}$.	$h_{57} 88$	$h_{57}{ }^{14}$												
	58-81	56.51	$57 \cdot 13$	$57 \% 79$	$58 \cdot 69$	58•70	$57 \cdot 38$	$57 \cdot 65$	$57 \cdot 68$	56.51												
$\underset{\text { XXXVIII }}{\text { XL }}$	${ }^{1} 15.76$	l 18.06	h21.40	$h_{17} 16$	h 18.38	$l 16 \cdot 76$	${ }^{6} 17.30$	$h_{16} 176$	h17-22	${ }^{1} 16.44$	$\begin{aligned} & M=17^{\prime \prime} \cdot 53 \\ & w=8 \cdot 98 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=47^{\circ} 20^{\prime} 17^{\prime \prime} \cdot 5^{2} \end{aligned}$											
		$l 17.26$ $l 18.76$	$h_{18} 8_{19} \cdot 20$	h 18.36 $h_{17}{ }^{6} \mathbf{6}$		l l 1 17.94			h 15.86 $h 18.68$	$h_{1} 16 \cdot 60$ $h_{18} 02$												
	$\begin{aligned} & h 19.60 \\ & l 15.38 \end{aligned}$					$l 18.44$			${ }_{6} 16.72$													
	$17 \cdot 42$	18.03	$19 \cdot 64$	17.71	18.11	$16 \cdot 97$	16.81	16.47	1712	17*02												
$\underset{\mathbf{X X X V}}{\text { XXXVIII }}$	$\mathrm{h}_{13}{ }^{1} 18$	$l 8 \cdot 16$	$h_{11} \cdot 08$	h $10 \cdot 00$	$l 8.86$	$l 10 \cdot 06$	$h_{10} 170$	$l 11 \cdot 06$	$l 8.52$	$l 10 \cdot 54$	$\begin{aligned} & M=9^{\prime \prime \cdot} \cdot 62 \\ & w=23 \cdot 08 \\ & \frac{1}{w}=0.04 \\ & C=49^{\circ} 28^{\prime} \quad 9^{\prime \prime} \cdot 65 \end{aligned}$											
	${ }^{h} 9.42$	${ }^{1} 12 \cdot 92$	$h 10 \cdot 56$	${ }^{\text {h }} 9.70$	$l 9.84$	$l 9.26$	$h_{10} 126$	$l 8.98$	$l 9.78$	$l \begin{aligned} & 6 \cdot 98\end{aligned}$												
	k 9 h 8.74 	$l 10 \cdot 10$	$\begin{array}{ll}h & 8 \cdot 86 \\ h & \\ 0.60\end{array}$	h 8.72	$l 9.44$	L $9^{\circ} 72$		l	$l 9 \cdot 10$	${ }_{l}^{l} 8.46$												
	h $7 \cdot 36$	$\begin{array}{ll}l & 9.22\end{array}$																				
	9•75	$9 \cdot 84$	10•03	$9 \cdot 47$	$9 \cdot 38$	$9 \cdot 68$	$10 \cdot 05$	$9 \cdot 84$	$9 \cdot 13$	$9 \cdot 05$												

At XXXVII (Uperthal)

January 1875; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XLI										$M=$ Mean of Groups ∞ - Kelative Weight $C=$ Concluded $\mathbf{\Delta}$ ngle
	$170^{\circ} 48^{\prime}$	$350^{\circ} 48^{\prime}$	$250^{\circ} 0^{\prime}$	$70^{\circ} 0^{\prime}$	$329{ }^{\circ} 2^{\prime}$	$149^{\circ} 12^{\prime}$	$48^{\circ} 24^{\prime}$	$228{ }^{\circ} \mathbf{2 4}$	$127^{\circ} 36^{\prime}$	$207{ }^{\circ} 36^{\prime}$	
$\begin{gathered} \text { XLI\& } \\ \text { XXXIX } \end{gathered}$	"	"	"	"	"	"	17	"	"	"	$\begin{aligned} & M=54^{\prime \prime} \cdot 59 \\ & w=12 \cdot 84 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=62^{\circ} 27^{\prime} 54^{\prime \prime} \cdot 57 \end{aligned}$
	${ }^{\text {h }} 55.52$	${ }^{\text {h }} 54 \cdot 36$	${ }^{\text {h } 53.08}$	${ }^{\text {h }} 55 \cdot 34$		${ }^{6} 56 \cdot 96$	$l 53.74$	$h_{51} 72$	$h_{52.52}$	h 55.28	
	${ }^{\prime}{ }^{54} \times 78$	${ }^{2} 54.28$	$h_{52}{ }^{\text {a }} 94$	${ }^{2} 53.72$	$h_{55}{ }^{\circ} 90$	154.60	$l 56.58$	${ }^{\text {h } 53.60}$	${ }_{\text {h }}^{53}$-82	h $54 \cdot 96$	
	${ }^{64} 512$	$h_{54}{ }^{\circ} \mathrm{O}$		$h_{55}{ }^{\circ} 40$	$h_{54}{ }^{\prime} 7^{2}$	${ }^{1} 54.50$	$h 54.36$	${ }^{\text {n }} 555.66$	$h_{54}{ }^{46}$	$h_{55}{ }^{\text {50 }}$	
			h 53.98			${ }^{5} 55^{\circ} \mathrm{O} 2$	$\begin{aligned} & h_{52 \cdot 84} \\ & h 53 \cdot 26 \end{aligned}$	$h 54.26$ $h 5_{6} \cdot 80$			
								$h_{53.12}$			
	$54 \cdot 81$	54*22	$53 * 85$	$54 \cdot 82$	$55^{\circ} 73$	$55^{\circ} 27$	54*16	54*17	53.60	$55^{\circ 25}$	
$\underset{\text { XXXVI }}{\operatorname{XXXIX}}$	${ }^{\prime} 55.58$	$h_{56}{ }^{\circ} \mathrm{O}$	${ }^{\text {h }} 56 \cdot 24$	${ }^{\text {h } 55.86}$	h 54.48	h $52 \cdot 32$	$l 56 \cdot 56$	$h_{56} \cdot 02$	h $56 \cdot 86$	$h_{56 \cdot 12}$	$\begin{aligned} & M=55^{\prime \prime} \cdot 34 \\ & w=12 \cdot 10 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=60^{\circ} 49^{\prime} 55^{\prime \prime} \cdot 34 \end{aligned}$
	$h_{53.56}$	${ }^{\prime} 550.44$	$h 55 \cdot 36$	$h_{56} 5 \cdot 14$	$h_{53} 56$	${ }^{l} 54.10$	${ }_{2}{ }_{2}^{56 \cdot 18}$	${ }_{2} 54.68$	${ }^{\prime} 55^{\circ} \mathrm{O}$	${ }^{\text {h } 55.74}$	
				${ }^{6} 55 \cdot 64$		l l l 54.86	l l l 57 5	$h 53 \cdot 42$ $h 54 \cdot 18$	$h_{55}{ }^{12}$	$\bullet{ }^{\circ} 55^{\prime} 30$	
		$h_{56}{ }^{\text {10 }}$					h 56.30				
	55*11	$55 * 83$	56•10	$55 * 88$	54*57	$53^{\circ} 8 \mathrm{I}$	56•14	54.58	$55^{\circ} 69$	55*72	
$\begin{gathered} \text { XXXVI \& } \\ \text { XXXIV } \end{gathered}$	${ }_{\text {h }} 38.84$	h $39 \cdot 26$	$h_{41}{ }^{\text {O2 }}$	h37.90	h $39 \cdot 0$	$h_{40}{ }^{14}$	737.96	h $40 \cdot 58$	h 38.32	h 39.80	$\begin{aligned} & M=39^{\prime \prime} \cdot 39 \\ & w=9 \cdot 23 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=65^{\circ} 54^{\prime} 39^{\prime \prime} \cdot 37 \end{aligned}$
	${ }^{\text {h }} 38.68$	h 39.70	$h_{42}{ }^{\circ} 50$	h 39.78	${ }_{\text {h }} 3^{8.660}$	$h_{40}{ }^{\text {a }} 26$	${ }^{l} 37 \cdot 86$	$h_{41} \cdot 58$	$h 40 \cdot 36$	h $38 \cdot 94$	
	${ }^{6} 37.50$	${ }_{\text {h }} 36 \cdot 88$	${ }^{\text {h }} 39.42$	h $38 \cdot 16$	$h 39 \cdot 62$	$l 39.08$	$l 38 \cdot 86$	$h_{41}{ }^{\circ} \mathrm{O}$	$h 40 \cdot 34$	h 38.28	
			h38.74				${ }^{l} 37 \cdot 18$		$h 39^{\circ} \mathrm{O}$	$h 39.60$ $h 38.88$	
	h 38.88	h $38 \cdot 58$									
	38•28	$39 \cdot 69$	$40 \cdot 42$	38.61	$39^{\circ} 09$	$39 \cdot 83$	38.27	41*05	39*51	39•10	

At XXXVIII (Bithnok)
January 1875 ; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	$0^{\circ} 0^{\prime}$	Circle readings, telescope being set on XXXV									$M=$ Mean of Groups ${ }_{C}^{w}=\begin{gathered}\text { Relative } \\ \text { Concluded }\end{gathered}$ C $=$ Concluded Angle
		$108^{\circ} 0^{\circ}$	$79^{\circ} 12^{\prime}$	$259^{\circ} 12^{\prime}$	$158^{\circ} 30^{\circ}$	$838^{\circ} 30^{\circ}$	$237{ }^{\circ} 87^{\prime}$	$67^{\circ} 37^{\prime}$	$816^{\circ} 48^{\prime}$	$136^{\circ} 48^{\prime}$	
$\underset{\text { XXXVI }}{\text { XXXV }}$	"	"	"	"	"	"	"	"	$\prime \prime$	"	$\begin{aligned} & M=22^{\prime \prime} \cdot 22 \\ & w=10 \cdot 44 \\ & \frac{1}{w}=0 \cdot 10 \\ & C=56^{\circ} 47^{\prime} 22^{\prime \prime} \cdot 23 \end{aligned}$
	h22.52	h21.50	${ }^{\mathbf{k}} 19.16$	${ }^{\text {h } 21.78}$	$l 23.56$	$l 23.86$	h21 70	h 22.94	${ }^{\text {h } 23.16}$	h22.90	
	h22.72	${ }^{\text {h } 22.72}$	$h_{21}{ }^{\text {a }}$ - 00	${ }^{\text {h } 21}$ 1 74	${ }^{l} 22.10$	$l 22.96$	${ }^{\text {h } 21} \mathrm{I}^{\prime} 78^{\circ}$	h 21.88	${ }^{\text {h } 22.80}$	h 21.38	
	h 24.34	h22.42	${ }^{\text {h } 21.84}$	h $20{ }^{\circ} \mathrm{O}$	${ }^{l} 20^{\circ} 26$	$l 21.82$	h21'18	h $20 \cdot 68$	h $22 \cdot 76$	h22.60	
	h 22.32		$h 22 \cdot 36$		l 23.50 $l 23.56$						
	23.80	$22 \cdot 21$	21-06	21-17	$22 \cdot 60$	$22 \cdot 76$	$21 \cdot 55$	21.83	$22 \cdot 91$	22.29	

At XXXVIII (Bithnok)-(Continued).											
$\underset{\substack{\text { Angle } \\ \text { between }}}{\text { a }}$		$180^{\circ} 0^{\circ}$	Circle readings, telescope being set on XXXV						$316^{\circ} 48^{\prime}$	$136^{\circ} 48^{\prime}$	$M=$ Mean of Groups ${ }^{20}=$ Kelutire Weight $C=$ Concluded Angle
$\underset{\mathbf{X L}}{\operatorname{XXXVI}}$	$\begin{gathered} " 1 \\ h_{33} \cdot 68 \\ h_{33} \cdot 86 \\ h_{31} \cdot 24 \\ h_{32} \cdot 68 \end{gathered}$	$\prime \prime$ $h 34 \cdot 14$ $h 32 \cdot 84$ $h 32 \cdot 62$	$\begin{aligned} & h_{35 \cdot} h_{3} \cdot 90 \\ & h_{32} \cdot 78 \\ & h_{34} \cdot 34 \\ & h_{31} \cdot 92 \\ & h_{32} \cdot 94 \end{aligned}$	" $h_{33} \cdot 38$ $h_{32} \cdot 64$ $h_{33} \cdot 56$	$\begin{gathered} \prime \prime \\ l 31 \cdot 82 \\ l 31 \cdot 08 \\ l 33.34 \\ l 30 \cdot 54 \end{gathered}$		$\prime \prime$ $h_{33} \cdot 58$ $h_{33} \cdot 00$ $h_{31} \times 7$		$\begin{gathered} \prime \prime \\ h_{3} 35^{\circ}+44 \\ h_{32} \cdot 86 \\ h_{32} \cdot 74 \\ h_{31} \cdot{ }^{\prime} \cdot 8 \end{gathered}$	$\begin{aligned} & h 30 \cdot 64 \\ & h 32 \cdot 68 \\ & h 31 \cdot 76 \\ & h 32 \cdot 68 \end{aligned}$	$\begin{aligned} & M=32^{\prime \prime} \cdot 73 \\ & w=13 \cdot 10 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=62^{\circ} 5^{\prime} 32^{\prime \prime \prime} \cdot 73 \end{aligned}$
	$33 \cdot 87$	$33^{\circ} 20$	33.50	33*19	31.69	31*72	32•79	33*37	$33 \cdot 03$	31•94	
At XXXIX (Modia) January 1875; observed by Captain M. W. IRogers, R.E., with Barrow's 24-inch Theodolite No. 2.											
Angle	Circle readings, telescope being set on XLI										$M=$ Menn of Groups $w=$ Relative Weight $C=$ Concluded Anglo
$\underset{\text { XLIII }}{\text { XLI }}$	$\prime \prime$ h 4	h 3.96 h $3 \cdot 30$ $l 3.58$	$\begin{array}{cc} \prime \prime \\ l & 4.42 \\ l 2.48 \\ l & 3.76 \\ l & 4.30 \end{array}$	$\begin{aligned} & h \\ & \hline \end{aligned} \cdot 86$	$\begin{array}{lll} h & 5 \cdot 22 \\ h & 3 \cdot 0 \\ h & 3.04 \\ h & 4.06 \\ l & 1.90 \\ l & 2 \cdot 38 \end{array}$		$\begin{array}{lll} l & 2 . & .64 \\ l & 2.66 \\ l & 5 & .10 \\ l & 2 . & 0 \end{array}$	$\begin{aligned} & h \\ & h \end{aligned} .58$	$\begin{array}{ll} h & 2 \cdot 78 \\ h & 3.70 \\ h & 3.82 \end{array}$		$\begin{aligned} & M=3^{\prime \prime} \cdot 62 \\ & w=19 \cdot 34 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=83^{\circ} 20^{\prime} 3^{\prime \prime} \cdot 62 \end{aligned}$
	$4 \cdot 62$	3.61	$3 \cdot 74$	4*03	$3 \cdot 32$	$3 \cdot 7^{\circ}$	$3 \cdot 21$	$3 \cdot 89$	$3 \cdot 43$	$2 \cdot 62$	
XLIII \&	h 55° 14 ${ }^{6} 57^{12}$ h $58 \cdot 78$ h 59.70 h 57 57	$h_{58}{ }^{\prime}$ 10 $h_{5} 8 \cdot 12$ $h_{59} \cdot 18$	l l l 56.42	$h_{57} 14$ $h_{59} 12$ $h_{57} 00$		l l 56.98	$\begin{aligned} & l 55 \cdot 58 \\ & l .25 \\ & l \\ & l \\ & h 7.98 \\ & h \\ & 59.00 \end{aligned}$	$\begin{aligned} & h_{55 \cdot 58} \\ & h_{59} \cdot 38 \\ & h_{59} \cdot 08 \\ & h_{58} \cdot 32 \end{aligned}$	$\begin{aligned} & h_{57} h_{58} 66 \\ & h_{58} \cdot 00 \end{aligned}$	$\begin{aligned} & l \\ & 57 \cdot \\ & 57 \cdot 84 \end{aligned}$	$\begin{aligned} & M=57^{\prime \prime} \cdot 74 \\ & w=17 \cdot 80 \\ & \frac{i}{w}=0 \cdot 06 \\ & C=50^{\circ} \quad 7^{\prime} 57^{\prime \prime} \cdot 73 \end{aligned}$
	57•69	58*47	56•69	$57 * 75$	57^{17}	$58 \cdot 04$	$57 \cdot 60$	58•59	57*99	57•36	
$\begin{gathered} \text { XLIV \& } \\ \text { XLII } \end{gathered}$	$\begin{aligned} & h_{24} 24 \cdot 22 \\ & h_{24} \cdot{ }^{2} \cdot{ }^{2} \\ & h_{23} \cdot{ }_{42} \end{aligned}$	$\begin{aligned} & h_{24} \cdot 28 \\ & h_{25} \cdot 86 \\ & h_{24} \cdot 84 \end{aligned}$		$\begin{aligned} & h 24 \cdot 08 \\ & h=4 \cdot 08 \\ & h 24 \cdot 02 \end{aligned}$	h25.98 h $26 \cdot 02$ $l 28.10$ $l 26.80$		l28.02 h $26 \cdot 56$ $123^{\circ}{ }^{\circ}{ }^{\circ}$ h $2+9$ $h 27.36$ h24.60 d 23.57	$h 23 \cdot 80$ $h 24-78$ $h_{24}{ }^{2} \cdot 26$ h 24 . 82	$h 27^{\circ}+0$ $h 25.28$ h 24.48 h26•26		$\begin{aligned} M & =25^{\prime \prime} \cdot 10 \\ w & =10 \cdot 07 \\ \frac{1}{w} & =0 \cdot 10 \\ C & =39^{\circ} 17^{\prime} 25^{\prime \prime} \cdot 13 \end{aligned}$
	24.05	24*99	$25^{\circ} 12$	24×06	$26 \cdot 72$	24•78	$25 \cdot 50$	$24^{*}{ }^{1}$	$25 \cdot 86$	$25 \cdot 52$	
$\underset{\text { XL }}{\text { XLII }}$	$\begin{aligned} & h_{1 I} \cdot 20 \\ & h_{1 I} \cdot 60 \\ & h_{1 I} \cdot 30 \end{aligned}$		$\begin{array}{ll} l & 12 \cdot 02 \\ l & 12 \cdot 88 \\ l & 12 \cdot 84 \end{array}$	$\begin{aligned} & h_{13} \cdot{ }_{l} h_{2} \\ & h_{14}+{ }_{2} \\ & h_{13} \cdot 34 \\ & h_{13} \cdot 10 \end{aligned}$		$\begin{array}{lll} l & 13 \cdot 12 \\ l & 15 \\ l & 15 \\ l & 12 & +0 \\ l & 13 & 50 \end{array}$	$\begin{aligned} & l 113 \cdot 76 \\ & h 13 \cdot 28 \\ & h 16 \cdot{ }_{l}^{16} \\ & d 12 \cdot 34 \end{aligned}$	$h 10 \cdot 28$ $h_{13} 12$ $h_{12} \cdot 28$	$\begin{aligned} & h_{11} \cdot 82 \\ & h_{11} \cdot 22 \\ & h_{13} \cdot 0_{4} \\ & h_{12} \cdot 36 \end{aligned}$	$\begin{array}{ll} l & 11 \cdot 50 \\ l & 12.94 \\ l & 11 \end{array}$	$\begin{aligned} & M=12^{\prime \prime} \cdot 49 \\ & w=8 \cdot 65 \\ & \frac{1}{w}=0 \cdot 12 \\ & C=49^{\circ} 1^{\prime} 12^{\prime \prime} \cdot 50 \end{aligned}$
	11•37	11'79	12 5^{8}	13.60	$\mathrm{II}^{1} 84$	$13 \cdot 56$	14*02	1 1 -89	12.26	12.01	

At XLII（Jodasar）－（Continued）．											
Angle between	0°	Circle readings，telescope being set on XL									$M=$ Menn of ${ }^{M}$ roups w＝Relntive Weight C＝Concluded Anglo
$\underset{\text { XLIV }}{\text { XXXIX }}$		$\prime \prime$ l l	$\begin{array}{cc}\prime \prime \\ l & 6.46 \\ l & 5 \\ l & 4 \\ 7 & 42 \\ \end{array}$		$\begin{array}{ll} & \prime \prime \\ h & 6 \cdot 68 \\ h & 5 \cdot 3 \\ h & 5 \cdot 32 \\ h & 3 \cdot 58 \\ h & 4 \cdot 5+ \\ h & 2 \cdot 90 \end{array}$	$\begin{array}{cc} \prime \prime \\ h & 5 \cdot 00 \\ h & 6 \cdot 02 \\ h & 4^{\circ} 72 \end{array}$	h $4 \cdot 14$ h 3.96 h 5° ． 10 h 5.22	$\begin{array}{lll} h & 2.60 \\ h & 2 \cdot 60 \\ h & 1.9+8 \\ h & 2 \cdot 86 \\ h & 3.80 \\ h & 4.76 \end{array}$			$\begin{aligned} M & =4^{N \cdot} \cdot 89 \\ w & =8 \cdot 06 \\ \frac{1}{w} & =0 \cdot 12 \\ C & =88^{\circ} \cdot 44^{\prime} \quad 4^{\prime \prime} \cdot 89 \end{aligned}$
	$5 \cdot 1$	$6 \cdot 18$	$6 \cdot 36$	5•19	$4 \cdot 60$	5.25	$4 \cdot 61$	3•19	$4^{\circ} 15$	4.27	
February 1875；observed by Captain M．W．Rogers，R．E．，with Barrow＇s 24－inch Theodolite No． 2.											
Angle between											
$\begin{gathered} \text { R.M. \& } \\ \text { XLVI } \end{gathered}$		$\begin{gathered} 11 \\ l+42 \cdot 30 \\ l \\ l+42 \cdot 06 \\ l+3 \cdot 04 \end{gathered}$	$\prime \prime$ $l+1 \cdot 24$ $l+2 \cdot 36$ l l 4	$\begin{gathered} \prime \prime \\ h_{4} \cdot 2+ \\ h_{4} \cdot \mathrm{r} \cdot 9+ \\ h_{42} \cdot 5+ \end{gathered}$		$\begin{gathered} \prime \prime \\ h_{42} \cdot 54 \\ h_{42} \cdot 56 \\ h_{41} \cdot 86 \end{gathered}$		$\begin{gathered} \prime \prime \\ h+3 \cdot 54 \\ l+2 \cdot 98 \\ l+{ }^{2} \cdot 02 \end{gathered}$	$\begin{gathered} \prime \prime \\ l+0 \cdot 66 \\ l+1 \cdot 9+ \\ l+1 \cdot 28 \end{gathered}$	$\begin{gathered} " \\ h_{41} \cdot \sigma_{2} \\ h_{41} \cdot{ }^{2} \\ h_{40} \cdot 20 \end{gathered}$	$\begin{aligned} & M=42^{\prime \prime} \cdot 03 \\ & w=18 \cdot 00 \\ & \frac{1}{v}=0 \cdot 06 \\ & C=55^{\circ} 11^{\prime} 42^{\prime \prime} \cdot 04 \end{aligned}$
	413	$42 ⿳ 亠 丷 厂$	41＊75	42＊24	$43^{\circ} 08$	42•32	＋1＊75	$42 \cdot 85$	41．29	41•18	
XLVI \&	$h 58.50$ $h 58.88$ $h 58.8$	$h_{57} \cdot 98$ $h_{58} 8.06$ $h_{57} 88$		${ }^{6} 56 \cdot 24$ 455 ．9＋ $h_{59} \cdot 32$ $h_{58}{ }^{\circ} \mathrm{O}$ $h_{56}{ }^{6} 8_{4}$	l l l l 58.68 l l	$h 58 \cdot 94$ $h 58 \cdot 0+$ $h 57$	$\begin{aligned} & h 58 \cdot 10 \\ & l \\ & l \\ & l \\ & \hline 58 \cdot 18 \end{aligned}$	$h_{57} 98$ ${ }^{h} 57.08$ ${ }_{6}{ }_{5} \mathbf{5}^{8 \cdot 10}$ $h_{56 \cdot 62}$	$\begin{aligned} & h_{58} 5 \cdot \sigma_{+} \\ & h_{58} 88 \\ & h_{5} 8 \cdot 22 \end{aligned}$	h． $58 \cdot 98$ $h 5^{8 \cdot}{ }^{42}$ h 58 －00	$\begin{aligned} & M=5^{\prime \prime} \cdot 02 \\ & w=27 \cdot 42 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=46^{\circ} 42^{\prime} 57^{\prime \prime} \cdot 99 \end{aligned}$
	58＊	57＇95	58－22	$57 \cdot 27$	$57^{\circ}+6$	58．07	$58 \cdot 23$	$57^{\circ} 45$	58．35	$58 \cdot 47$	
$\begin{gathered} \text { XLV \& } \\ \text { XLIV } \end{gathered}$	$\begin{array}{ll}l & 2.18 \\ l & 3.8 \\ l & 1.10 \\ l & 3 \\ 7 & 18\end{array}$	$\begin{array}{ll} l & 4.62 \\ l & 4.28 \\ l & 1.30 \end{array}$	$l 5.92$ $l 6.88$ l $6 \cdot 38$ h $2 \cdot 88$ h $1 \cdot 08$ h 3.80 h 3.06	$\begin{array}{ll} h & 3.40 \\ h & 3.26 \\ h & 2.66 \\ h & 5.66 \\ h & +.12 \\ h & .06 \end{array}$	$\begin{array}{lll} l & 5.28 \\ l & 5.36 \\ l & 2.36 \\ h & 4.82 \\ h & 3 . & 52 \end{array}$		$\begin{array}{lll} h & 3 \cdot 0 \\ l & 0 \\ l & 4 & \circ \\ l & 3 & 10 \end{array}$	$\begin{aligned} & h+52 \\ & h+5 \\ & h+5+ \\ & l+10 \end{aligned}$	$\begin{array}{lll} l & 3^{\circ} & 4 \\ l & 3 . & 0+ \\ l & 4 & 4+ \end{array}$	$\begin{array}{ll} l & 5.40 \\ l & 5 \cdot 88 \\ l \\ l \end{array}$	$\begin{aligned} & M=3^{N \cdot} \cdot 70 \\ & w=10 \cdot 66 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=56^{\circ} 5^{\prime} 3^{n \cdot} \cdot 70 \end{aligned}$
	$2 \cdot 5$	3•07	$4 \cdot 29$	3＇90	3．99	$2 \cdot 65$	3＊40	4•39	3.95	4．75	
XLIV \&	$l 37.60$ $l 34 \cdot 8$ $l 35.26$ l 35	$\begin{aligned} & l 33.98 \\ & l \\ & l \\ & l \\ & l 3 \\ & l 3.96 \\ & l \\ & l \\ & h 2.80 \\ & h 3.88 \end{aligned}$	$\begin{aligned} & h 34 \cdot 02 \\ & l \\ & l 33 \cdot 82 \\ & h 35 \cdot 38 \end{aligned}$	$h_{34} \cdot 24$ $h_{34} \cdot 00$ $h_{35} 98$	$\begin{aligned} & h_{33} \cdot 98 \\ & h_{33} \cdot 9 \\ & h_{33} \cdot 70 \end{aligned}$	$h_{34} \cdot 38$ $h_{35} \cdot 9+$ $h_{34} \cdot 8+$ $h 35 \cdot 20$	$\begin{aligned} & h 3.5 \cdot 12 \\ & h_{35 \cdot} \\ & h_{35} \cdot 56 \\ & h_{34} \cdot 40 \end{aligned}$	$\begin{aligned} & h_{32 \cdot 96} \\ & h_{34} \cdot 96 \\ & h_{3} \cdot 6_{4} \cdot 96 \\ & h_{3+}+.32 \end{aligned}$	$\begin{aligned} & l 35.10 \\ & l 34.68 \\ & l 33.76 \end{aligned}$	$\begin{aligned} & l 32 \cdot 76 \\ & l 35 \cdot 54 \\ & l 35 \cdot 42 \\ & l 34.4 \\ & l 32 \cdot 48 \\ & l 34 \% 78 \end{aligned}$	$\begin{aligned} & M=3+^{\prime \prime}-49 \\ & w=15 \cdot 58 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=77^{\circ} 27^{\prime} 34^{\prime \prime} \cdot 49 \end{aligned}$
	$35 * 9$	$33 \cdot 62$	34.41	3＋74	33：69	$35^{\circ} 09$	$34 \cdot 68$	$34^{\circ 22}$	34＊5	$34^{\circ} 00$	

Note．－K．M．denutes Referring Mark．

At XLIII (Mugrala)-(Continued).											
Angle	$202^{\circ} 1^{\prime}$	Circle readings, telescope being set on R.M.							$158^{\circ} 49^{\prime}$	338 ${ }^{\circ} 8^{\prime}$	$\mathcal{M}=$ Mean of Groupe $w=$ Relative Weight $\boldsymbol{C}=$ Concluded Δ ngle
$\underset{\text { XII }}{\text { XXXIX }}$	l 34 . 54 $l 34.20$ ${ }^{2} 37.20$ $l 36.94$ $l 36 \cdot 62$	$\begin{gathered} " \\ l 34 \cdot 96 \\ l \\ l \\ l 9.66 \\ l \\ h 8 \cdot 04 \\ h 36 \cdot 76 \\ h 37 \cdot 60 \\ h 35 \cdot 88 \end{gathered}$	$\prime \prime$ l l	$\begin{gathered} \prime \prime \\ h_{36} 36 \cdot 14 \\ h_{3} 35 \cdot 90 \\ h_{36} \cdot 90 \end{gathered}$	$\begin{aligned} & h 36 \cdot \cdot 46 \\ & h 37 \cdot 04 \\ & h 35 \cdot 86 \end{aligned}$	$\begin{gathered} \prime \prime \\ h 36 \cdot 18 \\ h 37 \cdot 14 \\ h 38 \cdot 22 \\ h 37 \cdot 22 \end{gathered}$	$\begin{gathered} " \\ h 35 \cdot 04 \\ h 36 \cdot 48 \\ h 35 \cdot 94 \end{gathered}$	$\begin{gathered} \prime \prime \\ h_{37 \cdot 12} 37 \cdot 12 \\ h 36 \cdot 16 \\ h 37 \cdot 88 \end{gathered}$		$\begin{gathered} 1 \prime \\ l 36 \cdot 72 \\ l 36 \cdot 74 \\ l 36 \cdot 60 \end{gathered}$	$\begin{aligned} M & =3^{\prime \prime \prime} \cdot 62 \\ w & =18 \cdot \cdot 78 \\ \frac{1}{w} & =0 \cdot 05 \end{aligned}$
	35*90	37*15	$37 \cdot 07$	36•18	$36 \cdot 45$	$37 \cdot 24$	$35 \cdot 82$	37*05	36•69	36.69	
At XLIV (Khirsar)											
Angle between	$255^{\circ} 38$	$75^{\circ} 38^{\prime}$	$834^{\circ} 50^{\circ}$	le readin $154^{\circ} 50^{\circ}$	gs, telesc $64^{\circ} 1^{1}$	pe being $234^{\circ} 1^{\prime}$	set on X $133^{\circ} 14^{\prime}$	LII $313^{\circ} 14$	$212^{\circ} \mathbf{9} 6^{\prime}$		$M=$ Mean of Groups ${ }^{\infty}=$ = Relative Weight $C=$ Concluded Anglo
XLII \&	h31.90 h $3 \mathrm{I} \cdot 26$ h 29.86 K $31 \cdot 38$ h $30 \cdot 54$ d 31.50	$\begin{gathered} \prime \prime \\ h_{31} \cdot 14 \\ h_{30} 30 \cdot 58 \\ h_{31} \cdot 88 \end{gathered}$	$\begin{gathered} \prime \prime \\ h 30 \cdot 42 \\ h 32 \cdot 12 \\ h .29 \cdot 08 \end{gathered}$		$\begin{gathered} \prime \prime \\ h 3_{2} \cdot 22 \\ h 330 \cdot 34 \\ h 30 \cdot 26 \end{gathered}$	$\begin{gathered} \prime \prime \\ h_{31} \cdot 38 \\ h_{29} \cdot 54 \\ h_{31} \cdot 68 \\ h 29 \cdot 98 \end{gathered}$	$\begin{gathered} \prime \prime \\ h 30 \cdot 78 \\ k 30 \cdot 70 \\ h 30 \cdot 02 \end{gathered}$	$\begin{gathered} \prime \prime \\ h_{31} \cdot 54 \\ h_{31} \cdot 50 \\ h_{31} \cdot 02 \end{gathered}$	$\begin{gathered} \prime \prime \\ l 32 \cdot 62 \\ l 29.96 \\ l 31.88 \\ l 29.86 \end{gathered}$	$\begin{gathered} \prime \prime \\ l 31 \cdot 58 \\ l 31 \cdot 56 \\ l 31 \cdot 62 \end{gathered}$	$\begin{aligned} M & =31^{\prime \prime} \cdot 16 \\ w & =16 \cdot 5^{2} \\ \frac{I}{w} & =0 \cdot 06 \end{aligned}$
	31•07	31•20	$30 \cdot 54$	32•70	30•94	$30 \cdot 65$	30'50	31*35	31•08	31•59	
$\underset{\text { XIIII }}{\text { XXXIX }}$	h 28.94 h $29^{\circ} 42$ h $29^{\circ} 48$ d $29^{\prime} 79$	$h 29.50$ $h 28.72$ $h 28.44$		$\begin{aligned} & l 28 \cdot 04 \\ & l 29 \cdot 76 \\ & l 30 \cdot 18 \\ & l 28 \cdot{ }^{2} \end{aligned}$	h 27.66 ${ }^{2} 31$ - 04 $h 29.30$ h 29.94 h29.90	$\begin{aligned} & h 29 \cdot 18 \\ & h_{2} 28 \cdot 30 \\ & h 28 \cdot 18 \end{aligned}$	h 27.40 h 30.60 ${ }^{h} 29^{\circ} 00$ $h 29.28$ $h 28.62$ h 28.62	h $32 \cdot 52$ h $30 \cdot 34$ h 29.38 h $30 \cdot 80$ h3I•66	$l 28.98$ $l 29.08$ $l 29.28$	$l 30 \cdot 10$ $l 30 \cdot 64$ l29.82	$\begin{aligned} & M=29^{\prime \prime} \cdot 50 \\ & w=14 \cdot 41 \\ & \frac{1}{v 0}=0 \cdot 07 \end{aligned}$
	$29^{\circ} 41$	28•89	30'13	29:23	29*57	28.55	28.98	30*94	29.11	30•19	$C=52^{\circ} 24^{\prime} 29^{\prime \prime} \cdot 51$
$\underset{\text { XLII }}{\text { XLI }}$	$h 57.74$ $h 58.94$ $h 58.36$ $h 60 \cdot 56$	h60. 18 k57.12 h $58 \cdot 34$ h $58 \cdot{ }_{56}$ h 57×96	$\begin{aligned} & h_{55 \cdot} \cdot 44 \\ & h 57 \cdot 62 \\ & l 58 \cdot 18 \\ & l 57 \cdot{ }^{2} \end{aligned}$	$l 60 \cdot 52$ $757 \cdot 10$ $l 59{ }^{\circ} 48$ $l 58.74$ l 58 • 30	h $56 \cdot 94$ h $58 \cdot 12$ h $59 \cdot 20$ $h_{58}{ }^{2} 46$	$\begin{aligned} & h_{59} \cdot 28 \\ & h_{58} \cdot 26 \\ & h_{59} \cdot 44 \end{aligned}$	h $58 \cdot 54$ h $58 \cdot 74$ h 59 .04	$\begin{aligned} & h 57 \cdot 74 \\ & h_{58 \cdot} \cdot 50 \\ & h 59.46 \end{aligned}$	$\begin{aligned} & l \\ & l \\ & 69 \cdot 66 \\ & 59.02 \end{aligned}$ $l 58 \cdot 40$	$\begin{aligned} & l \\ & l \\ & l \\ & l 59 \cdot 78 \\ & l \\ & l 59 \cdot 42 \end{aligned}$	$\begin{aligned} & M=5^{\prime \prime \prime} \cdot 66 \\ & v=15 \cdot 57 \\ & \frac{1}{v}=0 \cdot 06 \end{aligned}$
	58.90	58.43	57'19	$58 \cdot 83$	58-18	58.99	58•77	$58 \cdot 57$	$59^{\circ} 03$	59*72	
$\begin{gathered} \text { XLV } \\ \text { XLII } \end{gathered}$	$\begin{aligned} & h_{4} 49 \cdot 52 \\ & h_{52} \cdot{ }^{2} 8 \\ & h_{50} \cdot 26 \\ & h_{47} \cdot 12 \\ & h_{49} \cdot 88 \\ & h_{47} \cdot 80 \\ & h_{47} \cdot 80 \end{aligned}$	${ }^{2} 49 \cdot 30$ $h_{51} \cdot 26$ $h_{50 \cdot 68}$	$\begin{aligned} & h_{50 \cdot} \cdot 48 \\ & h_{50} \cdot 46 \\ & l 48 \cdot 88 \end{aligned}$	$247 \cdot 48$ $l 5 \mathrm{I}^{-02}$ $l 46 \cdot 84$ $h 50 \cdot 20$ ${ }^{h} 49.34$ h 5 I . 42	$\begin{aligned} & h_{50} \cdot 86 \\ & h_{48} \cdot 44 \\ & h_{49} \cdot 46 \\ & h_{48} \cdot 70 \end{aligned}$	$\begin{aligned} & h_{50 \cdot} \cdot 66 \\ & h_{49} \cdot 84 \\ & h_{50} \cdot 72 \end{aligned}$	h $50 \cdot 94$ h $50 \cdot 60$ h $49^{\circ} 94$	$\begin{aligned} & h_{48 \cdot 98} \\ & h_{49} \cdot 36 \\ & h_{49} \cdot{ }_{52} \end{aligned}$	$\begin{aligned} & l \\ & l \\ & l \\ & 48 \cdot 08 \\ & l \\ & l \\ & 49 \cdot 78 \end{aligned}$	$\begin{aligned} & l 48 \cdot 06 \\ & l 48.50 \\ & l 48.62 \end{aligned}$	$\begin{aligned} \dot{M} & =49^{\prime \prime} \cdot 5^{8} \\ w & =11 \cdot 47 \\ \frac{\mathbf{1}}{w} & =0 \cdot 09 \end{aligned}$
	49*29	$50 \cdot 41$	$49^{\circ} 94$	$49 \cdot 38$	$49 \cdot 37$	$50 \cdot 41$	50*49	$49^{\circ} 29$	$48 \cdot 85$	$48 \cdot 39$	

Note.-R. M. denotes Referring Mark.

February and March 1875 ; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.											
Angle between	$0^{\circ} 0^{\circ}$	$180^{\circ} 0^{\prime}$	Circl $79^{\circ} 12^{\prime}$	e readings $259^{\circ} 12^{\prime}$	s, telescop $158^{\circ} 24^{\prime}$	e being $388^{\circ} 24^{\prime}$	set on XLV $237^{\circ} 37^{\prime}$	VII $57^{\circ} 37^{\prime}$	$316^{\circ} 49^{\prime}$	$136^{\circ} 49^{\prime}$	$M=$ Mean of Groups w = Relative Weight $\boldsymbol{C}=$ Concluded Anglo
$\underset{\text { XLVIIV }}{\substack{\text { XLI }}}$	$\begin{aligned} & \prime \prime \\ & h_{51} \cdot 40 \\ & h_{52} \cdot 50 \\ & h_{53} \cdot 86 \\ & h_{54} \cdot 78 \\ & h_{53} \cdot 24 \end{aligned}$		n l l 52 l l		$\prime \prime$ $h_{53}{ }^{\circ} 48$ $h 50 \cdot 84$ $h 50 \cdot 98$ $h_{51} \cdot 08$	$\prime \prime$ $h_{52} \cdot 36$ $h_{52} \cdot 00$ $h_{53} 74$	$\begin{aligned} & h_{52} \cdot 08 \\ & h_{52} \cdot 64 \\ & h_{52} \cdot 90 \end{aligned}$	$\begin{aligned} & l_{55} 54^{72} \\ & h_{53} \cdot 96 \\ & h_{52} \cdot 64 \\ & h_{52} \cdot 02 \end{aligned}$	h $533^{4} 42$ $h 51^{1}+2$ h_{5} I-66 $h_{52} \cdot 8_{+}$	$\begin{aligned} & h_{55: 20}^{h_{55}} \\ & h_{55} \cdot 24 \\ & h_{53} \cdot 24 \end{aligned}$	$\begin{aligned} & M=52^{\prime \prime} \cdot 84 \\ & w=13 \cdot 74 \\ & \frac{1}{w}=0 \cdot c 7 \end{aligned}$
	$53 \cdot 16$	$52 \cdot 67$	52.45	53.44	51•60	52•70	$52 \cdot 54$	$53 \cdot 33$	$52 \cdot 34$	54*19	
XLIV \& XLIII	$h 58 \cdot 50$ $h 59.66$ $h 59$	$h 58 \cdot 86$ $h 58.92$ $h_{5} 8 \cdot 64$			${ }^{h} 58 \cdot 38$ h $61 \cdot 00$ h $58 \cdot 98$ h ${ }^{58} 92$		$\begin{aligned} & h 59 \cdot 62 \\ & h 60 \cdot 02 \\ & h_{59} .14 \end{aligned}$	$h_{57}{ }^{2} 92$ $h_{59} \cdot 26$ $h_{58} 8.82$	$h 59 \cdot 42$ $h 60 \cdot 38$ $h_{59}{ }^{56}$	$\begin{aligned} & h_{59 \cdot 64}^{h_{5}} \\ & h_{59} \cdot 98 \\ & h_{59} \cdot 50 \end{aligned}$	$\begin{aligned} & M=59^{\prime \prime \cdot 12} \\ & w=32 \cdot 92 \\ & \frac{1}{\square}=0 \cdot 03 \end{aligned}$
	$59^{\circ} 05$	$58 \cdot 81$	58.68	58.58	$59^{\circ 25}$	$59^{\circ} 10$	59*59	$58 \cdot 67$	$59^{\circ} 79$	59*71	2
$\begin{gathered} \text { XLIII \& } \\ \text { XLVI } \end{gathered}$	$\begin{array}{ll}h & 5.08 \\ h & 6.60 \\ h & 5.08\end{array}$		$\begin{array}{ll}l & 5.12 \\ l & 5.60 \\ l & 5.54\end{array}$	$\begin{array}{ll}l & 5 \cdot 46 \\ l & 5 \cdot 34 \\ l & 4.72\end{array}$	$\begin{array}{ll}h & 4.78 \\ h & 5 \\ h & 70 \\ \\ 5\end{array}$	$\begin{array}{ll}h & 5: 94 \\ h & 59 \\ h & 56 \\ & 58\end{array}$	$\begin{array}{ll}h & 5.28 \\ h & 5.56 \\ h & 5.42\end{array}$		$\begin{array}{ll} h & 5 \cdot 52 \\ h & 6 \cdot{ }_{28} \\ h & 5 \cdot 02 \end{array}$	$\begin{array}{lll} h & 5 \cdot 66 \\ h & 4 \cdot 5+ \\ h & 5 \cdot \end{array}$	$\begin{aligned} & M=5^{\prime \prime} \cdot 35 \\ & w=100 \cdot 25 \end{aligned}$
	5*59	5*37	$5 * 42$	5 17	$5 \cdot 13$	5.56	$5 * 42$	4*99	$5 \cdot 61$	5.23	$\mathbf{C}=57^{\circ} 7^{\prime} \quad 5^{\prime \prime} \cdot 35$
XLVI \& XLVIII		$h 58 \cdot 60$ $h_{57} 80$ $h_{57} 98$	l $l$${ }^{2} 880$				$h_{57}{ }^{\circ}+8$ $h_{55}{ }^{\circ} 98$ $h_{57} 88$	$h 57 \cdot 60$ $h_{57} \cdot 18$ $h 57 \cdot 20$	$\begin{aligned} & h_{56} 6 \cdot 82 \\ & h_{56} 06 \\ & h_{57} \cdot 40 \end{aligned}$	$\begin{aligned} & h_{57 \cdot 20} \\ & h_{55} \cdot 62 \\ & h_{57} \cdot 88 \end{aligned}$	$\begin{aligned} & M=57^{11} \cdot 4^{6} \\ & w=28 \cdot 15 \\ & \underline{1}=0 \cdot 04 \end{aligned}$
	58•17	58*13	$57 \cdot 62$	5770	57'58	57*31	57^{10}	57`33	56•76	56•90	$C=43^{\circ} 59^{\prime} 57^{\prime \prime} \cdot 46$
$\begin{gathered} \text { XLVIII \& } \\ \text { XLIX } \end{gathered}$	$\begin{array}{ll} h & 12 \cdot 65 \\ h & 8.54 \\ h & 80 \cdot 02 \\ h & 9.48 \\ l & 9.90 \\ l & 90 \cdot 02 \end{array}$	$\begin{aligned} & h_{10} \cdot 74 \\ & h_{10} \cdot 66 \\ & k_{11} \cdot 10 \end{aligned}$	$\begin{array}{ccc}l & 10 \cdot 22 \\ l & 10 \cdot 9 \\ l & 9.58\end{array}$	$\begin{array}{rr} l & 10 \cdot 38 \\ l & 9 \cdot 32 \\ l & 9 \cdot 28 \end{array}$	h11.40 $h_{11} 54$ harl 16	$\begin{aligned} & k \quad 8.80 \\ & h_{1} 10 \cdot 92 \\ & h_{10} 10 \cdot 14 \\ & h_{1} 10 \cdot 82 \end{aligned}$	$\begin{aligned} & h 10 \cdot 40 \\ & h 8 \cdot 94 \\ & h \\ & h 10 \cdot 10 \end{aligned}$	$\begin{array}{rr} h & 9 \cdot 80 \\ h_{11} \cdot 38 \\ h & 9.66 \end{array}$	$\begin{aligned} & h_{10 \cdot 38} \\ & h_{10} 10 \cdot 96 \\ & h_{10} 0 \cdot 02 \end{aligned}$	$\begin{array}{ll} h & 9 \cdot 20 \\ h & 9.60 \\ h & 10.44 \end{array}$	$\begin{aligned} M & =10^{\prime \prime} \cdot 27 \\ w & =22 \cdot 5^{8} \\ \frac{1}{w} & =0 \cdot 04 \end{aligned}$
	10'10	10.83	10.25	9•66	11•37	10.17	9•81	10•28	10×45	9*75	
XLIX \& XLVII		$\begin{aligned} & h_{54} \cdot 30 \\ & h_{53} \cdot 86 \\ & h_{53} \cdot 58 \end{aligned}$	$\begin{aligned} & l 53.52 \\ & l 52.42 \\ & l \\ & l \\ & l \end{aligned}$	$\begin{aligned} & l \\ & l \\ & l \\ & l \\ & h_{3} \cdot 85 \\ & h_{53} \cdot 10 \\ & l_{51} \cdot 6 \end{aligned}$	$\begin{aligned} & h_{53 \cdot} h_{50} \\ & h_{50} \cdot 68 \\ & h_{53} \cdot 56 \\ & h_{5 I} \cdot 16 \end{aligned}$		$\begin{aligned} & h_{54 \cdot 46} \\ & h_{54} \cdot 56 \\ & h_{53} \cdot 08 \end{aligned}$	$\begin{aligned} & h 55 \cdot 56 \\ & h_{52} \cdot 36 \\ & h_{55}{ }^{\circ} 94 \\ & h_{56} \cdot 74 \\ & h_{55} \cdot 74 \\ & h_{52} \cdot{ }^{2} \cdot 16 \end{aligned}$	$\begin{aligned} & h_{55 \cdot 52} \\ & h_{54} \cdot 30 \\ & h_{55} \cdot 16 \end{aligned}$	$\begin{aligned} & h 54 \cdot 30 \\ & h 52 \cdot 92 \\ & h 54 \cdot 72 \end{aligned}$	$\begin{aligned} & M=53^{\prime \prime} \cdot 59 \\ & w=7 \cdot 93 \\ & \frac{1}{w}=0 \cdot 13 \\ & C=57^{\circ} 43^{\prime} 53^{\prime \prime} \cdot 58 \end{aligned}$
	52•18	53.91	$53 \cdot 33$	52\%91	52.20	53.71	$54 * 03$	54.71	54*99	53.98	

At XLVI (Habib)

February 1875; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

$\begin{gathered} \text { Angle } \\ \text { betwoen } \end{gathered}$	$0^{\circ} 1^{\prime}$	$180^{\circ} 0^{\prime}$	$\begin{gathered} \text { Circlel } \\ 79^{\circ} 13^{\prime} \end{gathered}$	readings $259^{\circ}{ }^{13}$	telescop $158^{\circ} 25^{\prime}$	e being se $338^{\circ} 25^{\prime}$	on XL $237^{\circ} 36^{\prime}$	VIII 67 ${ }^{\circ} 36^{\prime}$	$316^{\circ} 49^{\prime}$	$136^{\circ} 48^{\prime}$	$\boldsymbol{N}=$ Mean of Groups $w_{0}=$ Relatire Weight $C=$ Concluded Angle
$\underset{\text { XLV }}{\text { XLVIII }}$	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=28^{\prime \prime} \cdot 41 \\ & w=7 \cdot 3^{8} \\ & \frac{1}{w}=0 \cdot 14 \\ & C=61^{\circ} 41^{\prime} 28^{\prime \prime} \cdot 43 \end{aligned}$
	$h 31 \cdot 34$ $h_{26} 62$	h27.74 $h 28.68$	$\begin{aligned} & h_{27} \cdot 6_{4} \\ & h_{26} \cdot{ }_{73} \end{aligned}$	$h_{27} 7^{\prime} 64$ $h_{28}{ }^{-12}$	$\begin{array}{r} l 28 \cdot 72 \\ l 28.58 \end{array}$	$\begin{aligned} & l 28 \cdot 42 \\ & l 26 \cdot 52 \end{aligned}$	$\begin{aligned} & l 28.32 \\ & l 29.96 \end{aligned}$	$l 29010$ $l 30.74$		$\begin{aligned} & h_{29} \cdot+2 \\ & h_{28} \cdot 78 \end{aligned}$	
	h 30.90	$h_{27}{ }^{6}$	$h_{27}{ }^{82}$	h 26.96	$l 28.88$	$l 27 \cdot 60$	l29*3	$l 29.92$	62;*08	h27*94	
	h 29.08 3										
	29*9	$28 \cdot 02$	27.41	27×7	28•73	27.51	$29^{\cdot 21}$	29*92	26•90	28.71	
XLV \& XLUI	h 56.98	$\mathrm{h}_{56}{ }^{\text {8 }} 8$	$\mathrm{h}_{56} \mathbf{3 0}$	${ }^{\text {h }} 57 \times 94$	l 55.94	$256 \cdot 88$	$l 58 \cdot 04$	$l 57.96$	158.88.	$h .58 \cdot 90$	$\begin{aligned} & M=57^{\prime \prime} \cdot 40 \\ & w=14 \cdot 21 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=76^{\circ} 9^{\prime} 57^{\prime \prime} \cdot 39 \end{aligned}$
	${ }_{\text {L }} 56 \cdot 62$	${ }_{\text {h }}^{57}{ }_{5} 14$	${ }_{\text {h }}^{58}{ }^{\text {c }} 28$	$h_{55}{ }^{\text {P }} 72$	$l{ }^{58} 006$	$l{ }_{5} 6 \cdot 18$	$l 55^{\circ} 90$	157.38	${ }^{2} 57 \cdot 98$	$h{ }_{5} 8 \cdot 4$	
		h $57{ }^{\circ} 5$	${ }^{5} 56.68$	${ }^{\text {h }} 56.80$	${ }_{2} 56.72$	${ }^{1} 57^{12}$	${ }^{2} 56.74$	$l 58{ }^{\circ}$	l 59.14	$h_{58}{ }^{\circ}{ }^{2}$	
				${ }_{6}{ }_{56}{ }^{48}$							
	56•68	57* 6	57*09	56•84	57*56	56•73	56•86	57`79	58.67	58*59	

At XLVII (Karamala)

March 1875 ; observed by Captain M. W. Rogers, R.E., with Barrou's 24 -inch Theodolite No. 2.

$\underset{\text { between }}{\text { Angle }}$	Circle readings, telescope being set on XLIV										$\mathcal{M}=$ Mean of Groups $\infty_{0}=$ Relative Weight C = Concluded Angle
	$226^{\circ} 18^{\prime}$	$46^{\circ} 18^{\prime}$	$805^{\circ} 31{ }^{\prime}$	$125^{\circ} 31^{\prime}$	$24^{\circ} 42^{\prime}$	$204^{\circ} 42^{\prime}$	$103^{\circ} 54^{\prime}$	$283^{\circ} 54^{\prime}$	$183^{\circ} 6^{\prime}$	$8^{\mathbf{0}} 6^{\prime}$	
$\underset{\text { XLV }}{\text { XLIV }}$	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=18^{\prime \prime} \cdot 83 \\ & w=20 \cdot 40 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=59^{\circ} 14^{\prime} 18^{\prime \prime} \cdot 83 \end{aligned}$
	$\mathrm{h}^{20 \cdot 84}$	$\mathrm{h}_{20 \cdot 02}$	h 18.90	$\mathrm{h}_{18} 8.64$	h 17.98	h17978	$l 18.74$	${ }^{1} 19.60$	h 18.80	h 18.74	
	${ }^{\text {h } 19.44}$	$h 18.06$	$h_{18} 8.64$	$h_{17} 194$	$h_{18} 18.46$	${ }^{2} 17.52$	$h_{18} 8.96$	$h_{19} 9^{2} 2$	$h_{2} 20 \cdot 16$	${ }^{\text {h } 19.58}$	
	$\begin{aligned} & h_{18.40}^{48} \\ & h_{19} .30 \end{aligned}$	$h 18 \cdot 78$	h 19.24	$h_{18} \mathbf{2 2}$	h 18.96	$h 18.06$	h $19 \cdot 20$ $h 18.46$	h 19:26	h 18.52	$h 20 \cdot 28$	
							$215 \cdot 48$				
	$19^{\circ} 59$	$18 \cdot 95$	18•93	18.27	18.47	17979	18.25	$19 \cdot 36$	19•16	19.53	
$\begin{aligned} & \text { XLV \& } \\ & \text { XIIX } \end{aligned}$	${ }_{4} 36.32$	h 35.20	${ }_{\text {h }}^{36}$. 50	h $35 \cdot 74$	${ }^{1} \cdot 3 \cdot 3 \cdot 72$	h 35.86	$l 36 \cdot 86$	${ }_{\text {h }} 35.98$	h 36.40	h $36 \cdot 68$	$\begin{aligned} & M=3^{\prime \prime} \cdot 12 \\ & w=19 \cdot 33 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=74^{\circ} 27^{\prime} 3^{\prime \prime \prime} \cdot 12 \end{aligned}$
	h 37.96	$h 35.36$	h37.20	h 37.20	h 36.24	$l 35.22$	$l 34.00$	h 35.62	${ }_{\text {h }} 35 \cdot 82$	h 35.58	
		h 36.26	h36.16	h 36.74	h $36 \cdot 50$	$l 36 \cdot 72$	h 33.98 $h 35^{\circ} \mathrm{O}$ 	h 35.82	k 35.44	$\mathrm{h}_{36} \cdot 32$	
	37•29	$35^{\circ} \mathrm{6r}$	$36 \cdot 62$	36.56	$36 \cdot 15$	35*93	35 14	$35^{\circ} \mathrm{81}$	$35 * 89$	$36 \cdot 19$	

February 1875; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.											
Angle between											
LI \& L	$\begin{gathered} \prime \prime \\ h 39 \cdot 20 \\ h 37.68 \\ h 36 \cdot 70 \\ h 38 \cdot 26 \end{gathered}$	$\begin{gathered} \prime \prime \\ h 35 \cdot 20 \\ h 34 \cdot 88 \\ h 34 \cdot 44 \\ l 35 \cdot 60 \end{gathered}$	$\begin{gathered} " \\ l 34 \cdot 00 \\ l 34 \cdot 98 \\ l 35 \cdot 30 \end{gathered}$	$\begin{aligned} & l 35.50 \\ & l \\ & l \\ & l \end{aligned} 36.66$	$\begin{aligned} & h_{33 \cdot} \cdot 36 \\ & h_{34} 34 \cdot 16 \\ & h_{35}{ }^{\circ} \cdot 50 \\ & h_{35} \cdot 14 \end{aligned}$	h 37.54 h $35^{\circ} 44$ h $34 \cdot 18$ h $3^{2}{ }^{\circ} 02$ h $35 \cdot 28$ h 34.44	$\begin{aligned} & h 36^{\bullet} \cdot 78 \\ & h 35 \cdot 94 \\ & h 35 \cdot 50 \end{aligned}$	$\begin{aligned} & h 36 \cdot 18 \\ & h 36 \cdot 90 \\ & h 36 \cdot 32 \end{aligned}$	$\begin{gathered} \prime \prime \\ h 34 \cdot 12 \\ l 36 \cdot 34 \\ l 36 \cdot 32 \\ l 33 \cdot 32 \\ l 35 \cdot 42 \\ l 34 \cdot 36 \end{gathered}$	$\begin{gathered} \prime \prime \\ l 33 \cdot 02 \\ l 36 \cdot 44 \\ l 35 \cdot 88 \end{gathered}$	$\begin{aligned} & M=35^{\prime \prime} \cdot 63 \\ & w=7 \cdot 14 \\ & \frac{1}{w}=0 \cdot 14 \\ & C=72^{\circ} 28^{\prime} 35^{\prime \prime} \cdot 62 \end{aligned}$
	37°	$35 * 03$	34*76	$35 \cdot 87$	34*54	$34 \cdot 82$	$36 \cdot 07$	36-47	34*71	36.11	
L \& XLIX		$\begin{aligned} & h_{51 \cdot 18} h_{48} \\ & h_{48} 48 \\ & h_{48} \cdot 40 \\ & l_{49} 12 \\ & l \\ & 50 \cdot 06 \end{aligned}$				$h_{47}{ }^{1} 12$ $h_{48} \cdot 16$ $h_{45} \cdot 88$ $h_{48} \cdot 00$	$h_{48} \cdot 06$ $h_{48} \cdot 16$ $h_{45} \cdot 98$ $h_{46} \cdot 96$	$h_{47}{ }^{\circ} 58$ $h_{45}{ }^{5} 70$ $h_{47} 00$	$h 47 \cdot 24$ l $77 \cdot 26$ $l 47 \cdot 38$ l $46 \cdot 26$	l l l $46 \cdot 16$ l l $46 \cdot 32$	$\begin{aligned} & M=47^{\prime \prime} \cdot 5^{8} \\ & w=7 \cdot 17 \\ & \frac{1}{w}=0 \cdot 14 \\ & C=53^{\circ} 12^{\prime} 47^{\prime \prime} \cdot 59 \end{aligned}$
	$48 \cdot 8$	$49^{*} 48$	$49^{\circ} \mathrm{OI}$	$46 \cdot 68$	$46 \cdot 86$	$47^{\circ} 29$	$47 * 29$	$46 \cdot 76$	$47 * 04$	$46 \cdot 60$	
XLIX \& XLV		$\begin{array}{lll} h & 5 \cdot 08 \\ h & 6 \cdot 34 \\ h & 8 \cdot 66 \\ l & 9 \cdot 18 \\ l & 5 \cdot 76 \\ l & 5 \cdot 76 \\ l & 5 \cdot 70 \end{array}$	$\begin{array}{cc} l & 8 \cdot 08 \\ l & 7 \cdot 46 \\ l & 9 \cdot 04 \end{array}$	$\begin{array}{ll} l & 8.94 \\ l & .94 \\ l & 9 \cdot 18 \\ \hline \end{array}$	$\begin{array}{ll} h & 7 \cdot 68 \\ h & 8 \cdot 48 \\ h & 6 \cdot 94 \\ h & 7 \cdot 88 \end{array}$	$\begin{array}{ll} h & 9 \cdot 26 \\ h & 7 \cdot 66 \\ h & 7 \cdot 82 \end{array}$	$\begin{array}{ll} h & 9 \cdot 10 \\ h & 8 \cdot 24 \\ h & 8 \cdot 04 \\ l & 9 \cdot 88 \end{array}$	$\begin{array}{ll} h & 7 \cdot 22 \\ h & 7 \cdot 34 \\ h & 7 \cdot 28 \end{array}$	$\begin{array}{ll} h & 8 \cdot 96 \\ l & 7 \cdot{ }^{h 6} \\ l & 9 \cdot 48 \\ l & 8 \cdot 36 \end{array}$	$\begin{array}{ll} l & 9 \cdot 14 \\ l & 8 \cdot 08 \\ l & 9 \cdot 32 \end{array}$	$\left\{\begin{array}{l} M=8^{\prime \prime} \cdot 18 \\ w=14 \cdot 66 \\ \frac{1}{w}=0 \cdot 07 \\ C=75^{\circ} 3^{8^{\prime}} 8^{\prime \prime} \cdot 1_{5} \end{array}\right.$
	$7 \cdot$	$7 \cdot 31$	819	$8 \cdot 89$	774	$8 \cdot 25$	$8 \cdot 82$	7•28	$8 \cdot 56$	$8 \cdot 85$	
XLV \& XLVI	$h 34 \cdot 14$ $h 31 \cdot 74$ $h 33 \cdot 84$ $h 34 \cdot 48$	$\begin{aligned} & k 36 \cdot 28 \\ & h 36 \cdot 64 \\ & h 34 \cdot 12 \\ & h 34 \cdot 1 \\ & l 33 \cdot 02 \\ & l 35 \cdot 32 \end{aligned}$	l l 33.34	l l $36 \cdot 98$	$h 34 \cdot 82$ $h 34.40$ $h 36.62$ $h 34.22$	h $32 \cdot 96$ $h 34.40$ $h 35 \cdot 42$ $h 35.26$	$h 34.66$ l l 34.42	$h 34.58$ $h 35$ $h 35 \cdot 40$	$h 36 \cdot 16$ $l 33 \cdot 76$ l 34.84 l 35.66	l l $35 \cdot 86$	$\begin{aligned} & M=34^{\prime \prime} \cdot 97 \\ & w=10 \cdot 76 \\ & \frac{\mathrm{~J}}{\mathbf{w}}=0 \cdot 09 \\ & C=74^{\circ} 18^{\prime} 34^{\prime \prime} \cdot 97 \end{aligned}$
	33.55	$35 \cdot 08$	34*20	$36 \cdot 66$	35° 이	34*51	34*93	$35^{\circ} 03$	35^{111}	$35^{\circ} 61$	
March 1875 ; observed by Captain M. W. Rogers, R.E., with Barrow's 24. inch Theodolite No. 2.											
Angle between	Circle readings, telescope being set on XLVII										$\begin{aligned} & M=\text { Mean of Groups } \\ & \mathbf{C O}=\text { Relative Weight } \\ & C=\text { Concluded } \Delta \text { ngle } \end{aligned}$
$\underset{\text { XLV }}{\text { XLVII }}$	\% $h 32 \cdot 74$ $h 32.34$ $h 32.94$	h $29^{\circ} 20$ h $30 \cdot 06$ h 29.96 h $3 \mathrm{I} \cdot 28$ h 30 - 92		$\begin{aligned} & l 32 \cdot 34 \\ & l 32 \cdot 28 \\ & l \\ & l \end{aligned}$	$\begin{aligned} & l 30 \cdot 50 \\ & l 31 \cdot 74 \\ & l 30 \cdot 42 \end{aligned}$	$\begin{array}{r} l 32 \cdot 68 \\ l 31 \cdot 20 \\ -l 32 \cdot 02 \end{array}$	$\begin{aligned} & h 32 \cdot 54 \\ & h 32 \cdot 22 \\ & h 30 \cdot 92 \end{aligned}$	$\begin{aligned} & h 30 \cdot 78 \\ & h 30 \cdot 36 \\ & h 30 \cdot 34 \end{aligned}$	$\begin{gathered} " \\ l 29 \cdot 92 \\ h 32 \cdot 24 \\ h 30 \cdot 92 \\ h 31^{\prime} 18 \end{gathered}$	$\begin{aligned} & h_{3} 3: 34 \\ & h_{31} \cdot 96 \\ & h_{31} \cdot{ }_{4} \end{aligned}$	$\begin{aligned} & M=31^{\prime \prime} \cdot 31 \\ & w=10 \cdot 95 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=47^{\circ} 48^{\prime} 31^{\prime \prime} \cdot 30 \end{aligned}$
	$32 \cdot 67$	$30 \cdot 28$	30×05	32•23	$30 \cdot 89$	31*97	31-89	30*49	31-06	$3 \cdot 59$	

At XLIX (Bhulan)-(Continued).											
Angle between											
XLV \& XLVIII	$\begin{gathered} \prime \prime \\ h_{43} \cdot 00 \\ h_{42} \cdot 84 \\ h_{42} \cdot 98 \\ d+3 \cdot \end{gathered}$	$\prime \prime$ $h+4 \cdot 22$ $h 44.42$ $h 45$					$\prime \prime$ $h_{42} \cdot 36$ $h_{42} \cdot 7+$ $h_{42} \cdot 52$	$"$ $h+4 \cdot 16$ $h_{43} \cdot 10$ $h_{4} \cdot 88$		$\prime \prime$ $h_{42} \cdot 86$ $h_{43}{ }^{\circ} 90$ $h_{43}{ }^{42}$	$\begin{aligned} & M=43^{\prime \prime} \cdot 49 \\ & w=23 \cdot 35 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=43^{\circ} 27^{\prime} 43^{\prime \prime} \cdot 49 \end{aligned}$
	$43^{\circ} \mathrm{O}$	$44^{\cdot 8}{ }_{4}$	$43 \cdot 37$	$43^{\circ} 41$	$43^{*} 94$	43•24	42*54	$43 \cdot 38$	$43^{\circ} 75$	43×39	
XLVIII \& L	$\begin{aligned} & h_{26 \cdot 26} \\ & h_{25} 25 \\ & h_{25} 8^{\circ} 32 \\ & h_{23} .86 \\ & d 25 \cdot 60 \end{aligned}$	$h_{23} \cdot 56$ $h_{2}+9$ $h_{2}+14$	$l 25.80$ $l 23.90$ $l 24.30$	$\begin{aligned} & l 23.15 \\ & l \\ & l \\ & l \end{aligned} 23.88$	l l 24.48	$l 24.15$ $l 25 \cdot 02$ $l 25.30$	$h 25.82$ $h 26.30$ $h 26.54$	$\begin{aligned} & h_{25 \cdot} 52 \\ & h_{27} \cdot 80 \\ & l 26 \cdot 04 \\ & l 25 \cdot 5 \\ & l 25 \cdot 58 \end{aligned}$	$\begin{aligned} & l \\ & l \end{aligned} 25 \cdot 66$	h $26 \cdot 06$ h 25.68 b25:72	$\begin{aligned} & M=25^{\prime \prime \cdot 17} \\ & w=13 \cdot 14 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=54^{\circ} 14^{\prime} 25^{\prime \prime \prime} \cdot 17 \end{aligned}$
	25.37	24.20	24*6]	24•24	24.58	$24 \cdot 83$	$26 \cdot 22$	$26 \cdot 24$	$25^{\circ}+9$	$25 \cdot 82$	
L\& LII	h 58.66 $h 58 \cdot 94$ $h 60 \cdot 6$	h6i•00 ${ }^{h} 57^{\circ} 72$ h $59^{\circ} 02$ ${ }_{h}{ }^{58} \cdot 84$ \$ 59.06		l l $58 \cdot 70$		$h_{58} 8.28$ $h_{57} 88$ $h_{58} 8.24$	$h_{58} 8 \cdot 24$ $h_{58} 8.96$ $h_{5} 8 \cdot 74$	h 58.02 h 57.98 ${ }^{2} 59 \cdot 18$	$\begin{aligned} & l 56 \cdot 26 \\ & l_{56}{ }_{56} \cdot 70 \\ & h_{57} 98 \\ & h_{58} \cdot 98 \end{aligned}$		$\begin{aligned} & M=58^{\prime \prime} \cdot 30 \\ & w=14 \cdot 73 \\ & \frac{\mathbf{I}}{w}=0 \cdot 07 \\ & C=52^{\circ} 24^{\prime} 5^{\prime \prime \prime} \cdot 3 \circ \end{aligned}$
	$59^{\circ} 4$	$59^{1} 13$	$57 \cdot 85$	57×31	58•72	$5^{8 \cdot 11}$	58.65	58•39	$57^{\circ}{ }^{1}$	58.05	
March 1875 ; observed by Captain M. W. Rogers, R.E., with Barrono's 24-inch Theodolite No. 2.											
Angle betweon	$0^{\circ} 0^{\prime}$	Circle readings, telescope being set on LII									$M=$ Mean of Groups ${ }^{*}=$ Relative Weight $\boldsymbol{C}=$ Concluded Angle
LII \& XIIX		$\begin{aligned} & h_{51} \cdot 6_{4} \\ & h_{52} \cdot 98 \\ & h_{51} \cdot 74 \end{aligned}$	$\begin{aligned} & h_{53 \cdot 26} \\ & h_{54} \cdot 58 \\ & l \\ & l_{2} \cdot 68 \end{aligned}$	$\begin{aligned} & l 53 \cdot 36 \\ & l \\ & l \\ & l \\ & l \\ & 51 \cdot 70 \end{aligned}$	$\begin{aligned} & l \\ & l \end{aligned} \cdot 62 \cdot 38$	$\begin{array}{r} h 51 \cdot 74 \\ h_{51} \cdot 60 \\ h_{52} \cdot 68 \end{array}$	$\begin{aligned} & h 53.42 \\ & l \\ & l \\ & l 2.46 \\ & l \\ & \hline \end{aligned}$	$\begin{aligned} & l 52 \cdot 04 \\ & l 2 \\ & 52 \cdot 90 \end{aligned}$	$\begin{aligned} & l \\ & l \\ & l_{52} \cdot 00 \\ & h_{52} \cdot 60 \end{aligned}$	$\begin{aligned} & h h_{52} \cdot 5^{8} \\ & h_{52} \cdot 40 \\ & h 5_{2} \cdot 70 \end{aligned}$	$\begin{aligned} & M=52^{\prime \prime} \cdot 79 \\ & w=17 \cdot 37 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=43^{\circ} 28^{\prime} 52^{\prime \prime} \cdot 80 \end{aligned}$
	53*	52•12	53*5	$52 \cdot 75$	$53 \cdot 76$	$52 \cdot 01$	$52 \cdot 87$	$52 \cdot 45$	52.13	52.56	
XLIX \& XLVIII		$\begin{aligned} & h_{48 \cdot} 4_{8} 94 \\ & h_{50 \cdot 16} \\ & h_{48 \cdot} h_{4} \cdot 70 \end{aligned}$	$\begin{aligned} & h_{49} \cdot 52 \\ & l \\ & l 48 \cdot 88 \\ & l 47 \cdot 26 \\ & l \\ & l \end{aligned}$	$\begin{aligned} & l 48 \cdot 36 \\ & l 47 \cdot 92 \\ & l 47 \cdot 90 \end{aligned}$	$\begin{aligned} & l 49.76 \\ & l \\ & l \\ & l \\ & 50 \cdot 26 \end{aligned}$	$\begin{aligned} & h_{47} 47 \cdot 96 \\ & h_{49} \cdot 88 \\ & h_{48} \cdot 78 \end{aligned}$	$\begin{aligned} & h 48 \cdot 72 \\ & l 49 \cdot 26 \\ & l 50 \cdot 54 \end{aligned}$	$\begin{aligned} & l \\ & l \\ & l 8 \cdot 8+ \\ & l \\ & l \end{aligned} 48 \cdot 18$	$\begin{aligned} & l 49.56 \\ & l_{50.18}^{h_{48} \cdot 68} \end{aligned}$	$\begin{aligned} & h_{4} 8 \cdot 6_{4} \\ & h_{49} \cdot 74 \\ & h_{48} \cdot 50 \end{aligned}$	$\begin{aligned} & M=48^{\prime \prime} \cdot 97 \\ & w=21 \cdot 60 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=72^{\circ} 32^{\prime} 48^{\prime \prime} \cdot 96 \end{aligned}$
	$48 \cdot 4$	$48 \cdot 87$	48•77	48•06	49*97	$48 \cdot 87$	$49^{\circ} 5^{1}$	48•84	$49^{\circ} 47$	4896	

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{At I (Soma)-(Continued).} \\
\hline \multirow[b]{2}{*}{\[
\underset{\text { between }}{\text { Angle }}
\]} \& \multirow[b]{2}{*}{\(0^{\circ} 0^{\circ}\)} \& \multicolumn{9}{|c|}{Circle readings, telescope being set on LII} \& \multirow[t]{2}{*}{\begin{tabular}{l}
\(\begin{aligned} M \& =\text { Mean of Groupe } \\ w \& =\text { Relativo Woight }\end{aligned}\) \\
\({ }^{20} \mathrm{C}=\) Kolacluded Angle
\end{tabular}} \\
\hline \& \& \(180^{\circ} 0^{\prime}\) \& \(79^{\circ} 13^{\prime}\) \& \(259{ }^{\circ} 12^{\circ}\) \& \(158^{\circ} 24^{\prime}\) \& \(338^{\circ} 23^{\prime}\) \& \(237^{\circ} 36^{\prime}\) \& \(\mathbf{5 7}^{\circ} \mathbf{8 6}^{\prime}\) \& \(816^{\circ} 48^{\circ}\) \& \({ }^{136}{ }^{\circ} 48^{\prime}\) \& \\
\hline \multirow{6}{*}{\[
\underset{\substack{\text { LI }}}{\text { XLVIII \& }}
\]} \& " \& " \& " \& " \& " \& 1 \& " \& " \& " \& " \& \multirow{6}{*}{\[
\begin{aligned}
\& M=56^{\prime \prime} \cdot 00 \\
\& w=9 \cdot 74 \\
\& \frac{1}{w}=0 \cdot 10 \\
\& C=53^{\circ} 42^{\prime} 56^{\prime \prime} \cdot 01
\end{aligned}
\]} \\
\hline \& \({ }^{6} 55.98\) \& \& \({ }_{7}^{l} 55.96\) \& \({ }_{2}^{2} 55.90\) \& \({ }_{7}^{1} 55^{18}\) \& \({ }_{2} 56 \cdot 02\) \& \& \({ }_{2} 53.74\) \& \(754 \cdot 86\) \& \({ }^{1} 54^{\prime} 14\) \& \\
\hline \& l \({ }^{\text {l } 57.06}\) \& \(h 58 \cdot 26\)
\(h 55\) \& \({ }_{l}^{l} 559.24\) \& \(l\)
\(l\)
\(l\)
\(56 \cdot 86\) \& \(l\)
\(l\)
\(l\)
64.90

54 \& $k 58 \cdot 18$
$h 55$ \& l
l
750
50 \& ${ }_{l}^{l} 553.52$ \& \& k 58.36
$h_{55} 26$ \&

\hline \& h 55.94 \& h ${ }^{\text {8-04 }}$ \& $l{ }_{5} 8_{40}$ \& \& ${ }_{\text {h }}^{57} \times 18$ \& h $56 \cdot 34$ \& $l 5+\cdot 66$ \& $h_{55}{ }^{\circ}+4$ \& \& $\mathrm{h}_{55}{ }^{\text {c } 64}$ \&

\hline \& ${ }^{\text {d }}$ 54*03 \& \& l
l
7
57
57 \& \& $h_{55}{ }^{\circ} \mathrm{O8}$ \& \& \& \& \& h. 58.20

$$
k_{56}{ }^{\circ} 42
$$ \&

\hline \& 56•08 \& $57 \cdot 26$ \& 56•99 \& 56•19 \& 55*34 \& 56•53 \& $55 * 06$ \& $54 \cdot 67$ \& 55.57 \& $56 \cdot 34$ \&

\hline \multirow{5}{*}{LI \& LIII} \& $h_{19} 184$ \& ${ }_{1} 17 \cdot 62$ \& $l 18.56$ \& $l 18.28$ \& 716.90 \& h17-60 \& K18.66 \& $l, 16.82$ \& l 17×54 \& K18.00 \& \multirow[t]{5}{*}{$$
\begin{aligned}
& M=17^{\prime \prime} \cdot 63 \\
& w=17 \cdot 58 \\
& \frac{1}{w}=0 \cdot 06 \\
& C=42^{\circ} 10^{\prime} 17^{\prime \prime} \cdot 63
\end{aligned}
$$}

\hline \& $l 18.66$ \& K 16.94 \& $l 15.06$ \& $l 18.22$ \& 117.26 \& h17. 20 \& 117.32 \& 719.02 \& h 18.90 \& $h_{15} \cdot 64$ \&

\hline \& ${ }^{l} 18.66$ \& $h 19.26$ \& ${ }_{7} 15.94$ \& $l 18.24$ \& ${ }^{l} 16.82$ \& h 17.30 \& ${ }^{7} 18.42$ \& $l 18 \cdot 08$ \& $h_{1} 16 \cdot 38$ \& ${ }_{\text {h } 17 \cdot 68}$ \&

\hline \& k 18.92

$d 16.88$ \& h $17 \cdot 92$ \& $$
\begin{array}{ll}
618 . \\
l 16 \cdot 54 \\
16
\end{array}
$$ \& \& $l 16 \cdot 60$ \& \& $l 18.38$ \& $l 16.70$ \& h 17.76 \& h 16. 24 \&

\hline \& 18.59 \& 17994 \& :6.92 \& 18*25 \& $16 \cdot 89$ \& 17×37 \& 18:20 \& $17 \cdot 65$ \& 17*65 \& 16.89 \&

\hline \multirow{7}{*}{LIII \& LIV} \& 610.18 \& $h_{\text {I }} \times 86$ \& $l \mathrm{II} 98$ \& 715.56 \& 714.84 \& \& h 10.92 \& $l 13.32$ \& l15:32 \& K $13 \cdot 12$ \& \multirow{7}{*}{$$
\begin{aligned}
& M=13^{\prime \prime \cdot} \cdot 72 \\
& w=16 \cdot 90 \\
& \frac{1}{w}=0 \cdot 06 \\
& C=63^{\circ} 22^{\prime} 13^{\prime \prime \cdot} \cdot 72
\end{aligned}
$$}

\hline \& 215.20 \& \& 714.98 \& $l 15.54$ \& $l 15.36$ \& $l 13 \cdot 74$ \& $113 \cdot 88$ \& $l 14.48$ \& ${ }^{1} 13.74$ \& h14.56 \&

\hline \& ${ }^{2} 160.06$ \& $h_{12} \cdot 16$ \& $l_{12} \cdot 62$ \& $l 15.04$ \& 715.42 \& $l 12.46$ \& ${ }^{1} 13.70$ \& $l 14 \cdot 10$ \& $h_{12}{ }^{\prime} 72$ \& $h_{12} 62$ \&

\hline \& $h_{13} 3^{\circ} 44$ \& h $12 \cdot 36$ \& $l 15.70$ \& $h_{13} 3^{3} 3^{8}$ \& ${ }^{\text {K } 13.78}$ \& lı198 \& ${ }^{1} 14.28$ \& \& h13*74 \& \&

\hline \& h 13.20
$h 12.76$ \& \& 11440 \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \&

\hline \& $13 \cdot 37$ \& 13.39 \& 13.94 \& 14.46 \& $14 * 48$ \& 13.20 \& 13.06 \& 13.97 \& $13 \cdot 83$ \& 13.43 \&

\hline \multirow{3}{*}{LIV \& LII} \& $h 50 \cdot 52$
$h 50 \cdot 92$ \& k_{51} (30
$h_{51} 12$ \& $h_{50}{ }_{5} \cdot 84$

$h_{5} \cdot 2.6$ \& ${ }_{l}^{l}{ }_{l}^{50 \cdot 26}$ \& \multirow[t]{2}{*}{\[
$$
\begin{aligned}
& l 52 \cdot 08 \\
& l \\
& 50.20 \\
& 50.68
\end{aligned}
$$

\]} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[

$$
\begin{array}{lll}
h & 51 \cdot 62 & h \\
l & 52 \cdot 28 \\
l & 51 \cdot 10 & h \\
l & 51 \cdot 54 \\
52 \cdot 84 & l & 51 \cdot 60
\end{array}
$$

\]}} \& \multirow[t]{2}{*}{| ${ }_{7}^{71 \cdot 52}$ |
| :--- |
| l 50 . 34 |
| ${ }^{51}$ 1.84 |} \& \multirow[t]{2}{*}{| $l 49 \cdot 76$ |
| :--- |
| l $50 \cdot 12$ |
| h 50 -66 |} \& \multirow[t]{2}{*}{h $53 \cdot 58$ h $50 \cdot 28$ ${ }_{7}{ }^{2} 51 \cdot 64$ ${ }^{2} 51 \cdot 54$ ${ }^{6} 52.24$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& M=51^{\prime \prime} \cdot 22 \\
& w=18 \cdot 13 \\
& \frac{1}{w}=0 \cdot 06 \\
& C=84^{\circ} 42^{\prime} 51^{\prime \prime} \cdot 22
\end{aligned}
$$
\]}

\hline \& \& $$
h_{51} \cdot 60
$$ \& h_{51}-88 \& \[

152 \cdot 04
\] \& \& \& \& \& \& \&

\hline \& 50'50 \& 5134 \& 51•66 \& 5111 \& $50 \cdot 63$ \& 51.85 \& 5181 \& 51-23 \& 50'18 \& 51.86 \&

\hline \multicolumn{12}{|l|}{\multirow[b]{2}{*}{- March 1875; observed by Captain M. W. Rogers, R.E., vith Barrov's 24-inch Theodolite No. 2.}}

\hline \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{Angle between} \& \multirow[b]{2}{*}{$0^{\circ} 1^{\prime \prime}$} \& \multicolumn{7}{|c|}{Circle readings, telescope being set on LIII} \& \multirow[b]{2}{*}{$816^{\circ} 48^{\prime}$.} \& \multirow[b]{2}{*}{$186^{\circ} 48^{\prime}$} \& \multirow[t]{2}{*}{| M $=$ Mean of Groups |
| :--- |
| ${ }_{c}^{m}=$ Rolative Weight |
| $C=$ Conolmded Anglo |}

\hline \& \& $180^{\circ} 1^{\prime}$ \& $79^{\circ} 18^{\prime}$ \& $259^{\circ} 18^{\prime}$ \& $158{ }^{\circ} 4^{\prime \prime}$. \& 838 ${ }^{\circ} \mathbf{4}^{\prime}$ \& $287^{\circ} 36^{\prime}$ \& $57^{\circ} 96^{\prime \prime}$ \& \& \&

\hline \multirow{5}{*}{LIII \& L} \& \multirow[t]{4}{*}{$\begin{array}{cc} \\ & \prime \prime \\ k & 4.78 \\ h & 4.42 \\ h & 3.50\end{array}$} \& " \& " \& " \& " \& " \& " \& \prime \& " \& " \& \multirow{5}{*}{$$
\begin{aligned}
& \boldsymbol{M}=4^{\prime \prime} \cdot 09 \\
& w=22 \cdot 50 \\
& \frac{\mathbf{I}}{\mathbf{w}}=0 \cdot 04 \\
& \boldsymbol{C}=61^{\circ} 1^{\prime} 4^{\prime \prime \prime} \cdot 08
\end{aligned}
$$}

\hline \& \& k
2.20
5.76 \& $\begin{array}{ll}4 & 2.36\end{array}$ \& ${ }^{6} 3.26$ \& ${ }^{4} 408$ \& ${ }^{2} 4.26$ \& 4.
4.22 \& h. 4.02 \& ${ }^{4} 3.46$ \& $74: 60$ \&

\hline \& \& $\begin{array}{ll}\text { h } & 5.76 \\ h & 6.40\end{array}$ \& $\begin{array}{ll}\text { h } \\ k & 2.98 \\ 3 & 3.36 \\ & 3\end{array}$ \& \& $\begin{array}{ll}h & 4.54 \\ \\ 4 & 4.62\end{array}$ \& \& h

4 \& $\begin{array}{ll}\text { h } \\ h & 3.84 \\ 3.9+\end{array}$ \& h 3.28
h 4.86 \& $\begin{array}{ll}7 & 5: 72 \\ 7 \\ 4 & 80\end{array}$ \&

\hline \& \& $$
\begin{array}{lll}
& 3 & 30 \\
h & 3 \cdot 12 \\
h & 4 \cdot 78
\end{array}
$$ \& * 340 \& \& \& \& \& \& \& \&

\hline \& $4 * 33$ \& . $4 \cdot 36$ \& 3.03 \& $3 \cdot 66$ \& 4.41 \& $4 \cdot 39$ \& 4.02 \& 3.93 \& $3 \cdot 87$ \& 5.04 \&

\hline
\end{tabular}

At LI (Telu)-(Continued).											
Angle											
L \& XIVIII			$\begin{gathered} \prime \prime \\ h 29^{\circ} 30 \\ h 29^{\circ} 06 \\ h 29.08 \end{gathered} ;$	$\begin{gathered} " \prime \\ h_{29} 29.30 \\ h_{28} 8 \cdot 84 \\ h_{28} .8 \cdot 60 \end{gathered}$	$\begin{gathered} \prime \prime \\ h 290^{\prime 24} \\ h 29 \cdot 72 \\ h 29^{\circ} \cdot 50 \end{gathered}$	$\begin{gathered} \prime \prime \\ h_{29} 29^{22} \\ h_{3} 30^{\circ} 7^{2} \\ h_{29} 90^{\prime} 94 \end{gathered}$	$\begin{gathered} " \prime \\ h_{2} 29 \cdot 38 \\ h_{29} \cdot 16 \\ k_{29} \cdot{ }^{2} \cdot 36 \end{gathered}$	$\begin{gathered} \prime \prime \\ h_{28 \cdot 40} \\ h_{29} 29 \cdot 84 \\ h_{28} 8 \cdot 88 \end{gathered}$	$\begin{gathered} 1 \prime \\ h 30 \cdot 14 \\ h 29 \cdot 70 \\ k 29 \cdot 82 \end{gathered}$	$\begin{gathered} \prime \prime \\ l 30 \cdot 26 \\ l 28 \cdot 88 \\ l 29 \cdot 86 \end{gathered}$	$\begin{aligned} & M=29^{\prime \prime} \cdot 3^{2} \\ & w=43 \cdot 5^{0} \\ & \frac{1}{w}=0 \cdot 02 \\ & C=53^{\circ} 4^{\prime} 29^{\prime \prime} \cdot 3^{2} \end{aligned}$
	29*0	$28 \cdot 67$	29*15	28.91	29*49	29•96	29*30	29*04	$29 \cdot 89$	$29 \cdot 67$	
March 1875 ; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.											
Angle between	$0^{0} 1^{\prime}$		Circle reading $79^{\circ}{ }^{12^{\prime}} \quad 259^{\circ} 12^{\prime}$		s, telescop $158^{\circ} 24^{\circ}$	pe being 838 ${ }^{\circ} 24^{\prime}$	t on XLIX $237^{\circ} 36^{\prime} \quad 57^{\circ} 36^{\prime}$		$816^{\circ} 49^{\circ}$	$186^{\circ} 48^{\prime}$	$M=$ Mean of Groups ${ }^{20}$ - Kelative Weight $\boldsymbol{C}=\mathbf{C o n c l u d e d}$ Anglo
XLIX \& L	$\begin{array}{cc} & \prime \prime \prime \\ h & 8 \cdot 1 \\ h & 8 \cdot \\ h & 8 \\ h & 10 \\ h & 10 \cdot 5 \end{array}$	$\begin{array}{lc} \prime \prime \prime \\ k & 8 \cdot 96 \\ h & 7 \cdot 98 \\ h & 9 \cdot 16 \end{array}$					$\begin{array}{cc} \prime \prime \\ h & 9 \cdot 96 \\ h & 9 \cdot 48 \\ h_{10} 0 \cdot 22 \end{array}$		$\begin{array}{ll} h & 10 \cdot 08 \\ h & 9 \cdot 84 \\ h & 9 \cdot 36 \end{array}$	$\prime \prime$ h 8.36 h 10.30 h 6.72 h 8.66 h 9.02	$\begin{aligned} & M=9^{\prime \prime} \cdot 4 \mathbf{I} \\ & w=25 \cdot 8 \mathbf{I} \\ & \frac{\mathbf{I}}{w}=0 \cdot 04 \\ & C=84^{\circ} 6^{\prime \prime} 9^{\prime \prime} \cdot 39 \end{aligned}$
	$9^{\circ} 3$	$8 \cdot 70$	9•77	9.51	$9 \cdot 67$	9*02	$9 \cdot 89$	$9 \cdot 83$	$9 \cdot 76$	$8 \cdot 59$	
L\& LIV	h 18. $\mathrm{h}_{15}{ }^{\circ}$ h 16.6 h15.50	$\begin{aligned} & h_{1} 16 \cdot 3 \\ & h_{17} \cdot 4 \\ & h_{16} 6.8 \end{aligned}$			$\begin{array}{llll} l & 16 \cdot 18 & l & 17 \cdot 00 \\ l & 16 \cdot 22 & l & 17 \cdot 16 \\ l & 15 \cdot 92 & l & 16 \cdot 02 \end{array}$		$\begin{array}{ll} h_{16} 6 \cdot 64 & h 16 \cdot 48 \\ h_{16} \cdot 28 & h_{17} \cdot 46 \\ h_{16} \cdot 10 & h_{15} \cdot 88 \end{array}$		$\begin{aligned} & h_{17} \cdot 18 \\ & h_{15} \cdot 76 \\ & h_{16} \cdot 88 \end{aligned}$	$\begin{aligned} & h_{17} \cdot 08 \\ & h_{17} 7^{\circ} 3^{2} \\ & h_{15} 7^{2} \end{aligned}$	$\begin{aligned} M & =16^{\prime \prime} \cdot 40 \\ w & =23 \cdot 17 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =47^{\circ} 18^{\prime} 16^{\prime \prime} \cdot 38 \end{aligned}$
	$16 \cdot 6$	16.89	15.08	$16.28 \quad 16 \cdot 11$		$16 \cdot 73 \quad 16 \cdot 34$		16.61	16.61	16.71	
December 1875 ; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No.											
Angle between	$246^{\circ} 66^{\prime}$	$66^{\circ} 56$	Circle readings, telescope being set on LVI						$209^{\circ} 43^{\prime}$	$23^{\circ} 43^{\prime}$	$M=$ Mean of Groups $w_{0}=$ Relative Weight C $=$ Concluded Δ ngle
LVI \& LV			$h 27 \cdot 38$ $h 28 \cdot 46$ h27.06 h $25^{\circ} \mathbf{9 2}^{2}$ $h 25^{\prime 2}$	$\begin{gathered} " \prime \\ h_{27} 7^{\prime 46} \\ h_{25} 25^{\circ} 90 \end{gathered}$	$\begin{aligned} & h_{2} 25 \cdot 68 \\ & h_{25} \cdot 96 \\ & h_{26} \cdot 10 \end{aligned}$	$\begin{gathered} \prime \prime \\ h_{26} 26 \cdot 72 \\ h_{25} 2 \cdot 78 \\ h_{26} 6 \cdot 66 \end{gathered}$	$\begin{gathered} .11 \\ h 25^{\circ} 98 \\ h 25^{\circ} 50 \\ h 26 \cdot 30 \end{gathered}$	$\begin{gathered} \prime \prime \\ h 26 \cdot 32 \\ h 25 \cdot 82 \\ h 25 \cdot 78 \end{gathered}$	$\begin{gathered} . \prime \prime \\ h_{24} \cdot 32 \\ h_{26} 26 \cdot 28 \\ h_{25} \cdot 02 \end{gathered}$	$\begin{gathered} \prime \prime \\ h_{2} 25 \cdot 76 \\ h_{26} 26 \cdot 22 \\ h_{25} 25 \cdot 88 \end{gathered}$	$\begin{aligned} & M=26^{\prime \prime} \cdot 00 \\ & w=22 \cdot 20 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=60^{\circ} 42^{\prime} 26^{\prime \prime} \cdot 01 \end{aligned}$
	$25 \cdot 78$	$25^{\circ} 5$	26-80	26.57	25.91	26•39	25*93	25.97	25.21	$25 * 95$	

At LIII (Mansa)-(Continued).											
Angle between	$246^{\circ} 66^{\circ}$	Circle readings, telescope being set on LVI									$\boldsymbol{M}=$ Mean of Groups $*_{0}=$ Relative Weight $C=$ Concluded Angle
		$66^{\circ} 56^{\prime}$	$826^{\circ}{ }^{\prime}$	$146^{\circ} 7^{\prime}$	$45^{\circ} 19^{\prime}$	$2255^{\circ} 19^{\prime}$	$124{ }^{\circ} 31^{\prime}$	$304{ }^{\circ} 31^{\prime}$	$203^{\circ} 43^{\prime}$	$23^{\circ} 43^{\prime}$	
LV \& LIV	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=56^{\prime \prime} \cdot 44 \\ & w=22 \cdot 6 \mathrm{I} \\ & \frac{1}{w}=0 \cdot 04 \\ & C=52^{\circ} 22^{\prime} 56^{\prime \prime} \cdot 43 \end{aligned}$
	${ }^{2} 57.08$	${ }^{6} 57.50$	h 54.12	K $57 \cdot 28$	${ }_{2} 57.08$	${ }_{\text {L }}^{57} 12$	${ }^{6} 56 \cdot 40$	${ }^{\text {h } 56.88}$	h 55.78	${ }^{6} 56 \cdot 76$	
	h 55.88 h 55.	h $56 \cdot 90$ $h 55 \cdot 68$	h 56.26 h 55		$h_{55}{ }^{\text {a }} 34$ $h 56.06$	$h 55 \cdot 86$ h 57 18	$h 55^{\circ} 90$ $h 54.74$		$h 57.64$ $k 56.28$	$h 56 \cdot 52$ $h 57 \cdot 62$	
	${ }^{\text {h }} 55 \cdot 88$		$\begin{aligned} & h 55 \cdot 82 \\ & h \\ & h 6 \cdot 60 \end{aligned}$ $h_{55} \cdot 74$	$h_{56 \cdot 40}$	$h_{56 \cdot 06}$	$h_{57} 18$	$h_{54} 74$	$h_{57}{ }^{40}$	k 56. 28	${ }^{6} 57 \cdot 62$	
	56•08	56.69	$55^{\circ} 71$	$57^{\circ} \mathbf{2 1}$	56•16	$56 \cdot 72$	$55 \cdot 68$	56•63	56•57	56•97	

March 1875; observed by Captain M. W. Rogers, R.E., with Barrov's 24-inch Theodolite No. 2.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Angle between} \& \multicolumn{10}{|c|}{Circle readings, telescope being set on LIV} \& \multirow[t]{2}{*}{\begin{tabular}{l}
\(M=\) Mean of Groups \\
*o - Relative Weight \\
C \(=\) Concluded Angle
\end{tabular}} \\
\hline \& \(0^{\circ} 0^{0}\) \& \(180^{\circ} 0^{\prime}\) \& \(79^{\circ} 13^{\prime}\) \& \(259{ }^{12} 2^{\prime}\) \& \(158^{\circ} 25^{\circ}\) \& 338 \({ }^{\circ} 5^{\prime}\) \& \(2377^{37}\) \& \(57^{\circ} 37^{\prime}\) \& \(316^{\circ} 49^{\circ}\) \& \(136^{4} 48^{\prime}\) \& \\
\hline \multirow{6}{*}{LIV \& L} \& " \& " \& " \& " \& " \& " \& " \& " \& \(\prime\) \& " \& \multirow{6}{*}{\[
\begin{aligned}
\& M=54^{\prime \prime} \cdot 5 \mathrm{I} \\
\& w=13 \cdot 8 \mathrm{I} \\
\& \frac{1}{w}=0 \cdot 07 \\
\& C=44^{\circ} 16^{\prime} 54^{\prime \prime} \cdot 5^{2}
\end{aligned}
\]} \\
\hline \& \begin{tabular}{l}
\(h 56.24\) \\
\hline 52.68
\end{tabular} \& \({ }_{3} 55.38\) \& \({ }^{l} 54.94\) \& \({ }^{l} 53.54\) \& \({ }^{2} 550.04\) \& \(l 53.68\) \& \({ }^{2} 54.60\) \& \(l 53 \cdot 12\) \& 753.66 \& 253.36 \& \\
\hline \& h 52.68
\(h \mathbf{h} 5.60\) \& \(h 55{ }^{\circ} \mathrm{O}\)
\(l\)
56 \& \(l\)
\(l\)
\(l\)
56.04

S \& l
l
63.12
53 \& l
l
754
54 \& ${ }^{l} 560.54$ \& ${ }^{l} 53^{\prime} \cdot 18$ \& ${ }^{l} 52.48$ \& ${ }^{l} 56 \cdot 12$ \& ${ }^{l} 55^{\circ} 10$ \&

\hline \& h 54.60
$k 53.66$ \& \& 654.32 \& \& '54'90 \& ${ }_{l}^{53}{ }_{54}{ }^{\circ} 80$ \& $l 55 \cdot 66$
l

55 \& ${ }^{2} 53 \cdot 84$ \& $$
\begin{aligned}
& \quad \begin{array}{l}
55 \cdot 44 \\
l 55 \cdot 12
\end{array}
\end{aligned}
$$ \& 6 \&

\hline \& $$
\begin{aligned}
& h 55 \cdot 82 \\
& h \\
& h 4 \cdot 76
\end{aligned}
$$ \& \& \& \& \& \& \& \& \& \&

\hline \& $54 \cdot 63$ \& 55*50 \& 54.67 \& 53.49 \& 54*88 \& 54.51 \& 54*70 \& $53 \cdot 15$ \& $55^{\circ} 09$ \& 54.47 \&

\hline \multirow{4}{*}{L \& LI} \& $h 39.60$
$h 40.98$ \& $h 38 \cdot 06$
$h 38 \cdot 78$ \& \& l
l
l
37
39 \& l

l $38 \cdot 14$ \& | l |
| :--- |
| l |
| l |
| $40 \cdot 82$ |
| | \& l

l
l
$40 \cdot 36$ \& l
l
$l 0 \cdot 72$
39.32 \& l
l
$40 \cdot 26$
40 \& l
l
l
.38 .24

38.96 \& \multirow[t]{4}{*}{$$
\begin{aligned}
& M=39^{\prime \prime} \cdot 25 \\
& w=15 \cdot 55 \\
& \frac{1}{w}=0 \cdot 06 \\
& C=76^{\circ} 48^{\prime} 39^{\prime \prime} \cdot 26
\end{aligned}
$$}

\hline \& l $38 \cdot 60$ \& $l 39 \cdot 32$ \& $l 38.74$ \& $l 38 \cdot 80$ \& $l 38.98$ \& $l 38.68$ \& $l^{l} 38 \cdot 32$ \& $l 39.54$ \& $l 39.74$ \& ${ }^{\prime} 38 \cdot 60$ \&

\hline \& \& \& \& \& \& \& \& \& \& \&

\hline \& 39`73 & 3872 & 39*05 & \(38 \cdot 67\) & 38.20 & 39*93 & 39`70 \& 39•86 \& 40*03 \& $38 \cdot 60$ \&

\hline
\end{tabular}

At LIV (Marot)

March 1875; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

$\underset{\text { Angle }}{\text { Anger }}$	$\mathbf{8 1 2}{ }^{\text {a }} \mathbf{9}^{\prime}$	Circle readings, telescope being set on LII									$M=$ Mean of Groups ${ }^{2} 0=$ Relative Weight $C=$ Concluded Angle
		$132{ }^{\circ}{ }^{\prime}$	$81^{\circ} 14^{\prime}$	$211^{\circ} 14^{\prime}$	$110^{\circ} 26^{\prime}$	$290^{\circ} 26^{\prime}$	$189^{\circ} 38^{\prime}$	$9^{\circ} 38^{\prime}$	$268^{\circ} 50^{\prime}$	$88^{\circ} 50^{\circ}$	
LII \& L	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=52^{\prime \prime} \cdot 55 \\ & w=14 \cdot 38 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=47^{\circ} 58^{\prime} 52^{\prime \prime} \cdot 55 \end{aligned}$
	${ }^{7} 50 \cdot 70$	$h 53.08$	h 52.82	${ }_{2} 51 \cdot 20$	${ }_{6} 52 \cdot 62$	753.30	$l 50.66$	l 49:62	h 52.86	${ }^{\text {L }} 53.66$	
	${ }^{k} 52.54$	${ }^{\prime} 533^{\circ} 50$	${ }^{\prime} 5_{52}{ }^{20}$	$h_{52} \cdot 64$	$l 52 \cdot 28$	$l 52 \cdot 82$	$l 54 \cdot 14$	$h_{51} 62$	$h_{51}{ }^{\text {P }} 96$	h 54.40	
	h52.42		h 52'92	h52.10	${ }^{51}$-82	$l 52^{\circ} 90$	${ }^{l} 51.90$	${ }^{4} 55.30$	k 5x 96	453.08	
		h 51.78 $h 52$	1				l51.20 751.90				
	51.89	$53 \cdot 17$. $52 \cdot 65$	51•98	52:24	$53^{\circ} \mathrm{OI}$	51*96	52.59	52*26	$53^{\circ} 7{ }^{\text {- }}$	

At LIV (Marot)-(Continued).

$\underset{\text { Betweon }}{\substack{\text { Angle }}}$	Circle readings, telescope being set on LII										K = Mean of Groups ${ }^{50}=$ Relative Weight $\boldsymbol{C}=$ Concluded Δ ngle
	$812^{\circ} \mathbf{2}^{\prime}$	$132^{\circ} 1^{\prime}$	$81^{\circ} 14^{\prime}$	$211^{\circ} 14^{\prime}$	$110^{\circ} 26^{\prime}$	$290^{\circ} 26^{\prime}$	$189^{\circ} 38^{\prime}$	$9^{\circ} 38^{\prime}$	$268^{\circ} 50^{\circ}$	$88^{\circ} 50^{\prime}$	
L \& LIII	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=52^{\prime \prime} \cdot 43 \\ & w=23 \cdot 43 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=72^{\circ} 20^{\prime} 52^{\prime \prime} \cdot 44 \end{aligned}$
	h 55.08	${ }_{6} 52 \cdot 14$	${ }_{7} 52 \cdot 36$	${ }_{7} 51.50$	${ }^{6} 52.78$	${ }^{2} 52 \cdot 28$	$252 \cdot 66$	l $54 \cdot 16$	h 52.26	h 49.60	
	R 54.08 $h_{52} \cdot 84$	$h 52 \cdot 12$ $k 2.36$	h 52.52 $h 2.26$	${ }_{\text {h }}^{51} \times 86$	l l l $52 \cdot$ 52	${ }_{l}^{l} 52 \cdot 68$	l l l $52 \cdot 3$ 10	${ }^{l} 51.80$	${ }_{\text {h }}^{52} 52 \cdot 98$	h 52.96	
		${ }_{4} 5^{\prime} 36$	$h_{52}{ }^{26}$	${ }_{\text {k } 514}$	${ }^{52}$ '18	$l 51 \cdot 34$	$l 53.30$	h 54.02 h 52.58	h 52'54	h 52.28 $h 5^{2} \cdot 02$	
								h 52.42		k $52 \cdot 26$	
	$53 \cdot 18$	52.21	5238	51*61	52.55	52•10	52.91	$53^{\circ} 00$	52.59	51.82	

December 1875; observed by Captain M. W. Rogers, R.E., with Barrov's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on LIII										$M=$ Menn of Groups ${ }^{*}=$ Relative Weight $C=$ Concluded Δ nigle
	$267{ }^{\circ} 3^{\prime}$	$87^{8} 8^{\prime}$	$846^{\circ} 16{ }^{\prime}$	$166^{\circ} 16^{\prime}$	$65^{\circ} 87^{\prime}$	$245^{\circ} \mathbf{2 7}$	$144^{\circ} 39^{\prime}$	$824^{\circ} 39^{\prime}$	$223^{\circ} 52^{\prime}$	$43^{\circ} 52^{\prime}$	
LIII \& LV	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} M & =59^{\prime \prime} \cdot 24 \\ w & =10 \cdot 55 \\ \frac{\mathbf{I}}{w} & =0 \cdot 09 \\ C & =47^{\circ} 41^{\prime} 59^{\prime \prime} \cdot 24 \end{aligned}$
	${ }^{3} 59.50$	360. 10	${ }^{h} 57 \cdot 58$	h60.32	$l 58 \cdot 92$	l60. 28	l $60 \cdot 80$	$\underline{16130}$	${ }^{\boldsymbol{k}} 559.66$	${ }_{\text {h }}^{58}$ 8.88	
	$h 58.82$ h	${ }^{h} 599^{\circ} 44$		$h 57 \cdot 80$ h 58.66	l	${ }^{l} 58.46$	$160 \cdot 08$	$l 60 \cdot 20$	$h_{57} 5 \cdot 26$	${ }^{6} 57.38$	
	h 58.44	h 58.84	h 57×80	$\begin{aligned} & h_{58} h_{58} \cdot 66 \end{aligned}$	'59'94	$l 60 \cdot 34$	l l l 58.54 8.86	$l 60 \times 74$	$\begin{aligned} & h_{5} 58 \cdot 84 \\ & h_{5} 8 \cdot 70 \end{aligned}$	h 58.80	
	58•92	$59 * 46$	57•83	58•79	59*90	59*69	$60 \cdot 07$	60*75	$58 \cdot 62$	58.35	
LV\&LVII	${ }_{617} 128$	\% $20 \cdot 42$	h 22.44	k $20 \cdot 04$	$l 20.66$	l19-80	$\underline{18.98}$	$l 20 \cdot 00$	k 20.26	h21-18	$\begin{aligned} & M=20^{\prime \prime} \cdot 10 \\ & w=12 \cdot 60 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=45^{\circ} 15^{\prime} 20^{\prime \prime} \cdot 09 \end{aligned}$
	h 18.02	${ }^{\text {h } 20.08}$	${ }_{\text {h }} 21.14$	${ }^{\text {h } 20.44}$	${ }^{7} 19.72$	${ }^{7} 19.52$	l 18.70	${ }^{1} 18 \cdot 16$	${ }^{\text {h } 19} 1{ }^{\prime} 74$	${ }^{2} 19^{\circ} 92$	
	K 18.06 h 20.70	h $20 \cdot 72$	h 20.14 $h_{19} 9$ 18	h $31 \cdot 22$	$\boldsymbol{l 2 1 . 0 8}$	$l 20.06$	$l 18.82$	l21.76 $h 21-14$	h 20. 74	h 2I 44	
	h 19\% 50							h $20 \cdot 16$			
	18.71	$20 \cdot 41$	20.85	20. 57	20*49	19*79	18*83	20'24	20. 25	$20 \cdot 85$	

At LV (Hasan)

December 1875 ; observed by Captain M. W. Rogers, R.E., with Barrov's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on LIX										$M=$ Mesn of Groups ${ }^{*}=$ Relative Weight $\boldsymbol{C}=$ Concluded \mathbf{A} ngle
	$0^{\circ} 1^{\prime}$	$180^{\circ} 1^{\prime}$	$79^{\circ} 12^{\prime}$	$259^{\circ} 12^{\prime}$	$158{ }^{\circ} 23^{\prime}$	338 ${ }^{\circ} 4^{\prime}$	237 37^{\prime}	$57{ }^{87}$	$816^{\circ} \mathbf{4 8}$	$186^{\circ} 48^{\prime}$	
LIX \& LVII	*	"	"	"	"	"	,	"	"	"	$\begin{aligned} & M=15^{\prime \prime} \cdot 65 \\ & w=25 \cdot 18 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=56^{\circ} 49^{\prime} 15^{\prime \prime} \cdot 65 \end{aligned}$
	h17. 20	${ }^{2} 15.54$	215.34	\$15. 20	${ }_{1} 15^{\circ} 46$	${ }^{1} 15^{\prime} 12$	h 14.82	715.98	$h_{15}{ }^{\prime} 92$	$\mathrm{h}_{15 \cdot 66}$	
	${ }_{3} 16 \cdot 04$	${ }_{2} 17.16$	$216 \cdot 38$	h 15.54	h 17.94	${ }^{6} 15^{\circ} 60$	h $16 \cdot 36$	h 15.94	h15.24	${ }^{\text {h } 15.10}$	
	h $17{ }^{\circ} \mathrm{O}$	$h 15{ }^{\prime} 42$	$\begin{aligned} & l 14.30 \\ & l 14.70 \end{aligned}$	h 14.94	h 15.20 h 16.02	h 14.94	$\begin{aligned} & h_{15}{ }_{15}{ }_{15} \cdot 90 \end{aligned}$	h 14×74	h 15.24	h 14.74	
	16.71	$16 \cdot 04$	15•18	$15 * 23$	16•16	15*22	15*73	15.55	15*47	15'17	

At LVI (Sultán)

December 1875; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on LVIII										$\boldsymbol{M}=$ Mean of Groups $w=$ Relative Weight $\boldsymbol{C}=$ Concluded Angle
	$0^{\circ} 0^{\prime}$	$180^{\circ} 0^{\prime}$	$79^{\circ} 18^{\prime}$	$269^{\circ} 13^{\prime}$	$168^{\circ} 24^{\prime}$	$338{ }^{\circ} 24^{\prime}$	$237{ }^{\circ} 37^{\prime}$	${ }^{67}{ }^{\circ} 37^{\prime}$	$816^{\circ} 49^{\prime}$	$186^{\circ} 48^{\prime}$	
LVIII \& LV	"	"	"	"	"	"	"	n	"	"	$\begin{aligned} & M=23^{\prime \prime} \cdot 45 \\ & w=14 \cdot 39 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=62^{\circ} 9^{\prime} 23^{\prime \prime} \cdot 44 \end{aligned}$
	h24.90	${ }^{2} 23.32$	${ }_{4} 23.30$	h 24.44	${ }^{1} 22 \cdot 18$	123.10	h24.64	h $22 \cdot 56$	$h 34.22$	${ }^{\text {h } 23.32}$	
	h24.22	${ }^{\text {h22 }}$, 76	h23.02	h22.94	$l 21.20$	221.4	h22.64	$h^{2} 4^{\circ} 18$	h 24.50	${ }^{2} 23 \cdot 16$	
	h25*10	h23.36	$h_{24}{ }^{\prime} 96$	h23.90	$\begin{aligned} & l 22.30 \\ & l 23.58 \end{aligned}$	$l 23.20$	h $22 \cdot 96$	h22.34	h 24.30	123.68	
	24\%74	$23 \cdot 15$	$23 \cdot 76$	$23 * 76$	22•32	$22 \cdot 58$	23.41	$25 \cdot 03$	24•34	23.39	
LV \& LIII	h 28.04	$h^{23} \cdot 84$	h 23.66	h $24 \cdot 36$	$126 \cdot 70$	223.64	1223.40	$h_{23}{ }^{10}$	${ }^{\text {h } 23.24}$	h24. 20	$\begin{aligned} & M=24^{\prime \prime} \cdot 10 \\ & w=7 \cdot 93 \\ & \frac{1}{w}=0 \cdot 13 \\ & C=81^{\circ} 56^{\prime} 24^{\prime \prime} \cdot 10 \end{aligned}$
	$h^{26} 26$	${ }^{2} 23 \cdot 80$	h $24 \cdot 32$	h24.56	124.28	$l 2+76$	h22.08	$h_{24}+38$	h 22.60	${ }^{\text {h } 23.72}$	
	${ }^{126} 2.14$	${ }^{2} 25^{\circ} 5^{2}$	h23 7^{2}	h 24.46	${ }^{2} 24.74$	$l 23.56$	${ }^{\text {h } 22.12}$	h 21 192	k 23 '94	$h 24 * 00$	
	$h 24 * 44$ $h 26.48$				624.20			h24*30			
	$26 \cdot 26$	$24 * 39$	23.90	24*46	24*98	23.99	$22 \cdot 38$	$23^{\circ} 43$	$23^{\prime} 26$	23.97	

At LVII (Bijli)

December 1875 ; observed by Captain M. W. Rogers, R.E., with Barroo's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on LIV										M = Mean of Groupe © - Relative Weight C - Conctuded Angle
	. $0^{\circ} 1^{\prime}$	$180^{\circ} 1^{\prime}$	$79^{\circ} 12^{\prime}$	$259{ }^{\circ} 12^{\prime}$	$158^{\circ} 24^{\prime}$	$388^{\circ} 24^{\prime}$	$297{ }^{\circ} 37^{\prime}$	67 ${ }^{36}{ }^{\prime}$	$316^{\circ} 49^{\prime}$	1366^{48}	
LV \& LV	\prime	"	"	"	"	"	\prime	"	"	"	$\begin{aligned} & M=14^{\prime \prime} \cdot 24 \\ & w=17 \cdot 78 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=74^{\circ} 42^{\prime} 14^{\prime \prime} \cdot 27 \end{aligned}$
	${ }^{6} 16.40$	$h_{15} 18$	l13.00	$h 13.26$	$h_{14} 10$	h 13.56	${ }^{6} 14 \cdot 12$	$\mathrm{ha}_{14} \cdot 26$	$h_{13} \cdot 8{ }_{4}$	213.82	
	$h_{15} 1596$	$\mathrm{h}_{15} \mathrm{~S}^{78}$	h 13.76	$h 13 \cdot 06$	$h 14 \bigcirc 08$	$h 13.62$	$h_{15}{ }^{1} 18$	$h_{13} \cdot 88$	114.34	$l 15.34$	
	$h_{16} 122$	$\mathrm{ha}_{4}+34$	h10		${ }^{2} 14.58$						
	$l 15.44$ $l 14.30$										
	${ }^{1}+5$										
	15*73	14.69	13.47	$13 \cdot 35$	14*13	14.09	$14 \cdot 38$	14:20	14.06	14.25	
LV \& LIX	${ }^{2} 57 \cdot 64$	h 54.50	l 53.42	$\mathrm{h}_{56} 60$	${ }^{6} 54 \cdot 54$	${ }_{\text {h }}^{56}$ - 04	h 53.00	${ }^{2} 55 \cdot 30$	${ }^{\text {h } 56.96}$	l 56.60	$\begin{aligned} & M=55^{\prime \prime} \cdot 08 \\ & w=13 \cdot 39 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=53^{\circ} 56^{\prime} 55^{\prime \prime} \cdot 09 \end{aligned}$
	${ }_{2}{ }_{55}{ }^{\text {a }} 30$	$h_{54}{ }^{\text {c }} 72$	${ }_{2}{ }_{5} 5^{\circ} 34$	h $56 \cdot 38$	$h 53.86$	${ }_{\text {h }}^{5} 53 \cdot 06$	${ }_{7}{ }_{55}{ }^{\text {a }} 30$	$h_{54}{ }^{+}{ }^{2}$	$154 \cdot 68$	${ }^{2} 53.82$	
	${ }_{7}{ }_{57}{ }^{32}$	${ }_{\text {h }}^{56}$. 76	$h_{53}{ }^{5}$		h $55{ }^{\circ} \mathbf{2 2}$	$h 55.32$	$h_{55}{ }^{\text {S }} 54$	$h_{54}{ }^{\text {52 }}$	$l 54.70$	$l 56 \cdot 34$	
	$h_{54} 516$ h_{54} - 8	$h_{55}{ }^{\text {4 }} 4$				$h_{54}{ }^{\text {5 }}$	${ }_{\mathbf{k}}^{55}{ }^{\text {8 }}$ +		$655{ }^{\circ}$	l l 63 53.88	
	$l{ }_{56}$										
	$55 \% 77$	$55 \cdot 36$	$54 * 09$	$56 \cdot+5$	$54 \cdot 54$	54×73	54*92	$54 \cdot 75$	$55 \cdot 34$	$54 \cdot 82$	

At LVII (Bijli)-(Continued).											
$\underset{\text { between }}{\text { Angle }}$		$180^{\circ} 1^{\prime}$	Circle readings, telescope being set on LI $\begin{array}{lllll}79^{\circ} 12^{\prime} & 259^{\circ} & 12^{\prime} & 168^{\circ} 24^{\prime} & 388^{\circ} 24^{\prime}\end{array} \quad 2977^{\circ} 97^{\prime}$					V $57^{\circ} 36^{\prime}$	$816^{\circ} 49^{\prime}$	$136^{\circ} 48^{\prime}$	
LIX \& XXI		$\begin{gathered} \prime \prime \\ h_{17} \cdot 24 \\ h_{1} 7.24 \\ h_{1} 6.25 \end{gathered}$					$\begin{gathered} " \\ h_{17} \cdot 7^{2} \\ h_{16} 644 \\ h_{17} \cdot 12 \end{gathered}$				$\begin{aligned} & M=16^{\prime \prime} \cdot 3^{6} \\ & w=17 \cdot 65 \\ & \underline{1}=0 \cdot 06 \\ & \bar{w}=63^{\circ} 2^{\prime} 16^{\prime \prime} \cdot 33 \end{aligned}$
	$15 \cdot 19$	16:91	$16 \cdot 17$	16.62	17\%01	16.30	17×9	$16 \cdot 63$	15.97	15.75	
At LVIII (Panchkot)December 1875; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.											
Angle between	$0^{01} 1^{\prime}$	$180^{\circ} 1^{\prime}$		e reading $259^{\circ} 12^{\prime}$	s, telesco $158^{\circ} 25^{\prime}$	pe being $338^{\circ} 25^{\prime}$	set on X $237{ }^{3} 6^{\prime}$	xIX 67 37'	${ }^{316} 6^{\circ} 99^{\prime}$	$186^{\circ} 49^{\prime}$	
XIX \& LIX	(${ }^{\prime \prime}$	$\begin{aligned} & h_{15} \cdot 84 \\ & h_{15} \cdot 80 \\ & h_{15} \cdot{ }_{3} 8 \end{aligned}$		h 15 . 42 h $16 \cdot 12$ *1532		$\begin{gathered} \prime \prime \\ h_{15} \cdot 12 \\ h_{15} .88 \\ h_{14} .56 \end{gathered}$	$\begin{gathered} n \\ h_{14} \cdot 44 \\ h_{14} .74 \\ h_{14} \cdot 72 \end{gathered}$	$\begin{gathered} " \prime \\ h_{15} 12 \cdot 12 \\ h_{14} \cdot 88 \\ h_{14} \cdot 72 \end{gathered}$		$\begin{gathered} n \\ h 14 \cdot 82 \\ h_{15} \cdot 8_{2} \\ h 15 \cdot 18 \end{gathered}$	$\begin{aligned} & M=15^{\prime \prime} \cdot 28 \\ & w=35 \cdot 30 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=61^{\circ} 3^{\prime} 15^{\prime \prime \prime} \cdot 29 \end{aligned}$
	15.41	1541	15 Or	$15 \cdot 62$	15.59	$15 \cdot 16$	14.63	14.91	15.97	15.13	
LIX \& LV	$h_{42} \cdot 10$ $h_{4+1} \cdot 20$ $h_{42} \cdot 20$			$\begin{aligned} & h_{40} \cdot 5^{2} \\ & h_{40}+42 \\ & h_{38} 8 \cdot 26 \\ & h_{41} \cdot 32 \end{aligned}$	$\begin{aligned} & h+1 \cdot 20 \\ & h 40 \cdot 06 \\ & h 40 \cdot 78 \end{aligned}$	$\begin{aligned} & h_{4} \cdot 4 \\ & h_{41} \cdot 5+5 \\ & h_{41} \cdot 5 \end{aligned}$	${ }_{3} 4_{2} \cdot 0_{4}$ $h_{40} 76$ $h_{41} \cdot 46$	$\begin{aligned} & h_{41} \cdot \circ 0 \\ & h_{1+} \cdot 26 \\ & h_{41} \cdot 42 \end{aligned}$	$\begin{aligned} & h_{42}+0 \cdot 04 \\ & h_{4} \cdot 40 \\ & h_{40} \cdot 9 \end{aligned}$	$\begin{aligned} & h_{4}+0.96 \\ & h_{40} 90.94 \\ & h_{42} \cdot 04 \end{aligned}$	$\begin{aligned} & M=41^{\prime \prime \cdot} \cdot 27 \\ & w=27 \cdot 24 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=44^{\circ} 7^{\prime} 41^{\prime \prime} \cdot 26 \end{aligned}$
	$4{ }^{1} 83$	41'49	$41^{6} \mathbf{6}$	$40^{\prime} 13$	40.68	41.56	41.42	41.23	41*47	4131	
LV \& LVI	$\begin{aligned} & h 10 \cdot 10.10 \\ & h 9.68 \\ & k .9 .96 \end{aligned}$			$\begin{aligned} & h_{10} \cdot 04 \\ & h_{11} \cdot 0 \\ & h_{12} \cdot 30 \\ & h \\ & 9.50 \end{aligned}$	$\begin{aligned} & h_{10 \cdot} \cdot \mathbf{3 6} \\ & h_{11} \cdot 8 \\ & h_{10} \cdot 50 \end{aligned}$	$\begin{aligned} & h_{10} 18 \\ & h_{11} 84 \\ & h_{10} 0.68 \end{aligned}$	$\begin{aligned} & h 10 \cdot 18 \\ & h 10 \cdot 34 \\ & h 10 \cdot 58 \end{aligned}$	$\begin{aligned} & h_{1} 9 \cdot 70 \\ & h_{10} \cdot 78 \\ & h_{10}=16 \end{aligned}$	$\begin{aligned} & h 11006 \\ & h 909 \\ & h 10 \cdot 98 \end{aligned}$	$\begin{aligned} & h \begin{array}{l} h_{1} \cdot 16 \\ h_{1} 0 \cdot 28 \\ h_{1} \cdot 08 \end{array} \end{aligned}$	$\begin{aligned} & M=10^{\prime \prime} \cdot 3 \mathbf{I} \\ & w=33 \cdot 68 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=57^{\circ} 4^{\prime} 10^{\prime \prime} \cdot 3^{2} \end{aligned}$
	$9 \cdot 58$	10.11	9•73	$10 \cdot 75$	10'53	10*96	10'37	10.21	10.56	10'17	

Norz.-Statious XIX and XXI appertain to tho Sutlej Series.

At LIX (Randu)

December 1875; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Angle } \\
\text { between }
\end{gathered}
\]} \& \multicolumn{10}{|c|}{Circle readings, telescope being set on LVII} \& \multirow[t]{2}{*}{\begin{tabular}{l}
\(M=\) Mean of Groups \\
\({ }^{w}=\) Relative Weight \\
\(C=\) Concluded Angle
\end{tabular}} \\
\hline \& \(0^{\circ} 0^{\prime}\) \& \(180^{\circ} 0^{\circ}\) \& \(79^{\circ} 13^{\prime}\) \& \(259{ }^{\circ} 13^{\circ}\) \& \(158^{\circ} 24^{\prime}\) \& \(338{ }^{\circ} 24^{\prime}\) \& \(237{ }^{\circ} 36^{\prime}\) \& \(57^{\circ} 36^{\prime}\) \& \(816^{\circ} 49^{\prime}\) \& \(136^{\circ} 49^{\prime}\) \& \\
\hline \multirow{5}{*}{LVII \& LV} \& " \& " \& " \& " \& " \& " \& " \& " \& " \& " \& \multirow[b]{5}{*}{\[
\begin{aligned}
\& M=48^{\prime \prime} \cdot 90 \\
\& w=20 \cdot 13 \\
\& \mathbf{w}=0 \cdot 05 \\
\& \boldsymbol{w}=69^{\circ} 13^{\prime} 48^{\prime \prime} \cdot 90 \\
\& C=
\end{aligned}
\]} \\
\hline \& \(h_{48} .68\) \& \(l 49.54\) \& \(l 48.52\) \& 748.66 \& \(h_{49}{ }^{\text {c }} 56\) \& \({ }^{\boldsymbol{h}} 48.42\) \& \(h_{49} \cdot 26\) \& \(h^{50} 58\) \& \(l 48.88\) \& \(l 48.08\) \& \\
\hline \& \(h^{49} 49.26\) \& \(l 48.30\) \& \(l 49.46\) \& \(l{ }^{1} 47.88\) \& \(h_{50}{ }^{\circ} 96\) \& \(h_{47}{ }^{\text {c }} 82\) \& \({ }^{\text {h }} 50 \cdot 08\) \& \(h{ }_{48}{ }^{\circ} \mathrm{C}\) \& \(l{ }^{18.90}\) \& \(l 48 \cdot 16\) \& \\
\hline \& \(l 48.06\) \& \(l 4930\) \& \(l 47^{\circ} 90\) \& \(l 49.56\) \& \(h_{49}{ }^{14}\) \& \(h 49{ }^{\circ} \mathrm{O}\) \& \(h_{49} \cdot 84\) \& \[
\begin{aligned}
\& h 49 \cdot 48 \\
\& h \\
\& h 9 \cdot 76
\end{aligned}
\] \& \(l 47 \times 98\) \& \(l 47 \times 52\) \& \\
\hline \& 48•67 \& \(49^{\circ} 05\) \& \(48 \cdot 63\) \& 48•70 \& \(49^{*} 89\) \& \(48 \cdot 41\) \& \(49^{\circ} 73\) \& \(49^{*} 38\) \& 48•59 \& \(47 \times{ }^{2}\) \& \\
\hline \multirow{4}{*}{LV \& LVIII} \& \(h_{44} \cdot 78\) \& 142.62 \& \(l 43 \cdot 98\) \& \(l 43 \cdot 94\) \& \({ }_{4} 42 \cdot 30\) \& \(h 43.76\) \& \(h_{42} \cdot 52\) \& \(h_{43} \cdot 80\) \& \(243 \cdot 82\) \& \(l 43.90\) \& \multirow[t]{4}{*}{\[
\begin{aligned}
\& M=43^{\prime \prime} \cdot 35 \\
\& w=24 \cdot 05 \\
\& \frac{\mathbf{x}}{w}=0 \cdot 04 \\
\& C=70^{\circ} 4^{\prime} 43^{\prime \prime \prime} \cdot 34
\end{aligned}
\]} \\
\hline \& \(h 43.34\)
\(h 44\) \& \(l\)
\(l\)
\(l\)
43 \({ }^{\circ}{ }^{38} 8\) \& \(l\)
\(l\)
\(l\)
\(43 \cdot 90\) \& \& \& \(h_{42} \cdot 46\)
\(h_{42} \cdot 66\) \& \(h{ }_{42}{ }^{2} 32\)
\(h 43\) \& \({ }^{h_{42} \cdot 86}{ }_{4}\) \& \(l\)
\(l\)
\(l\)
43
43 \& \(l\)
\(l\)
74
43 \& \\
\hline \& \& \& \(l\)
\(l\)
4
41 \& \& \(h_{43}{ }^{92}\) \& \& \& \& \& \(l 43 \cdot 36\) \& \\
\hline \& 44•28 \& \(43 \cdot 15\) \& 42 74 \& \(43^{\prime 72}\) \& \(43^{\prime} 19\) \& 42*96 \& 42'77 \& \(43^{1} 12\) \& \(43^{\prime} 73\) \& \(43 \cdot 87\) \& \\
\hline \multirow{5}{*}{LVIII \& XIX} \& \({ }_{\text {h }}^{17} 982\) \& 113.62 \& l 14.38 \& \({ }^{1} 14.68\) \& \(h_{14} 18\) \& h 15.06 \& \(h_{15}{ }^{\text {c }} 86\) \& h15.20 \& \(l 15.34\) \& l15.58 \& \multirow[b]{5}{*}{\[
\begin{aligned}
\& M=15^{\prime \prime} \cdot 85 \\
\& w=10 \cdot 06 \\
\& \frac{1}{w}=0 \cdot 10 \\
\& C=65^{\circ} 57^{\prime} 15^{\prime \prime} \cdot 86
\end{aligned}
\]} \\
\hline \& \(h 16.50\)
\(l 16.14\) \& \(l 15.62\)
\(l 14.50\) \& \(l 15.74\)
\(l 14.30\) \& \(l 17.74\)
\(l 17.62\) \& \(h 17.40\)
\(h 14.22\) \& \(h_{19}{ }_{19} 00\) \& \({ }^{h_{15} 15.68}\) \& \(h 15 \cdot 98\)
\(h 16.04\) \& \({ }_{7} 15.48\) \& \({ }_{l}^{l} 16 \cdot 26\) \& \\
\hline \& \(h 16 \cdot 02\) \& \(h_{15}{ }^{\text {c }}\) 2 \& h14*14 \& \({ }^{1} 17.76\) \& h14.52 \& h17.38 \& \(h 16 \cdot 26\) \& \& \& \& \\
\hline \& \& \& \& 177 \& \({ }_{1}\) \& h16 30 \& \& \& \& \& \\
\hline \& 16.92 \& \(14 * 84\) \& \(14 * 64\) \& 16•96 \& 14*79 \& 16.50 \& 16•38 \& \(15 \times 74\) \& \(15 \cdot 78\) \& \(15^{\circ} 90\) \& \\
\hline \multirow{4}{*}{XIX \& XXI} \& \(h_{42}{ }^{\text {2 }} 62\) \& \(l 45 \cdot 96\) \& \(l 44.08\) \& \(l 43 \cdot 82\) \& h \(47 \cdot 24\) \& \(h_{43}{ }^{\text {82 }}\) \& \(h 44.64\) \& \(h_{42}{ }^{\text {P }} 72\) \& \(l{ }^{4}\)-10 \& \(l 43.94\) \& \multirow[b]{4}{*}{\[
\begin{aligned}
\& M=44^{\prime \prime} \cdot 48 \\
\& w=14 \cdot 37 \\
\& \frac{\mathrm{~J}}{\mathbf{w}}=0 \cdot 07 \\
\& C=73^{\circ} 5^{\prime} 44^{\prime \prime} \cdot 47
\end{aligned}
\]} \\
\hline \& \begin{tabular}{l}
\(h 44.20\) \\
\(l\) \\
\hline \(42 \cdot 0\)
\end{tabular} \& l \(45^{\circ} \mathrm{O}\)
\(45^{\circ} 90\) \& \(l\)
\(l\)
44.92

44 \& 144.70
74.80 \& \& ${ }^{h}{ }_{4}{ }_{44}{ }^{\circ} 90$ \& \& ${ }^{\text {h }}{ }_{44}{ }_{44} \cdot 80$ \& l \& l
l
$l 44.60$ \&

\hline \& $$
\begin{aligned}
& l \\
& l \\
& d 3.74 \\
& d 44.66
\end{aligned}
$$ \& 45 \& ${ }_{4} 43 \cdot 18$ \& $l 45 \cdot 46$ \& $h_{45}{ }^{30}$ \& $h 46 \cdot 20$ \& \& ${ }^{\text {h }} 44.60$ \& \& \&

\hline \& $43 * 44$ \& $45 \cdot 64$ \& $44^{1} 13$ \& $44^{\circ} 19$ \& $45 \cdot 56$ \& $45 \cdot 10$ \& $44^{\circ} 54$ \& 44*14 \& 44° O1 \& $44 * 07$ \&

\hline \multirow{4}{*}{XXI \& LVII} \& h25.88 \& $l 27.30$ \& l29.48 \& l27-40 \& h24.96 \& h 28.22 \& $h 26 \cdot \infty$ \& h 26.50 \& $l 25.32$ \& $l 27$ \& \multirow{4}{*}{$$
\begin{aligned}
& M=26^{\prime \prime} \cdot 91 \\
& w=9 \cdot 70 \\
& \frac{1}{w}=0 \cdot 10 \\
& C=80^{\circ} 51^{\prime} 26^{\prime \prime} \cdot 94
\end{aligned}
$$}

\hline \& h 26.96 \& $l 28.38$ \& $l 29.74$ \& $l 25^{\circ} 02$ \& 127.00 \& $h_{25}{ }^{\circ} \mathrm{O} 8$ \& h 27.00 \& h $26 \cdot 70$ \& $l 26.40$ \& $126 \cdot 64$ \&

\hline \& 625.50 \& l 28.76
$h 27$ \& l 31.14
$h 27.36$ \& $l 27.22$

$727 \cdot 16$ \& $$
\begin{aligned}
& h 26 \cdot 88 \\
& h_{25} 25 \cdot 28
\end{aligned}
$$ \& $h 26.44$

$h 26 \cdot 36$ \& h 26.76 \& h28.64
$h 27.56$ \& \& \&

\hline \& $26 \cdot 11$ \& 28.04 \& 28.61 \& $26 \cdot 70$ \& 26-03 \& $26 \cdot 89$ \& $26 \cdot 59$ \& 27•35 \& $2.5 * 93$ \& $26 \cdot 90$ \&

\hline
\end{tabular}

Nors.-Stations_XIX and XXI appertain to the Sutlej Series.

At XIX (Kaimsir)

January 1876; observed by Captain M. W. Rogers, R.E., with Barrovo's 24-inch Theodolite No. 2.

$\begin{gathered} \text { Angle } \\ \text { botween } \end{gathered}$	Circle readings, telescope being set on XXI										$M=$ Mean of Groups ${ }^{w}=$ Relative Weight C $=$ Concluded Angle
	$251^{\circ} 41^{\prime}$	$71^{\circ} 40^{\prime}$	$830^{\circ} 63^{\prime}$	$150^{\circ} 52^{\prime}$	$50^{\circ} 4^{\prime}$	$230^{\circ} 4^{\prime}$	$189^{\circ} 16^{\prime}$	$309{ }^{\circ} 16^{\prime}$	$208^{\circ} 29^{\prime}$	$28^{\circ} 29^{\prime}$	
XXI \& LIX	"	"	"	"	"	"	\prime	"	"	"	$\begin{aligned} & M=24^{\prime \prime} \cdot 53 \\ & w=16 \cdot 74 \\ & \frac{\mathrm{I}}{w}={ }^{\prime} 0 \cdot 06 \\ & C=55^{\circ} 53^{\prime} 24^{\prime \prime} \cdot 55 \end{aligned}$
	${ }^{2} 223.18^{1}$	${ }^{l} 25.28$	${ }^{2} 22.42$	l23.44	h $25^{\circ} 24$	k25.14	$l 23.42$	l23.44	h25.28	h25.90	
	${ }^{2} 26.84$	${ }^{2} 23^{\circ} 66$	$l 23.06$	${ }^{123} 238$	h25.20	$\mathrm{h}_{24}{ }^{\text {d }} 34$	$l 25.52$	$l 25.38$	h24.32	${ }^{12} 25^{\circ} 74$	
	225.36 $l 23.84$	625.70	624.24	h25.26	k 24.66	$l 24 \cdot 10$	$l 24.88$ 724.84	625^{18}	h23. h 24.18	h26.92 $h_{25}{ }^{\text {c }}$ 4	
	$\boldsymbol{l}^{23} 12$									h23.32	
	24.47	24.88	23.24	24*17	$25 \cdot 03$	24.53	24.47	$24 \cdot 67$	$24 \cdot 36$	25.50	
LIX \& LVIII	h 28.44	h29-14	h 28.44	h27-94	$h_{26} 68$	${ }^{2} 28 \cdot 74$	$l 30 \cdot 22$	$l 29.08$	k $28 \cdot 18$	h $30 \cdot 22$	$\begin{aligned} & M=29^{\prime \prime} \cdot 07 \\ & w=20 \cdot 18 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=52^{\circ} 26^{\prime} 29^{\prime \prime} \cdot 07 \end{aligned}$
	h29.28	$\mathrm{h}_{31} \cdot 24$	h28.16	h28.10	h 29';6	h $30 \cdot 36$	$l 30 \cdot 30$	$l 29.60$	h 28.34	$h 28 \cdot 52$	
	k 29.18	h 27.82	h $29{ }^{\circ} 76$	h28-08	$h 29.92$	$l 29.42$	$l 29 \cdot 24$	$l 29.60$	k 28.74	h 29.80	
		h28.38			$\begin{aligned} & l 29 \cdot 76 \\ & l 28.26 \end{aligned}$						
	28•97	29*15	28•79	28*04	28•94	29*51	29'92	$29 * 43$	$28 \cdot 42$	29*51	

At XXI (Kanda) -
December 1875; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

Anglo between	Circle readings, telescope being set on LVII										$\boldsymbol{M}=$ Mean of Groups ω_{0} - Relative Weight C $=$ Concluded Angle
	$273^{\circ} 40^{\circ}$	$93^{\circ} 40^{\prime}$	8592 52^{\prime}	$172^{\circ} 52^{\prime}$	$723^{\circ} 5^{\prime}$	$252^{\circ} 5^{\prime}$	$151^{\circ} 16^{\prime}$	$331^{\circ} 10^{\prime}$	$230^{\circ} 28^{\prime}$	$50^{\circ} 28^{\prime}$	
LVII \& LIX	"	"	"	"	"	"	"	$\prime \prime$	"	"	$\begin{aligned} & M=17^{\prime \prime} \cdot 25 \\ & w=23 \cdot 39 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=6^{\circ} \quad 6^{\prime} 17^{\prime \prime} \cdot 23 \end{aligned}$
	h 15.74	h 16.98	h17.94	217.58	h 16.28	$h_{17}{ }^{4} 46$	k 18.66	h 16.84	h 17.08	$h_{1} 6.64$	
	$h_{1} 6.65$	$h_{18} 1810$	h 16.82	$l 170+2$	$h 18.20$	$h_{17}{ }^{26}$	${ }^{\text {h 17 }} 192$	h 15.82	h 16.74	$h_{15}{ }^{\text {c }} 92$	
	${ }_{\text {k } 18.08}$	h 18.02	h 18.38	$l 18.08$	h 16.96	$h_{16 \cdot 02}$	111790	$h_{17}{ }_{17} 18$	h 18.06	h $18 \cdot 16$	
	$h 16.20$				$l 15.52$			$h_{17} 124$			
	16.67	17•70	17\% 7	$17 \cdot 69$	16.74	16.91	18•16	16.77	17*29	16.91	
LIX \& XIX	l l l 40	l l 69 49 7	749.08 l 49	${ }_{l}^{l} 50.54$	$4.50 \cdot 56$ $h 90.88$	$h_{48}{ }_{4}{ }_{4} \cdot 54$	l l l 70.42 50.12	l l l 49090		$\begin{aligned} & h_{50 \cdot 00} \\ & h_{49} \cdot 20 \end{aligned}$	$\begin{aligned} & M=49^{\prime \prime} \cdot 73 \\ & w=22 \cdot 09 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=50^{\circ} 13^{\prime} 49^{\prime \prime} \cdot 72 \end{aligned}$
	$l 49.20$	$150 \cdot 14$	$l 50 \cdot 00$	$l 49.74$	h 49 '14	$h_{49} 68$	$l 50 \cdot 80$	$l 49.68$	$h+8 \cdot 74$ $l 48.56$	$h 49.94$	
									$l 47 \cdot 78$		
	49.52	49.71	49*39	50.27	50'19	48•82	$50 \cdot 45$	50'13	$49^{\circ} 07$	49「1	

Norm.-Stations XIX and XXI appertain to the Sutlej Series.
4ugust 1878.
J. B. M. HENNESSEY, In charge of Computing Office.

At LIX (Randu)

December 1875; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

Nors.—Stations_XIX and XXI appertain to the Sutlej Series.

At XIX (Kaimsir)

January 1876; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

$\underset{\text { Angle }}{\text { botween }}$	Circle readings, telescope being set on XXI										$M=$ Mean of Groups $\omega_{0}=$ Relative Weight C - Concluded Δ ngle
	$251^{\circ} 41^{\prime}$	$71^{\circ} 40^{\circ}$	$830^{\circ} 53^{\prime}$	$150^{\circ} 52^{\prime}$	$50^{\circ} 4^{\prime}$	$230^{\circ} 4^{\prime}$	$129{ }^{16} 6^{\prime}$	$309{ }^{\circ} 16^{\prime}$	$208^{\circ} 29^{\prime}$	$28^{\circ} 29^{\prime}$	
XXI \& LIX	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=24^{\prime \prime} \cdot 53 \\ & w=16 \cdot 74 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=55^{\circ} 53^{\prime} 24^{\prime \prime} \cdot 55 \end{aligned}$
	${ }^{1} 23.18$	$l 25.28$	$l 22.42$	$l 23.44$	h25.24	h $25 \cdot 14$	$l 23.42$	$l 23.44$	h25. 28	k 25.90	
	${ }^{1} 26.84$	$l 23.66$	$l 23.06$	$l 23.82$	h25.20	${ }^{\text {h } 24.34}$	$l 25.52$	$l 25 \cdot 38$	h 24.32	${ }^{2} 25.74$	
	$l 25.36$	$l 25^{\prime} 70$	624.24	h25.26	k $2+\cdot 66$	$l 24.10$	$l 24.08$	$l 25.18$	h23.66	$h_{26}{ }^{\text {c }}$. 92	
	$\begin{aligned} & l 23 \cdot 84 \\ & l 23 \cdot 12 \end{aligned}$						$l 24 \cdot 84$		$h^{24}{ }^{\prime} 18$	$\begin{aligned} & h_{25} 5^{\circ} G_{4} \\ & h_{23} \cdot{ }_{32} \end{aligned}$	
	$24 * 47$	24•88	23.24	24*17	$25 \cdot 03$	24.53	24.47	$24 \cdot 67$	$24 \cdot 36$	$25^{\circ} 5^{\circ}$	
LIX \& LVIII	${ }^{\text {h } 28.44}$	${ }^{\text {h } 29.14}$	h28. 44	h27.94	h 26.88	h28.74	$130 \cdot 22$	$l 29.08$	$\mathrm{h}^{28} \mathrm{Cl}^{18}$	${ }_{\text {h }}^{3} \mathrm{O} \cdot 22$	$\begin{aligned} & M=29^{\prime \prime} \cdot 07 \\ & w=20 \cdot 18 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=52^{\circ} 26^{\prime} 29^{\prime \prime} \cdot 07 \end{aligned}$
	${ }^{\text {h } 29.28}$	$h_{31} \cdot 24$	h $28 \cdot 16$	h28.10	h29 ${ }^{\text {a }}$ 6	${ }_{4} 30 \cdot 36$	$l 30 \cdot 30$	$l 29.60$	${ }^{2} 28 \cdot 34$	$h 28 \cdot 52$	
	h 29.18	$\begin{aligned} & h 27 \cdot 82 \\ & h_{28 \cdot} 88 \end{aligned}$	h 29.76	k $28 \cdot 08$	h 29.92 $l 29.96$	l29*42	$l 29.24$	$l 29.60$	k28.74	h29.80	
	$28 \cdot 97$	29.15	28•79	$28 \cdot 04$	28.94	29.51	$29 \cdot 92$	29.43	$28 \cdot 42$	29.51	

At XXI (Kanda)

December 1875; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

Anglo between	Circle readings, telescope being set on LVII										$M=$ Mean of Groups $\omega_{0}=$ Relative Weight C = Concluded Angle
	$275^{\circ} 40^{\circ}$	$93^{\circ} 40^{\circ}$	$359^{\circ} 52^{\prime}$	1790 52^{\prime}	$729^{\circ} 5^{\prime}$	$252^{\circ} 5^{\prime}$	$151^{\circ} 16^{\prime}$	$331{ }^{\circ} 16^{\prime}$	$230^{\circ} 28^{\prime}$	$50^{\circ} 28^{\prime}$	
LVII \& LIX	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=17^{\prime \prime} \cdot 25 \\ & w=23 \cdot 39 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=3^{\circ} \quad 6^{\prime} 17^{\prime \prime} \cdot 23 \end{aligned}$
	${ }^{6} 15.74$	$h 16.98$	h17.94	${ }^{2} 17.58$	$h_{16} 18$	$h_{17}{ }^{46}$	h 18.66	h $16 \cdot 8$	h 17.08	${ }_{1} 16 \cdot 64$	
	$h_{1} 6.66$	$h_{18} 18.10$	$\mathrm{k}_{1} 6.82$	$l 17^{\circ}+2$	$h_{18} 18.20$	$h_{17}{ }^{2} 26$	h17992	k 15.82	h 16.74	h15*92	
	$\begin{aligned} & h_{1} 18 \cdot 08 \\ & h_{16} 6 \cdot 20 \end{aligned}$	h $18 \cdot 02$	h $18 \cdot 38$	$l 18 \cdot 08$	$\begin{aligned} & h 16.96 \\ & l 15.52 \end{aligned}$	h 16.02	11790	$\begin{aligned} & h_{17} \cdot 18 \\ & h_{17} \cdot 24 \end{aligned}$	h 18.06	h $18 \cdot 16$	
	$16 \cdot 67$	17\%70	17\% 7	$17^{\circ} 69$	16.74	16.91	18•16	$16 \cdot 77$	17*29	16.91	
LIX \& XIX	l l l 700 7000	l l l 79.88 l		l l 50.54			l l l l $50 \cdot 42$ 50.12	l l 79.90 49.80	$h 51 \cdot 70$ $h 48.58$	${ }^{6}$ 50.00 h $49 \cdot 20$	$\begin{aligned} & M=49^{\prime \prime} \cdot 73 \\ & w=22 \cdot 09 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=50^{\circ} 13^{\prime} 49^{\prime \prime} \cdot 72 \end{aligned}$
	$l 49.20$	$l 50 \cdot 14$	$l 5^{\circ} 00$	$l 49$ 74	$h_{49}{ }^{14}$	$h_{49}{ }^{68}$	${ }^{\prime} 50.80$	$l 49.68$	$\begin{aligned} & h+8 \cdot 74 \\ & l+48 \cdot 56 \\ & l 47 \cdot 78 \end{aligned}$	$h 49$ '94	
	49*52	49.71	49*39	$50^{\circ} 27$	50'19	48•82	50×45	50'13	$49^{\circ} 07$	$49 \% 1$	

Nors.-Stations XIX and XXI appertain to the Sutlej Series.
\triangle ugust 1878.
J. B. M. HENNESSEY, In charge of Computing Office.

JODHPORE MERIDIONAL SERIES.

Sums of Squares of Apparent Errors of Single Observations, and of Apparent Errors of Single Zeros.

8tation of Obeervation.	Obserred Angle.	Number of Observations.	Sum of Squnres of Errors of single Observations.	Number of Zoros.	Sum of Squaree of Errorn of single Zeros.	Renaris.
XLI	XLIV \& I	34	15.37	10	4.47	
"	I \& II	32	18.78	10	$2 \cdot 76$	
XLIV	I \& II	36	25.52	10	4.18	
"	II \& XLI	37	$26 \cdot 3$	10	3.23	
I	IV \& III	36	45.23	10	$5 \cdot 42$	
"	III \& II	32	$8 \cdot 33$	10	6.22	
"	II \& XLI	39	40.69	10	3.69	
"	XLI \& XLIV	41	41.82	10	$5 \cdot 71$	
II	XLI \& XLIV	37	33^{16}	10	$1 \cdot 94$	
"	XLIV \& I	38	22.12	10	3.54	
"	I \& III	38	29.54	10	4.49	Barrow's 24-inch No. 2.
"	III \& V	36	18.27	10	4.25	Barrow's 24-inch No. 2.
III	VI \& VII	36	28.16	10	$2 \cdot 76$.
"	VII \& V	38	17.40	10	3.28	
"	V\&II	34	16.22	10	$6 \cdot 0$	
"	II \& I	31	8.11	10	2.39	
"	I \& IV	34	24.66	10	1.85	
"	IV \& VI	37	$36 \cdot 60$	10	2.50	
IV	VI \& III	33	23.77	10	6.59	
"	III \& I	33	14.50	10	$5 \cdot 28$	
V	II \& III	33	20.81	10	$1 \cdot 39$	
"	III \& VII	35	15.54	10	$5 \cdot 74$	

Nors.-Stations XLI and XLIV appertain to the Karáchi Longitudinal Serien.

Station of Observation.	Observed Angle.	Number of Observations.	Sum of Squares of Errors of single Observations.	Number of Zeros.	Sum of Squares of Eirrors of single Zeros.	Rrwarks.
VI	IX \& VIII	32	9.56	10	$3 \cdot 32$	
\geqslant	VIII \& VII	32	20.24	10	$3 \cdot 67$	
"	VII \& III	34	16.03	10	$1 \cdot 47$	
"	III \& IV	35	19.90	10	$2 \cdot 72$	
VII	V \& III	36	24.74	10	172	
"	III \& VI	35	16.97	10	$1 \cdot 10$	
"	VI \& VIII	36	$22 \cdot 10$	10	$5 \cdot 22$	
"	VIII \& X	36	, 20.92	10	4:88	
VIII	VII \& VI	35	17.37	10	3.70	
"	VI \& IX	34	15.71	10	4.74	
"	IX \& XI	36	27.72	10	$5 \cdot 24$	
"	XI \& XII	35	23.87	10	$4 \cdot 44$	
"	XII \& X	33	20.92	10	$1 \cdot 94$	
"	\mathbf{X} \& VII	36	34.95	10	$1 \cdot 75$	
IX ,	XI \& VIII	32	16.70	10	$1 \cdot 70$	
"	VIII \& VI	38	37.09	10	1.46	
X	VII \& VIII	30	10.01	10	$1 \cdot 44$	
"	VIII \& XII	35	23.07	10	1.22	
XI	XIV \& XIII	31	14.65	10	$5 \cdot 77$	
"	XIII \& XII	31	12.31	10	$1 \cdot 12$	
"	XII \& VIII	37	25.69	10	2.88	\} Barrow's 24-inch No. 2.
"	VIII \& IX	35	12.58	10	$2 \cdot 33$	
XII	X \& VIII	33	21.23	10	$2 \cdot 39$	
"	VIII \& XI	30	11.56	10	$2 \cdot 37$	
"	XI \& XIII	36	27.99	10	$3 \cdot 37$	
"	XIII \& XV	34	$20 \cdot 66$	10	$8 \cdot 63$	
XIII	XII \& XI	31	$12 \cdot 39$	10	3.49	
"	XI \& XIV	33	16.58	10	$2 \cdot 06$	
"	XIV \& XVI	34	20.47	10	3.05	
"	XVI \& XVII	31	11.88	10	$3 \cdot 33$	
"	XVII \& XV	31	15.17	10	$2 \cdot 03$	
"	XV \& XII	32	15.23	10	4.08	
XIV	XVI \& XIII	35	24.47	10	$5 \cdot 16$	
"	XIII \& XI	31	11.64	10	$3 \cdot 47$	
XV	XII \& XIII	34	21.77	10	$3 \cdot 93$	
"	XIII \& XVII	34	19.09	10	3.60	
XVI	XIX \& XVIII	30	$8 \cdot 70$	10	$4 \cdot 77$	
"	XVIII \& XVII	32	11.31	10	4.09	
"	XVII \& XIII	32	7.57	10	$2 \cdot 12$	
"	XIII \& XIV	31	13.07	10	$1 \cdot 17$	
XVII	XV \& XIII	32	10.90	10	$2 \cdot 48$	

8tation of Observation.	Obserred Angle.	Number of Obmervetions.	Sum of Squares of Errors of single Observatione.	Number of Zeros.	Sum of 8quares of Errors of single Zeros.	Rimabxs.
XVII	XIII\& XVI	33	14.35	10	$1 \cdot 67$	
"	XVI \& XVIII	31	$12 \cdot 37$	10	$4 \cdot 53$	
"	XVIII \& XX	32	$16 \cdot 60$	10	$3 \cdot 83$	
XVIII	XXI \& XXII	32	17.37	10	$\bigcirc \cdot 92$	
"	XXII \& XX	30	$8 \cdot 16$	10	$1 \cdot 13$	
"	XX \& XVII	30	732	10	$2 \cdot 32$	
"	XVII \& XVI	31	734	10	$1 \cdot 29$	
"	XVI \& XIX	31	9.92	10	$1 \cdot 91$	
"	XIX \& XXI	31	8.47	10	779	
XIX	XXI \& XVIII	30	9.51	10	$1 \cdot 40$	
"	XVIII \& XVI	30	$3 \cdot 61$	10	$3 \cdot 87$	
XX	XVII \& XVIII	32	17.98	10	$4 \cdot 73$	
"	XVIII \& XXII	30	$7 \% 1$	10	$5 \cdot 20$	
XXI	XXIII \& XXIV	30	$7 \cdot 13$	10	3.29	
"	XXIV \& XXII	33	12.25	10	$2 \cdot 11$	
"	XXII \& XVIII	32	$8 \cdot 78$	10	$\bigcirc \cdot 79$	
"	XVIII \& XIX	34	11.56	10	4.22	
XXII	XX \& XVIII	32	15.06	10	$1 \cdot 42$	
"	XVIII \& XXI	30	5.21	10	5.24	
"	XXI \& XXIII	31	$9 \cdot 84$	10	$5 \cdot 89$	
"	XXIII \& XXIV	30	$10 \cdot 26$	10	4.14	Barrow's 24-inch No. 2.
XXIII	XXV \& XXVI	34	21.40	10	172	
"	XXVI \& XXIV	33	19.48	10	$7 \cdot 43$	
"	XXIV \& XXII	33	12.26	10	5.30	
"	XXII \& XXI	32	13.86	10	$2 \cdot 67$	
XXIV	XXII \& XXI	32	10.47	10	$0 \cdot 69$	
"	XXI \& XXIII	33	12.05	10	2.55	
"	XXIII \& XXV	32	T09	10	6.25	
"	XXV \& XXVI	33	21.17	10	$3 \cdot 27$	
XXV	XXVIII \& XXVII	31	14.18	10	$5 \cdot 81$	
"	XXVII \& XXVI	30	772	10	$4 \cdot 37$	
"	XXVI \& XXIV	33	18.60	10	$1 \cdot 75$	
"	XXIV \& XXIII	32	14.02	10	r8i	
XXVI	XXIV \& XXIII	30	$10 \cdot 26$	10	6.02	
"	XXIII \& XXV	30	9.28	10	4.25	
"	XXV \& XXVII	36	25.85	10	3.94	
"	XXVII \& R. M.	33	1370	10	$2 \cdot 13$	
"	R.M. \& XXIX	32	18.90	10	2.96	
XXVII	XXIX\& XXVI	33	16.28	10	r03	
"	XXVI \& XXV	30	$10 \cdot 11$	10	r98	
"	XXV \& XXVIII	34	$20 \cdot 12$	10	$2 \cdot 72$	

Note.-R. M. denotes Referring Mark.

Station of Obeerration.	Obeerred Anglo.	Number of Obeervations.	Sum of Squares of Errors of single Observations.	Number of Zeros.	Sum of Squares of Errors of single Zeros.	Remaris.
XXVII	XXVIII \& XXX	33	12.61	10	$1 \cdot 78$	
"	XXX \& XXXI	32	$10 \cdot 62$	10	1.87	
"	XXXI \& XXIX	34	$16 \cdot 62$	10	$2 \cdot 80$	
XXVIII	XXX \& XXVII	36	27.71	10	$1 \cdot 25$	
"	XXVII \& XXV	32	15.83	10	$1 \cdot 17$.
XXIX	XXVI \& XXVII	33	15.20.	10	2.47	.
"	XXVII \& XXXI	33	13.40	10	4.41	
XXX	XXXIII \& XXXII	35	26.44	10	0.80	
\#	XXXII \& XXXI	42	57.35	10	9.63	.
\cdots	XXXI \& XXVII	32	7.63	10	6.95	
n	XXVII \& XXVIII	30	6.61	10	4.13	
XXXI	XXIX \& XXVII	31	13.52	10	1.61	
"	XXVII \& XXX	30	4.68	10	10.86	
"	XXX\& XXXII	36	$30 \cdot 89$	10	$4 \cdot 85$.
"	XXXII \& XXXV	40	68.09.	10	4.74	
XXXII	XXXV \& XXXI	32	$12 \cdot 35$	10	$2 \cdot 92$	
n	XXXI \& XXX	39	$33 \cdot 14$	10	$4^{\circ} 1$	
n	XXX \& XXXIII	38	28.63	10	$4 \cdot 86$	
"	XXXIII \& XXXIV	38	35.6r	10	$4 \cdot 38$	
"	XXXIV \& XXXV	35	28.38	10	$2 \cdot 30$	Barrow's 24-inch No. 2.
XXXIII	XXXIV \& XXXII	36	41.22	10	$3 \cdot 21$	
"	XXXII \& XXX	36	29.16	10	$8 \cdot 73$	
XXXIV	XXXVII \& XXXVI	33	11.83	10	$2 \cdot 68$	
\#	XXXVI \& XXXV	42	$59 \cdot 0$	10	4.40	
"	XXXV \& XXXII	35	$22 \cdot 17$	10	2.81	
"	XXXII \& XXXIII	34	$32 \cdot 15$	10	$3 \cdot 0$	'
XXXV	XXXI \& XXXII	37	$34 \cdot 80$	10	5.47	
"	XXXII \& XXXIV	35	30'13	10	$3 \cdot 38$	
n	XXXIV \& XXXVI	37	34.49	10	$6 \cdot 47$	
"	XXXVI\& XXXVIII	37	29.51	10	3.07	
XXXVI	XXXV \& XXXIV	36	23.74	10	1-03	
;	XXXIV \& XXXVII	42	$60 \cdot 47$	10	$6 \cdot 23$	
"	XXXVII \& XXXIX	43	$44 \cdot 54$	10	$6 \cdot 98$	
n	XXXIX \& XL	34	19.09	10	$6 \cdot 48$	
"	XL \& XXXVIII	35	$32 \cdot 68$	10	$7 \cdot 46$:
"	XXXVIII \& XXXV	41	49'95	10	1.11	:
XXXVII	XLI \& XXXIX	38	$39^{\prime} 72$	10	433	
"	XXXIX \& XXXVI	39	29.70.	10	$5 \cdot 57$	
"	XXXVI \& XXXIV	43	43.91	- 10	$7 \cdot 37$.
XXXVIEI	XXXV \& XXXVI	37	30. 27	10	$6 \cdot 46$	
"	XXXVI \& XL	36	$36 \cdot 00$	10	4.26	

Notr.-R. M. denotes Referring Mark.

Station of Obeervation.	Observed Augle.	Number of Obeurvations.	Sum of Square of Errors of single Observations.	Number of Zeros.	Sum of Squares of Errors of single Zeros.	Rumaris.
L	LII \& XLIX	32	12.46	10	404	
"	XLIX \& XLVIII	34	16.56	10	- 2.77	
"	XLVIII \& LI	44	59.50	10	6.29	
"	LI \& LIII	40	$29^{\circ} 00$	10	$3 \cdot 39$	- . .
"	LIII \& LIV	45	66.10	10	2.29	
\cdots	LIV \& LII	34	19×35	10	$3 \cdot 32$	
- LI	LIII \& L	34	17.42	10	2.56	
"	L \& XLVIII	30	4.53	10	$1 \cdot 64$	
LII	XLIX \& L	33	16\%08	10	$2 \cdot 06$	
"	L \& LIV	34	17.59	10	$2 \cdot 41$	
LIII	LVI \& LV	35	26.39	10	$2 \cdot 1$	
"	LV \& LIV	32	16.55	10	$2 \cdot 39$	
"	LIV \& L	37	30.21	10	4.43	
"	L \& LI	33	19.97	10	4.05	-
LIV	LII \& L	35	39^{14}	10	3.24	
"	L \& LIII	36	$20 \cdot 39$	10	$2 \cdot 35$	
"	LIII \& LV	33	16.35	10	712	
"	LV \& LVII	35	23.42	10	$5 \cdot 27$	
LV	LIX \& LVII	33	13.03	10	$2 \cdot 39$	
" :	LVII \& LIV	34	15.93	10	$1 \cdot 61$	
\because	LIV \& LIII	35	$23 \cdot 50^{\circ}$	10	4.63	$\}$ Barrow's 24-inch No. 2.
\cdot	LIII \& LVI	33	16.27	10	$2 \cdot 33$	
"	LVI \& LVIII	40	61.93	10	2.27	
"	LVIII \& LIX	37	$42 \cdot 86$	10	$5 \cdot 85$	
LVI	LVIII \& LV	31	13.30	10	4.96	
"	LV \& LIIII	36	20.62	10	9.84	. . --
LVII	LIV \& LV ${ }^{+}$	36	15.23	10	3.88	
"	LV \& LIX	39	40'97	10	4.11	
"	LIX \& XXI	34	$20 \cdot 52$	10	3.32	
LVIII	XIX \& LIX	32	12.03	10	1.40	
„	LIX \& LV	31	10.95	10	2.25	
"	LV \& LVI	31	$9 \cdot 88$	10	$1 \cdot 75$	
LIX	LVII \& LV	31	$10 \cdot 74$	10	$3 \cdot 38$	
"	LV \& LVIII	31	13.05	10	$2 \cdot 39$	
"	LVIII \& XIX	41	$40 \cdot 44$	10	6.68	
"	XIX \& XXI	37	22.55	10	$4 \cdot 69$	
"	XXI \& LVII	39	38.86	10	6.87	
XIX	XXI \& LIX	36	$30 \cdot 09$	10	3.15	
"	LIX \& LVIII	33	19.42	10	2.83	
XXI	LVII \& LIX	33	15.67	10	2.50	,
"	LIX \& XIX	32	1549	10	$2 \cdot 61$	

. Norc.-Stations XIX and XXI appertain to the Sutlej Series.

From the preceding data of the sums of the squares of the apparent errors, in the measurement of each angle, we may ascertain the e.m.s. (error of mean square) of observation of a single measure of an angle, aud the e.m.s. of graduation and observation of the mean of the measures on a single zero, for each group of angles measured with the same instrument, by the same observer, aud under similar circumstances.

The instrument employed was Barrow's 24-inch Theodolite No. 2, having 5 microscopes to read the aximuthal circle; observations were taken on 5 pairs of zeros (face right and face left) giving circle readings at $7^{\circ} 12^{\prime}$ apart.

The e.m. s. of observation of a single measure of an angle. $=\sqrt{\frac{\text { Sum of squares of apparent errors of observations. }}{\text { No. of observations }- \text { No. of angles } \times \text { No. of changes of zero. }}}$

The e.m. s. of graduation and observation of the mean of the $\}=\sqrt{\frac{\text { Sum of squares of apparent errors of zero. }}{\text { No. of angles } \times \text { (No. of changes of zero -1) }}}$ measures on a single zero.
$\}=\sqrt{\frac{\text { Sum of squares of apparent errors of zero. }}{\text { No. of angles } \times(\text { No. of changes of zero }-1)}}$

Groap.	Instrament and Observer.			Number of				c. m. e. of obeervation of a single measuro.	e.m.e. of graduation and obserration of a aingle zero.
							安		
I	$\left\{\begin{array}{c} \text { Barrow's } 24 \text {-inch Theodolite } \\ \text { No. 2; Capt. M. W. Rogers, } \end{array}\right\}$	Hills,	$\begin{aligned} & \text { • } 1 \\ & 7 \quad 12 \end{aligned}$	8.69	152	6455	1520	$\left\{\frac{4186.07}{5455-1620}\right\}^{\prime \prime}= \pm 1^{\prime \prime} .081$	$\left\{\frac{688.69}{1520-152}\right\}^{\prime \prime}= \pm 0.683$
II	$\left\{\begin{array}{c} \text { Barrow's } \\ \text { No. 24-inch } \text {; Lieut. J. Hill, B.:E. } \end{array}\right\}$	"	712	$8 \cdot 20$	71	2272	710	$\left\{\frac{957 \cdot 18}{2872-710}\right\}^{ \pm}= \pm 0.788$	$\left\{\frac{244 \cdot 36}{710-71}\right\}^{\prime}= \pm 0.618$
III	$\left\{\begin{array}{c} \text { Barrow’s } \end{array}\left\{\begin{array}{c} \text { 24-inch } \\ \text { No. Theodolite } \\ \text { R. E. C Capt. M. W. Rogres, } \end{array}\right\}\right.$	Plaina,	718	$8 \cdot 85$	4	184	40	$\left\{\frac{80 \cdot 67}{184-40}\right\}^{\prime}= \pm 0.028$	$\left\lvert\,\left\{\frac{11.09}{40 T^{4}}\right\}^{\ddagger}= \pm 0.555\right.$

J. B. N. HENNESSEY,

In charge of Computing Office.

JODHPORE MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES.

Figure No. 1.

- In the tables of the equations between the factors the co-efficients of the terms below the diagonal are omitted for convenience, the co-efficient of the pth

Figure No. 2.

Figure No. 3.

Figure No. 4.

Figure No. 5.

Figure No. 6.

Figure No. 7.

Figure No. 8.

Figure No. 9.

Figure No. 10.

Figure No. 10-(Continued).

Equations between the factors															
$\begin{gathered} \text { No. of } \\ \mathrm{e} \end{gathered}$	Value of .e	Co-efficients of													
		$\lambda_{1} \quad \lambda_{2}$	λ_{3}	λ_{4}	λ_{5}	λ_{6}	λ_{7}	λ_{8}	λ_{9}	λ_{10}	λ_{11}	λ_{18}	λ_{13}	λ_{14}	
1	-0.764	+0.22										+0.03			
2	- 0.236	+0.20										+0.04		$0 \cdot 9$	
3	$-0.84 \mathrm{I}$		$+0.2$									+0.11		0.39	
4	+ 0.468			$+0.26$								+0.09		3.58	
5	$+0.082$				+o							+0.10	$0 \cdot 16$	2.7	
6	-0.767					+0.						+0.11			
7	-0.706						+0.								
8	- 0.101							+o.							
9	-0.315														
10	-0.468				*					+o					
II	-0.325										+0.				
12	- 0.21											+0.48			
13	-0.33												0.71	. $0 \cdot 3$	
14	-157														
15	+14.5														
Values of the Factors			Angular errors in seconds												
$\begin{aligned} & \lambda_{1}=-3.8972 \\ & \lambda_{2}=-0.9014 \\ & \lambda_{3}=-3.9763 \\ & \lambda_{4}=+2.6530 \\ & \lambda_{6}=-1.1055 \\ & \lambda_{6}=-3.8427 \\ & \lambda_{7}=-2.3671 \\ & \lambda_{6}=-0.9341 \\ & \lambda_{9}=-1.5112 \\ & \lambda_{10}=-1.9155 \\ & \lambda_{11}=-1.1572 \\ & \lambda_{12}=+1.3554 \\ & \lambda_{13}=+0.2470 \\ & \lambda_{16}=-0.1122 \\ & \lambda_{15}=+0.0485 \end{aligned}$					x_{1}	$=-$ $=-$ $=-$ $=+$ $=-$ $=-$ $=-$ $=-$ $=+$ $=+$	$\begin{aligned} & 076 \\ & 220 \\ & 468 \\ & 018 \\ & 007 \\ & 247 \\ & 288 \\ & 219 \\ & 334 \\ & 361 \\ & 156 \end{aligned}$		x_{18} x_{13} x_{14} x_{15} x_{16} x_{17} x_{18} x_{19} x_{20} x_{21} x_{28} $[\mathrm{~m}$	- + + - - - - - - - - - -1	49 75 42 74 99 94 70 46 90 34 26	x_{g}	$\begin{aligned} & = \\ & = \\ & = \\ & = \\ & = \\ & = \\ & = \\ & = \\ & = \\ & = \\ & = \end{aligned}$	021 - 088 .076 -079 - 160 - 167 - 065 $\cdot 236$ - 109 - 077 - I 39	

Figure No. 11.

Figure No. 12.

Figure No. 13.

Figure No. 18-(Continued).

September 1878.
J. B. N. HENNESSEY,

In charge of Computing Office.

JODHPORE. MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. TRIANGLES.

Norzs.-1. The values of the side are given in the same line with the opposite angle.
Stations XLI and XLIV appertain to the Karachi Longitudual Series.

No. of triangle		Station		Correetions to Obeerred Angle				$\begin{gathered} \text { Corrected Plane } \\ \text { Angle } \end{gathered}$	Distance		
Oircuit	Noncircuit			Figure	Circuit	Noncircuit	Total		Log. feet	Feet	Miles
29	62	$\begin{aligned} & \text { XXXIII } \\ & \text { XXXV } \\ & \text { XXXIV } \end{aligned}$	$\begin{aligned} & 11 \\ & \cdot 198 \\ & \cdot 198 \\ & \cdot 198 \\ & \hline \end{aligned}$	$\|$11 $+\cdot 173$ $+\cdot 064$ $\cdot 103$	$\left\lvert\, \begin{gathered}1 \prime \\ +\quad .038 \\ +\quad .066 \\ -\quad .104\end{gathered}\right.$	"	$\begin{array}{r}17 \\ +\quad .211 \\ +\quad 130 \\ \hline \cdot 207 \\ \hline\end{array}$	$\begin{array}{ccc} \circ \circ & \prime \prime \\ 67 & 0 & 40 \cdot 473 \\ 44 & 59 & 31 \cdot 432 \\ 67 & 59 & 48 \cdot 095 \\ \hline \end{array}$	$\begin{aligned} & 4 \cdot 7738645,8 \\ & 4.6592271,6 \\ & 4.7769581,3 \end{aligned}$	$\begin{aligned} & 59410 \cdot 68 \\ & 45627 \cdot 55 \\ & 59835 \cdot 39 \end{aligned}$	$\begin{array}{r} 11.252 \\ 8.642 \\ 11.332 \end{array}$
			- 594				+ 134	180 O 0.000			$\begin{aligned} & 9.320 \\ & 9.944 \\ & 9.961 \end{aligned}$
		XXX XXXII XXXIII	$\begin{array}{r} \cdot 180 \\ \cdot 180 \\ \cdot 180 \\ \hline \end{array}$			$\begin{array}{r}+\quad 019 \\ +\quad 074 \\ +\quad \cdot 093 \\ \hline\end{array}$	$\begin{array}{r}+\quad .013 \\ +\quad .499 \\ +\quad .218 \\ \hline\end{array}$	$\begin{aligned} & 555014.913 \\ & 615921 \cdot 869 \\ & 621023.218 \\ & \hline \end{aligned}$	4.6920302,5 $4 \cdot 7201817,4$ 4.7209196,2	$\begin{array}{r} 49207 \cdot 38 \\ 52502 \cdot 72 \\ 52591.99 \end{array}$	
			-540				+ 730	180 O $0 \cdot 000$			
	63	$\begin{aligned} & \text { XXXII } \\ & \text { XXXIII } \\ & \text { XXXI } \end{aligned}$	$\begin{array}{r} 177 \\ -176 \\ \cdot 176 \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & +\quad .501 \\ & \pm \\ & +\quad .007 \\ & \hline \end{aligned}\right.$		$\left\lvert\, \begin{gathered}+ \\ +076 \\ +\quad 056 \\ -\quad .132\end{gathered}\right.$	$\begin{array}{r}+\quad .577 \\ +\quad 049 \\ +\quad 153 \\ \hline\end{array}$	$\begin{aligned} & 942645 \cdot 410 \\ & 404636 \cdot 033 \\ & 444638 \cdot 557 \\ & \hline \end{aligned}$	$\begin{aligned} & 48429305,0 \\ & +6592271,6 \\ & 4.6920302,5 \end{aligned}$	$\begin{aligned} & 69651 \cdot 50 \\ & 45627.55 \\ & 49207 \cdot 38 \end{aligned}$	$\begin{array}{r} 13.192 \\ 8.642 \\ 9.320 \end{array}$
		$\begin{aligned} & \text { XXXIV } \\ & \mathbf{X X X V} \\ & \mathbf{X X X V I} \end{aligned}$	$\cdot 529$				+ 779	$180 \quad 00.000$	4•8090908,1 4.8555191, +7738645,8	$\begin{aligned} & 64430 \cdot 40 \\ & 71699 \cdot 99 \\ & 59410 \cdot 68 \end{aligned}$	$\begin{aligned} & 12.203 \\ & 13.580 \\ & 11.252 \end{aligned}$
30			$\begin{array}{r}\cdot 285 \\ .285 \\ .284 \\ \hline\end{array}$	$\left\|\begin{array}{r} \\ +\quad .220 \\ +\quad .468 \\ +\quad .076\end{array}\right\|$	$\|$- -129 $+\quad 129$ $-\quad 082$		$\begin{array}{r}+\quad .173 \\ +.597 \\ \hline .006 \\ \hline\end{array}$	$\begin{aligned} & 575748 \cdot 648 \\ & 703723 \cdot 172 \\ & 512448 \cdot 180 \\ & \hline \end{aligned}$			
			$\cdot 854$				+ 764	$180 \quad 00 \cdot 000$			
31		$\begin{aligned} & \text { XXXXVV } \\ & \text { XXXVII } \end{aligned}$	$\begin{array}{r}\cdot 296 \\ \cdot 295 \\ \cdot 296 \\ \hline\end{array}$	$+\quad 194$ $+\quad .274$ $+\quad 299$	$\begin{array}{r}+\quad 046 \\ +\quad 072 \\ -\quad .118 \\ \hline\end{array}$		$\begin{array}{r} +\quad 340 \\ +\quad 346 \\ +\quad 181 \\ \hline \end{array}$	$\begin{aligned} & 6816 \quad 58 \cdot 594 \\ & 4548 \\ & 45 \\ & 65 \\ & 54 \\ & 54 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.8631164,8 \\ & 4.7506005,7 \\ & 48555191,1 \end{aligned}$	$\begin{aligned} & 72965 \cdot 32 \\ & 56311 \cdot 94 \\ & 71699.99 \end{aligned}$	$\begin{aligned} & 13.819 \\ & 10.665 \\ & 13.580 \end{aligned}$
			-887				+ 767	$180 \quad 00.000$			
32		$\begin{aligned} & \text { XXXVI } \\ & \text { XXXVII } \end{aligned}$	$\begin{array}{r}\cdot 523 \\ .523 \\ .522 \\ \hline\end{array}$	$\begin{array}{r}\text { - } 049 \\ +\quad 242 \\ -\quad 275 \\ \hline\end{array}$	$\begin{array}{r}+\quad 132 \\ \pm-021 \\ -\quad 111 \\ \hline\end{array}$		$\begin{array}{r}+\quad .083 \\ \pm .221 \\ -\quad 386 \\ \hline\end{array}$	$\begin{aligned} & 761423 \cdot 930 \\ & 604955 \cdot 038 \\ & 425541 \cdot 032 \end{aligned}$	$\begin{aligned} & 5 \cdot 0172721,8 \\ & 4 \cdot 9710293,6 \\ & 4 \cdot 8631164,8 \end{aligned}$	$\begin{array}{r} 104057 \cdot 21 \\ 93546 \cdot 89 \\ 72965 \cdot 32 \end{array}$	$\begin{aligned} & 19.708 \\ & 17.717 \\ & 13.819 \end{aligned}$
			1-568				-.082	$180 \quad 0.000$			20.418 19.670 19:708
33		$\begin{aligned} & \text { XXXVII } \\ & \text { XXXIX } \\ & \text { XLI } \end{aligned}$	7756 .755 755	$+\quad 146$ $+\quad .170$ $+\quad 390$	$\begin{array}{r}+\quad .070 \\ +\quad 076 \\ +\quad 146 \\ \hline\end{array}$		$\begin{array}{r}+\quad 216 \\ +\quad .246 \\ +\quad .244 \\ \hline\end{array}$	$\begin{aligned} & 62.2754 .030 \\ & 584037.311 \\ & 585128 \cdot 659 \\ & \hline \end{aligned}$	5.0326460,5 50164405,2 5.0172721,8	107So6•78 $103858 \cdot 14$ $104057^{\prime 21}$	
		$\begin{aligned} & \text { XXXIX } \\ & \text { XLI } \\ & \text { XLIII } \end{aligned}$	$2 \cdot 266$				+ 706	$180 \quad 00.000$			$\begin{aligned} & 25 \cdot 674 \\ & 18 \cdot 114 \\ & 20 \cdot 418 \end{aligned}$
34			$\begin{array}{r} \cdot 807 \\ \cdot 807 \\ \cdot 807 \\ \hline \end{array}$	+ 034 .021 $+\quad .088$	$\begin{array}{r}+\quad .055 \\ +\quad 148 \\ -\quad 203 \\ \hline\end{array}$		$\begin{array}{r}+\quad 089 \\ +\quad 127 \\ \hline \quad 115 \\ \hline\end{array}$	$\begin{array}{lll} 83 & 20 & 2 \cdot 902 \\ 44 & 29 & 21 \cdot 390 \\ 52 & 10 & 35 \cdot 708 \\ \hline \end{array}$	5.1321256,3 4:9806505,1 5.0326460,5	$\begin{array}{r} 135558 \cdot 14 \\ 9542.42 \\ 107806 \cdot 78 \end{array}$	
35			$2 \cdot 421$				+ ${ }^{101}$	$180 \quad 00000$			$\begin{aligned} & 17.546 \\ & 22.315 \\ & 18.114 \end{aligned}$
		$\begin{aligned} & \text { XXXIX } \\ & \text { XLIII } \\ & \text { XLIV } \end{aligned}$	$\begin{array}{r} \cdot 681 \\ .682 \\ \cdot 682 \\ \hline \end{array}$	+ + + + +	+ $+\quad 198$ $-\quad 076$ $-\quad 122$		$\begin{array}{r}+\quad .274 \\ +\quad .03 \\ +\quad 038 \\ \hline\end{array}$	$\begin{aligned} & 50 \quad 757 \cdot 323 \\ & 772733 \cdot 811 \\ & 522428 \cdot 866 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.9668150,0 \\ & 5.0712328,4 \\ & 4.9806505,1 \end{aligned}$	$\begin{array}{r} 92643.51 \\ 117823.75 \\ 95642.42 \end{array}$	
	64		2.045				+ 315	$180 \quad 00000$			$\begin{aligned} & 14.002 \\ & 11 \cdot 085 \\ & 12.203 \end{aligned}$
		$\underset{\text { XXXVIII }}{\text { XXXV }}$	$\begin{array}{r} \cdot 286 \\ \cdot 285 \\ \cdot 285 \\ \hline \end{array}$	 $+\quad .007$ +018 $+\quad .247$		$\begin{array}{r}+\quad 137 \\ \hline-095 \\ -\quad 042 \\ \hline\end{array}$	$\begin{array}{r}+\quad 144 \\ \hline .113 \\ +\quad 205 \\ \hline\end{array}$	$\begin{array}{rr} 73 & 44 \\ \hline 28 \cdot 598 \\ 49 & 28 \\ 5 \cdot 252 \\ 5647 & 22 \cdot 150 \\ \hline \end{array}$	$\begin{aligned} & 4 \cdot 8688 \mathrm{I}+3,2 \\ & +767380,5 \\ & 4.8090908, \mathrm{I} \end{aligned}$	$\begin{aligned} & 73928 \cdot 92 \\ & 5853 \mathrm{O} \cdot 02 \\ & 64430 \cdot 40 \end{aligned}$	
			$\cdot 856$				+ 236	$180 \quad 00000$	$\begin{aligned} & +7607854,7 \\ & 4: 8405886,1 \\ & 48688143,2 \end{aligned}$		$\begin{aligned} & 10 \cdot 918 \\ & 13 \cdot 121 \\ & 14.002 \end{aligned}$
	65	$\underset{\mathbf{X I}}{\underset{X X X I I I}{\text { XXXII }}}$	$\begin{array}{r}\cdot 297 \\ \hline 297 \\ \hline 297 \\ \hline\end{array}$	$\begin{array}{r} \\ +\quad 288 \\ +\quad 219 \\ +\quad 334 \\ \hline\end{array}$		$\begin{array}{r}-125 \\ \hline+.139 \\ -\quad .014 \\ \hline\end{array}$	$\begin{array}{r}+\quad 163 \\ +\quad 358 \\ +\quad .320 \\ \hline\end{array}$	$\begin{array}{rl} 47 & 20 \\ 62 & 17 \\ 62 & 52 \\ 72 & 38 \\ 70 & 34 \\ \hline \end{array}$		$\begin{aligned} & 57648 \cdot 17 \\ & 69276 \cdot 92 \end{aligned}$ $73928 \cdot 92$	
			-891				$+\cdot 841$	180 0 0.000	$\begin{aligned} & 5.0650027,1 \\ & 4.9710293,6 \\ & 4.8405886,1 \end{aligned}$	$\begin{array}{r} 116145 \cdot 59 \\ 93546 \cdot 99 \\ 69276 \cdot 92 \end{array}$	$\begin{aligned} & 21 \cdot 997 \\ & 17 \cdot 717 \\ & 13 \cdot 121 \end{aligned}$
	66	$\begin{aligned} & \text { XXXVI } \\ & \text { XL } \\ & \text { XXXIX } \end{aligned}$	$\begin{array}{r}\cdot 511 \\ . \\ \hline 511 \\ \hline 510 \\ \hline\end{array}$	$\begin{array}{r} \\ \hline \quad 361 \\ \hline \quad .156 \\ +\quad 049 \\ \hline\end{array}$		$\begin{array}{r}\text { + } \\ +\quad 098 \\ \hline-007 \\ -\quad .091 \\ \hline\end{array}$	$\begin{array}{r}1 \\ -\quad .263 \\ \hline-163 \\ \hline .042 \\ \hline\end{array}$				
			1.532				- $\cdot 468$	$180 \quad 00000$			

PRINCIPAL TRIANGULATION. TRIANGLES.

Norm.-Stations XIX and XXI appertain to the Sutlej Series.
September 1878.
J. B. N. HENNESSEY,

In charge of Cownputing Office.

JODHPORE MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.

Station \mathbf{A}					Side AB			Station B
Circuit No.	Series No.	Name	Latitude North	Longitude Enat of Greenwich	Aximuth at A	Log. Feot	Asimath at B	Series No.
1	XLI	Bonik	- "	- "	- "	5.2541461,0	- , "	XLIV
			25 3 51.50	$725421 \cdot 85$	$55 \quad 415 \cdot 67$		$23453 \quad 2 \cdot 57$	
	"	"	"	"	$94 \quad 251 \cdot 29$	5•2394300,7	27349 32.90	I
			$2446 \text { 50•77 }$	\% 72	$136411 \cdot 20$	4•9901706,7	$3155^{8} 57 \cdot 05$	II
		Súnda			$167644 \cdot 65$	5.0716171,6	$\begin{array}{llll} \\ 347 & 4 & 43 \cdot 99\end{array}$	
	"	"	$\left.\right\|_{244650 \cdot 77} ^{\prime}$	"	20425 54.05	5 $279938 \mathrm{I}, 5$	$243^{1} 57 \cdot 10$	II
	I	Borta	$25 \quad 549.53$	$722258 \cdot 39$	$2405153 \cdot 70$	5-0802173, 1	$61 \quad 0 \quad 0.63$	II
	"	"		"	$17846{ }^{18} 861$	$5^{\cdot 1} 3^{85} 529,7$	3584624.54	III
	"	Dhaula	$251528 \cdot 46$	"	126 5 46. 53	$5 \cdot 2852261,9$	$3055341 \cdot 41$	IV
2	II			$7242 \quad 2 \cdot 97$	1261616.06	5-1262127,6	$\begin{array}{llll}306 & 7 & 52 \cdot 00\end{array}$	III
"	"	"	"	"	$2073044 \cdot 75$	5-1426862,7	$273545 \cdot 70$	V
	III	Kundal	$252830 \cdot 85$	$722226 \cdot 38$	81853.65	5-1895975,8	26056 57•21	IV
	"	"	"	"	$\begin{array}{lll}255 & 29 & 4.56\end{array}$	5-2492748,6	$754233 \cdot 92$	V
	"	"		$"$$"$7154$38 \cdot 69$	$\begin{array}{lll} 152 & 24 & 41 \cdot 56 \\ 212 & 23 & 20 \cdot 20 \\ 214 & 51 & 38 \cdot 38 \end{array}$	$\begin{aligned} & 5 \cdot 0986612,2 \\ & 5 \cdot 1672452,2 \\ & 5 \cdot 2174339,4 \end{aligned}$	$\begin{array}{\|rrr} 332 & 20 & 6 \cdot 50 \\ 32 & 29 & 33 \cdot 12 \\ 34 & 59 & 4 \cdot 11 \end{array}$	$\begin{aligned} & \text { VI } \\ & \text { VII } \\ & \text { VI } \end{aligned}$
	"	"						
	IV	Mandaula	$252432 \cdot 35$					

Notz,-Stations XLI and XLIV appertain to the Karachi Longitudinal Series.

Station 1					Side AB			Station B
Circuit No.	Series No.	Name	Latitude North	Longitude Eatt of Greenwich	Azimuth at A	Log. Feet	Aximuth at B	Series No.
3			- , "	- "	- , "		- "	
	V	Bhadrajau	$253548 \cdot 29$	$725343 \cdot 89$	1304459.96	5-0882240:5	31037 39.31	VII
	VI	Nagar	$254652 \cdot 33$	721150.44	2643^{2} 53'04	$5 \cdot 13{ }^{81661,9}$	$844344 \cdot 81$	VII
	"	,	"	"	$2155^{21} 21.47$	$5 \cdot 0838982,0$	$355^{66} 1 \cdot 90$	VIII
	"	"	"	"	$167 \quad 59$ 9•18	5-1281314,8	$3475654 \cdot 86$	IX
4	VII	Samdari	254859.55	$723648 \cdot 02$	1423135.72	5-0322912, 1	$32.2621 \cdot 42$	VIII
"	"	"	"	"	2212412.73	5-0,63667,8	413030.99	X
	VIII	Thob	$\begin{array}{llll}26 & 3 & 5 \cdot 85\end{array}$	72244935	$108 \quad 3258 \cdot 12$	5-0185059,2	$\begin{array}{llll}288 & 25 & 0 \cdot 51\end{array}$	IX
	"	"	\%	\%	$\begin{array}{llll}268 & 21 & 0 \cdot 44\end{array}$	5•1596842,2	$88 \quad 3235 \cdot 99$	X
	"	"	"	"	$1734037 \cdot 56$	5.0217355,9	$353 \quad 39$ 41 37	XI
	,	"	"	"	22757 56•94	5•0955763,7	$\begin{array}{lll}48 & 5 & 2541\end{array}$	XII
	IX	Borla	$26 \quad 833.54$	72643.60	$2303848 \cdot 14$	5-0521346,8	5045 51•92	XI
5	X	Dodo	$26 \quad 344.63$	725112.79	$147 \quad 125.63$	4*97641 58,6	$3265715 \cdot 80$	XII
	XI	Adori	$262020 \cdot 83$	$722242 \cdot 07$	$2812446 \cdot 79$	5-0263010,9	1013313.96	XII
	"	"	"	,	$2224942 \cdot 57$	4.9330134,9	$425428 \cdot 04$	XIII
	"	"	"	"	$1692158 \cdot 14$	4*8199682,4	$3492058 \cdot 40$	XIV
6	XII	Dugur	$261651 \cdot 33$	72 4146.35	$1512751 \cdot 69$	4.9804877,8	$\begin{array}{lll}331 & 24 & 8 \cdot 15\end{array}$	XIII
"	"	"	"	"	2071958.65	4*9293907,2	$\begin{array}{lll}27 & 23 & 9.55\end{array}$	XV
	XIII	Ketu	$263043 \cdot 00$	723323.52	91 45 54.70	+ 84800978,0	271408.41	XIV
	"	"	"	\%	$2753935 \cdot 81$	4.9300411,0	$95463 \mathrm{I} \cdot 84$	XV
	"	"	"	"	$1404947 \cdot 61$	$4 \cdot 8593774,0$	$32046 \quad 2 \cdot 15$	XVI
7	"	"	"	"	$20348 \quad 6 \cdot 99$	4.7829932,9	$2350 \quad 7 \cdot 80$	XVII
	XIV	Sulkia Thalau	26313.92	$722027 \cdot 84$	$2043417 \cdot 51$	4.7732438,0	243619.25	XVI
	XV	Malunga	2629 19*00	7248 55.92	$13649 \quad 0.62$	4.9435461,4	$31644 \quad 4.24$	XVII
	XVI	Loharan	2639 58•22	$722459 \cdot 81$	$2702412 \cdot 22$	$4 \cdot 8462130,0$	902959.42	XVII
	"	"	"	"	20836 22.52	4.7784986,6	$28 \quad 3845 \% 30$	XVIII
8	"	"	"	"	$1524020 \cdot 48$	4.7850410,2	$\begin{array}{lll}332 & 3^{8} & 1\end{array} \cdot 48$	XIX
	XVII	Chama	$263952 \cdot 74$	723753.46	$1{ }^{1} 2211130 \cdot 24$	4.8289003,0	$\begin{array}{llll}322 & 8 & 13.95\end{array}$	XVIII
"	"	"	"	"	$201336 \cdot 70$	4.8358276,0	215139.07	XX
	XVIII	Pelu	$264840 \cdot 25$	$723017 \cdot 16$	$912930 \cdot 40$	4.7539932,1	$2712447 \cdot 90$	XIX
	"	"	"	"	26045 36•92	4-8248902,3	$8051 \quad 5 \cdot 5^{2}$	XX
9	"	"	"	"	1542115.05	4-7955865,4	33418.59 .92	
	"	"	"	"	$\begin{array}{llll}203 & 23 & 0.17\end{array}$	4-8602905,7	$2325 \quad 24 \cdot 10$	XXII
	XIX	Daichu	2648 54.50	$721950 \cdot 89$	$208 \quad 22 \begin{array}{lll}2 \cdot 38\end{array}$	4.7948772,2	$282431 \cdot 50$	XXI
	XX	Sorau	$265025 \cdot 99$	724225.33		4-8264635,6	$\begin{array}{lll}326 & 22 & 7 \cdot 51\end{array}$	XXII
	XXI	Jalora	$265757 \cdot 8 \mathrm{I}$	$72 \begin{aligned} & \text { 2 18.36 }\end{aligned}$	$2593414 \cdot 18$	+.7538389,3	$793^{8} 54 \cdot 04$	XXII

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{8tation A} \& \multicolumn{3}{|c|}{Side AB} \& Station B \\
\hline Circuit No. \& Series No. \& Name \& Latitude North \& Longitude Enst of Greenwich \& Azimuth at A \& Log. Feet \& Azimuth at B \& Series No. \\
\hline \multirow[b]{4}{*}{10} \& \multirow[b]{2}{*}{XXI} \& \multirow[b]{2}{*}{Jalora} \& \multirow[t]{2}{*}{\[
\begin{array}{cc}
\circ \& \prime \prime \\
26 \& 57 \\
57 \& 81
\end{array}
\]} \& \multirow[t]{2}{*}{\[
722518 \cdot 36
\]} \& - " \& \& - , N \& \\
\hline \& \& \& \& \& \(16038 \quad 16 \cdot 55\) \& 4-6986909,8 \& \(34036 \quad 53 \cdot 24\) \& XXIII \\
\hline \& " \& " \& " \& " \& \(20954 \quad 4 \cdot 42\) \& 4*7957073,2 \& 29 56 41.13 \& XXIV \\
\hline \& XXII \& Loháwat \& \(265939 \cdot 15\) \& \(723535 \cdot 25\) \& \(117443 \cdot 11\) \& 4*9096344,2 \& \(296 \quad 58 \quad 39 \cdot 27\) \& XXIII \\
\hline \multirow[t]{2}{*}{"} \& \multirow[t]{2}{*}{XXIII} \& \multirow[t]{2}{*}{} \& \& " \& \(1504519 \times 35\) \& 4*7018973,2 \& \(3304315 * 55\) \& XXIV \\
\hline \& \& \& \(27 \quad 544.66\) \& \(722215 \cdot 04\) \& \(2613635 \cdot 87\) \& \(4 \cdot 6832601,5\) \& \(814036 \cdot 45\) \& XXIV \\
\hline \multirow[b]{3}{*}{II} \& " \& " \& \multirow[b]{2}{*}{"} \& \% \& \(186 \quad 25 \cdot 23 \cdot 55\) \& 4-8263806,9 \& \(\begin{array}{lll}6 \& 26 \quad 1 \cdot 54\end{array}\) \& XXV \\
\hline \& " \& " \& \& " \& \(22312 \quad 20 \cdot 26\) \& 4•9508827,8 \& \(4317 \quad 29.86\) \& XXVI \\
\hline \& XXIV \& Onlo \& 27654.07 \& \(7231 \quad 3.07\) \& \(146 \quad 3 \quad 30 \cdot 20\) \& \(4 \cdot 8566_{423,2}\) \& \(326 \quad 0 \quad 6.87\) \& XXV \\
\hline \multirow[t]{2}{*}{\%} \& \multirow[t]{2}{*}{XXV} \& \multirow[t]{2}{*}{33 Khirwa} \& \multirow[t]{2}{*}{\[
271644 \cdot 49
\]} \& \multirow[t]{2}{*}{\[
72233^{8 \cdot 18}
\]} \& \(193 \quad 5 \cdot 39 \cdot 80\) \& \(4^{-7751950,4}\) \& \(13648 \cdot 19\) \& XXVI \\
\hline \& \& \& \& \& \(2713^{8} \cdot 41 \cdot 95\) \& 4•7296662,9 \& \(914314^{\circ} 41\) \& XXVI \\
\hline \multirow[b]{3}{*}{12} \& " \& " \& \multirow[t]{3}{*}{\(" \prime\)
27 I6 28.88} \& \multirow[t]{2}{*}{" "} \& \multirow[t]{2}{*}{\[
\begin{array}{lll}
205 \& 44 \& 50 \cdot 29 \\
145 \& 57 \& 39 \cdot 48
\end{array}
\]} \& 4•7752348,0 \& \(2547 \quad 2 \cdot 32\) \& XXVII \\
\hline \& , \& " \& \& \& \& \(4 \cdot 8323596,4\) \& \(\begin{array}{llll}325 \& 54 \& 25 \cdot 40\end{array}\) \& XXVIII \\
\hline \& XXVI \& Jambo \& \& \multirow[t]{3}{*}{\[
\begin{gathered}
\begin{array}{c}
7233 \\
32 \cdot 71 \\
72 \\
728 \\
25 \cdot 53
\end{array}
\end{gathered}
\]} \& \multirow[t]{3}{*}{\[
\begin{array}{rrr}
153 \& 23 \& 43 \cdot 23 \\
206 \& 0 \& 2 \cdot 55 \\
92 \& 24 \& 29 \cdot 3^{2}
\end{array}
\]} \& 4*7910041,2 \& \(3332122 \cdot 10\) \& XXVII \\
\hline \multirow[t]{2}{*}{\(\because\)} \& \multirow[t]{2}{*}{XXVII} \& \multirow[t]{2}{*}{Sirad} \& \multirow[t]{2}{*}{\[
\begin{gathered}
" \\
272536 \cdot 03
\end{gathered}
\]} \& \& \& 4*7893888,8 \& \(26 \quad 2 \quad 20 \cdot 19\) \& XXIX \\
\hline \& \& \& \& \& \& \(4 \cdot 8061453,4\) \& \(\begin{array}{lll}272 \& 19 \& 2.39\end{array}\) \& .XXVIII \\
\hline \multirow[b]{5}{*}{13} \& \multirow[t]{5}{*}{\("\)
\("\)
\("\)
XXVIII
XXIX} \& " \& \multirow[t]{3}{*}{"} \& \multirow[t]{3}{*}{\begin{tabular}{l}
\(\prime \prime\) \\
\hline \\
\hline
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{llll}
269 \& 52 \& 27 \cdot 42 \\
145 \& 44 \& 10 \cdot 16
\end{array}
\]} \& \[
4^{\circ} 7377444,7
\] \& \[
89 \quad 57 \quad 6 \cdot 90
\] \& XXIX \\
\hline \& \& \% \& \& \& \& \(4 \cdot 8855711,7\) \& \(32.540 \quad 28 \cdot 00\) \& XXX .. \\
\hline \& \& " \& \& \& \(193 \quad 13 \quad 35 \cdot 86\) \& 4*8999729,0 \& 131519.28 \& XXXI \\
\hline \& \& Harban \& \multirow[t]{2}{*}{\[
\begin{array}{lll}
27 \& 26 \& 2 \cdot 16 \\
27 \& 25 \& 36 \cdot 85
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{lll}
72 \& 16 \& 35 \cdot 84 \\
72 \& 3^{8} \& 32 \cdot 30
\end{array}
\]} \& \multirow[t]{2}{*}{\(\begin{array}{llll}198 \& 41 \& 19.99 \\ 154 \& 46 \& .33 .02\end{array}\)} \& 4•8077577,7 \& 1843 5.70 \& XXX \\
\hline \& \& Biutli \& \& \& \& 4•9314209,2 \& \(33443 \quad 25 \cdot 96\) \& XXXI \\
\hline \multirow[b]{5}{*}{\[
\begin{aligned}
\& 14 \\
\& \#
\end{aligned}
\]} \& XXX \& Nok \& \(2736 \quad 4 \cdot 67\) \& \(722024 \cdot 63\) \& \(25715.40 \cdot 40\) \& 4-7991 189,6 \& 77. 20 57.03 \& XXXI \\
\hline \& " \& " \& \multirow[t]{2}{*}{"} \& \& \multirow[t]{2}{*}{\[
\begin{array}{lll}
194 \& 39 \& 29
\end{array} \cdot 24
\]} \& \multicolumn{2}{|l|}{4•7209196,2 1440 38.03} \& \multirow[t]{4}{*}{\[
\begin{aligned}
\& \text { XXXII } \\
\& \text { XXXIII } \\
\& \text { XXXII } \\
\& \text { XXXV }
\end{aligned}
\]} \\
\hline \& \multirow[t]{2}{*}{XXXI} \& \multirow[t]{2}{*}{" Mongolia} \& \& \multirow[t]{2}{*}{\[
723147 \cdot 62
\]} \& \& 4•7201817,4 \& \(\begin{array}{lllll}18 \& 46 \& 15.60\end{array}\) \& \\
\hline \& \& \& \(273^{8 \prime} 21 \cdot 71\) \& \& \(1273^{8} 5^{1} \cdot 98\) \& 4.7831115,6 \& \(3073443 \cdot 44\) \& \\
\hline \& \% \& " \& \% \& ". \& 182 20.5.76 \& \(4 \cdot 8367231,2\) \& :220 20.26 \& \\
\hline \multirow[b]{8}{*}{15} \& XXXII \& Pabusar \& 2744 28.51 \& 7222 52•77 \& \(76 \quad 40 \quad 0.08\) \& \multicolumn{2}{|l|}{+ \(6920302,5256355^{2 \cdot 21}\)} \& \multirow[t]{5}{*}{\[
\begin{aligned}
\& \text { XXXIII } \\
\& \text { XXXIV } \\
\& \text { XXXV.. } \\
\& \text { XXXIV } \\
\& \text { XXXV }
\end{aligned}
\]} \\
\hline \& „ \& " \& " \& " \& \(171645 \cdot 67\) \& + 6592271,6 \& 35169.03 \& \\
\hline \& " \& " \& " \& " \& \(\begin{array}{llll}238 \& 7 \& 26 \cdot 34\end{array}\) \& 4•776958ı,3 \& \(5^{8}\) 11 50.18 \& \\
\hline \& XXXIII \& Bikampur \& \multirow[t]{2}{*}{\[
\begin{array}{lll}
27 \& 42 \& 35 \cdot 85 \\
27 \& 5 \prime \& 54 ` 92
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{llll}
7 \& 2 \& 1 \& 3 \\
59^{\circ} \& 97 \\
72 \& 21 \& 34^{\circ} \& 22
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\left\lvert\, \begin{array}{rrr}
215 \& 49 \& 16 \cdot 00 \\
283 \& 6 \& 20 \cdot 74
\end{array}\right.
\]} \& 4-8429305,0 \& \(35 \quad 5247 \cdot 76\) \& \\
\hline \& XXXIV \& Phulasar \& \& \& \& 4•7738645,8 \& 103.1121.81 \& \\
\hline \& \multirow[t]{3}{*}{\[
\begin{gathered}
" \\
" \\
\mathbf{X X X V}
\end{gathered}
\]} \& \multirow[t]{3}{*}{\begin{tabular}{l}
" \\
" \\
Girondi
\end{tabular}} \& \multirow[t]{3}{*}{\[
\begin{gathered}
" \\
274941 \cdot 10
\end{gathered}
\]} \& \multirow[t]{5}{*}{} \& 2258 31*80 \& \(4 \cdot 8555^{191,1}\) \& 45.12 \(57 \cdot 46\) \& XXXVI \\
\hline \& \& \& \& \& \(1565132 \cdot 91\) \& 4*7506005,7 \& 336. 49. \(37 \cdot 23\) \& XXXVII \\
\hline \& \& \& \& \& \(173 \quad 48 \quad 45 \cdot 27\) \& 4.8090908,1 \& \(\begin{array}{llll}353 \& 48 \& 8 \cdot 99\end{array}\) \& XXXVI \\
\hline " \& " \& " \& " \& \& \(2473314 * 1.5\) \& 4•7673860,5 \& \begin{tabular}{|ccccl}
67 \& 37 \& \(55 \cdot 91\)
\end{tabular} \& XXXVIII \\
\hline 16 \& XXXVI \& Mankasar \& \(28 \bigcirc 15 \cdot 40\) \& \& 91119.90 \& \(4.8631154,8\) \& \(2705457 \cdot 68\) \& XXXVII \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Station A} \& \multicolumn{3}{|c|}{Side AB} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Station B \\
Series No.
\end{tabular}} \\
\hline \[
\begin{aligned}
\& \text { Circuit } \\
\& \text { No. }
\end{aligned}
\] \& Series No. \& Name \& Latitude North \& Longitude East of Greenwich \& Azimuth at 1 \& Log. Feot \& Aximuth at \(B\) \& \\
\hline \multirow[b]{2}{*}{16} \& \multirow[b]{2}{*}{XXXVI} \& \multirow[b]{2}{*}{Mankasar} \& \multirow[t]{2}{*}{\[
\begin{array}{ccc}
\circ \& \prime \prime \prime \\
28 \& \circ \& 15 \cdot 40
\end{array}
\]} \& \multirow[t]{2}{*}{\[
7231 \quad 1 \cdot 30
\]} \& \multirow[b]{2}{*}{3041959.46} \& \multirow[b]{2}{*}{4-8688143,2} \& \multirow[t]{2}{*}{\[
\begin{array}{ccc}
\circ \& \prime \\
124 \& 25 \& 18 \cdot 34
\end{array}
\]} \& \multirow[b]{2}{*}{XXXVIII} \\
\hline \& \& \& \& \& \& \& \& \\
\hline " \& " \& " \& " \& , \& 1671544.36 \& 4•9710293, 6 \& \(3471355 \cdot 60\) \& XXXIX \\
\hline \multirow[t]{4}{*}{"} \& \multirow[t]{2}{*}{XXXVII} \& \multirow[t]{2}{*}{Uperthal} \& \multirow[b]{2}{*}{\(28 \quad 27 \cdot 62\)} \& \multirow[t]{2}{*}{\[
\begin{gathered}
7 \prime \prime \\
721727 \cdot 29
\end{gathered}
\]} \& 2565941.77 \& 4*8405886,1 \& \(\begin{array}{ll}77 \& 5 \\ 35 \cdot 79\end{array}\) \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { XL } \\
\& \text { XXXIX }
\end{aligned}
\]} \\
\hline \& \& \& \& \& \(\begin{array}{lll}210 \& 5 \& 2 \cdot 12\end{array}\) \& 5-0172721,8 \& \(\begin{array}{llll}30 \& 9 \& 37 \cdot 16\end{array}\) \& \\
\hline \& " \& \% \& " \& " \& \(147 \begin{array}{lll}47 \& 7 \& 33\end{array}\) \& 5-0164405,2 \& 3273214.09 \& XLI \\
\hline \& XXXVIII \& Bithnok \& 2753 22.03 \& \(724221 \cdot 73\) \& \(1863051 \cdot 43\) \& 4.7607854,7 \& \(63125 \cdot 67\) \& XL \\
\hline 17 \& XXXIX \& Modia \& 281518.87 \& \(722710 \cdot 63\) \& \(310{ }^{66} 54 \cdot 72\) \& 5-0650027,1 \& \(1304439 \cdot 01\) \& XL \\
\hline " \& " \& " \& " \& " \& 88 50 15.22 \& 5-0326460,5 \& \(268 \quad 4044 \cdot 68\) \& XLI \\
\hline " \& " \& " \& " \& " \& \(2613542 \cdot 29\) \& \multirow[t]{2}{*}{\(+9677234,5\)
\(4 \cdot 9806505,1\)} \& 81 43 48*98 \& XLII \\
\hline , \& " \& " \& " \& " \& 1721018.93 \& \& \(\begin{array}{rrrr} \\ 352 \& 9 \& 9.51\end{array}\) \& XLIII \\
\hline \multirow[t]{5}{*}{"} \& 8L" \& \multirow[t]{2}{*}{" \({ }^{\text {\% }}\)} \& \multirow[b]{2}{*}{\(28 \quad 249.20\)} \& " \& \multirow[t]{2}{*}{\[
\left\lvert\, \begin{array}{cccc}
222 \& 18 \& 16 \cdot 94 \\
182 \& 29 \& 19 \cdot 10
\end{array}\right.
\]} \& 5-0712328,4 \& 42 25 19*37 \& XLIV \\
\hline \& XL \& \& \& 7243 34*73 \& \& 4-9506238,0 \& \(22939 \cdot 56\) \& XLII \\
\hline \& XLI \& Sachu \& 281455174 \& \(\begin{array}{lllll}72 \& 7 \& 5 \& 29\end{array}\) \& \(2241122 \cdot 48\) \& 5*1321256,3 \& \(441946 \cdot 02\) \& XLIII \\
\hline \& XLII \& Jodasar \& \(281732 \cdot 17\) \& \(724418 \cdot 09\) \& \(1702754 \cdot 31\) \& 4.8729131,7 \& \(3502648 \cdot 42\) \& XLIV \\
\hline \& XLIII \& Mugrala \& \(283057 \cdot 06\) \& 7224 44:59 \& \(2744^{1} 35 \cdot 02\) \& 4.9668150,0 \& 9449 48.92 \& XLIV \\
\hline \multirow[b]{3}{*}{18} \& " \& \multirow[t]{2}{*}{"} \& " \& " \& \multirow[t]{2}{*}{\[
\begin{array}{llll}
218 \& 36 \& 31 \cdot 02 \\
171 \& 53 \& 32 \cdot 98
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 4 \cdot 9654010,0 \\
\& 4 \cdot 9023565,3
\end{aligned}
\]} \& \[
3^{8} 41 \quad 40 \cdot 9^{8}
\] \& \multirow[t]{2}{*}{XLV} \\
\hline \& \multirow[t]{2}{*}{XL"} \& \& " \& " \& \& \& \& \\
\hline \& \& Khirsar \& 2829 40•91 \& \(72 \mathbf{4 1}^{19} 55^{\prime}\) \& 1563647.40 \& 4*9393501,4 \& 33633 41•77 \& XLV \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& " \\
\& 19
\end{aligned}
\]} \& \multirow[t]{2}{*}{XLV} \& \multirow[t]{2}{*}{Bhada} \& \multirow[t]{2}{*}{\[
\stackrel{"}{28}{ }_{42}{ }^{\prime \prime} \cdot 12
\]} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\prime \prime \\
723531 \cdot 79
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{rrrr}
199 \& 15 \& 37 \cdot 57 \\
95 \& 48 \& 46 \cdot 46
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 4 \cdot 9957923,9 \\
\& 4 \cdot 8402953,2
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{rrr}
19 \& 18 \& 33 \cdot 40 \\
275 \quad 42 \& 34 \cdot 62
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { XLVII } \\
\& \text { XLVI }
\end{aligned}
\]} \\
\hline \& \& \& \& \& \& \& \& \\
\hline \multirow[b]{3}{*}{"} \& " \& \multirow[t]{2}{*}{"} \& " \& " \& \(2582648 \cdot 88\) \& 4•8361016,5 \& 7832 51•73 \& XLVII \\
\hline \& " \& \& \multirow[t]{2}{*}{} \& " \& \[
1394844 \cdot 21
\] \& \(4 \cdot 8<14690,2\) \& \multirow[t]{2}{*}{\[
\left|\begin{array}{rrr}
319 \& 45 \& 3 \cdot 02 \\
20 \& 45 \& 45 \cdot 78
\end{array}\right|
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { XLVIII } \\
\& \text { XLIX }
\end{aligned}
\]} \\
\hline \& \multirow[t]{3}{*}{\begin{tabular}{l}
XLVI \\
XLVII
\end{tabular}} \& " \({ }^{\prime \prime}\) \& \& \multirow[t]{2}{*}{\[
723 \text { " } 38 \cdot 06
\]} \& \[
2004254 \cdot 60
\] \& \multirow[t]{2}{*}{4.9501666,8} \& \& \\
\hline \& \& \multirow[t]{2}{*}{\begin{tabular}{l}
Habib \\
Karamala
\end{tabular}} \& \multirow[t]{2}{*}{\[
\left|\right|
\]} \& \& \multirow[t]{2}{*}{\[
\begin{array}{ccc}
214 \& 1 \& 6 \cdot 68 \\
153 \& 0 \& 28 \cdot 08
\end{array}
\]} \& \& \[
\begin{array}{rrr}
20 \& 45 \& 45 \cdot 78 \\
34 \& 3 \& 38 \cdot 04
\end{array}
\] \& \[
\begin{aligned}
\& \text { XLIX } \\
\& \text { XLVIII }
\end{aligned}
\] \\
\hline \& \& \& \& \(7248 \quad 6 \cdot 58\) \& \& \[
\begin{aligned}
\& 4 \cdot 6985532,8 \\
\& 4 \cdot 8934831,4
\end{aligned}
\] \& \[
\left|\begin{array}{rrr}
34 \& 3 \& 38 \cdot 04 \\
332 \& 57 \& 15 \cdot 20
\end{array}\right|
\] \& XLIX \\
\hline \& XLVIII \& Phogala \& \(285049 \cdot 77\) \& \(722752 \cdot 35\) \& \(244 \quad 655 \cdot 57\) \& 4*9053711,5 \& 6413 29.11 \& XLIX \\
\hline \& \multirow[t]{2}{*}{"} \& " \& \multirow[t]{2}{*}{"} \& ". \& \(19.054 \quad 8.94\) \& \(4 \cdot 8351155,5\) \& 5105519.47 \& \multirow[t]{2}{*}{\begin{tabular}{l}
L \\
LI
\end{tabular}} \\
\hline \& \& \multirow[t]{2}{*}{Bhulan} \& \& " \& IIS 25 32.91 \& \(4 \cdot 8346015.3\) \& \multirow[t]{2}{*}{\begin{tabular}{c|ccc}
3 \& 298 \& 20 \& \(6 \cdot 12\) \\
4 \& 298 \& 22 \& \(30 \cdot 70\)
\end{tabular}} \& \\
\hline 20 \& XLIX \& \& \(285636 \cdot 70\) \& \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
724126 \cdot 80 \\
\prime \prime
\end{gathered}\right.
\]} \& \(118 \quad 27 \quad 54 \cdot 76\) \& 4-8293997,4 \& \& \multirow[t]{2}{*}{\begin{tabular}{l}
LI \\
L \\
LII
\end{tabular}} \\
\hline " \& " \& " \& , \& \& 1705253.04 \& \(4 \cdot 6693669,3\) \& \(3505^{2} 12 \cdot 59\) \& \\
\hline 21 \& L \& Soma \& 29154.85 \& \(723018 \cdot 12\) \& \(64 \quad 38 \quad 15 \cdot 45\) \& 4-9075826,0 \& \multirow[t]{2}{*}{\(\begin{array}{rrrr}244 \& 31 \& 37 \cdot 07 \\ 74 \& 58 \& 22.13\end{array}\)} \& \multirow[t]{5}{*}{\begin{tabular}{l}
LI \\
LII \\
LIII \\
LIV \\
LIII
\end{tabular}} \\
\hline " \& \multirow[t]{4}{*}{"} \& \multirow[t]{4}{*}{\[
\begin{gathered}
" \\
" \\
" \\
\text { Telu }
\end{gathered}
\]} \& \multirow[t]{4}{*}{\[
\begin{gathered}
" \\
" \\
" \\
2856 \mathrm{II} \cdot 34
\end{gathered}
\]} \& \multirow[t]{4}{*}{\[
\begin{gathered}
" \\
" \\
721635 \cdot 98
\end{gathered}
\]} \& \multirow[t]{4}{*}{\[
\left|\begin{array}{llll}
254 \& 53 \& 37 \cdot 93 \\
106 \& 48 \& 33 \cdot 04 \\
170 \& 10 \& 46 \cdot 75 \\
183 \& 30 \& 32 \cdot 79
\end{array}\right|
\]} \& \multirow[t]{4}{*}{\[
\begin{aligned}
\& 4 \cdot 7306825,0 \\
\& 4 \cdot 8610862,0 \\
\& 4 \cdot 7260047,2 \\
\& 4 \cdot 7461423,8
\end{aligned}
\]} \& \& \\
\hline " \& \& \& \& \& \& \& \multirow[t]{3}{*}{\[
\left.\begin{array}{|rrr|}
74 \& 5^{\circ} \& 22 \cdot 13 \\
286 \& 42 \& 12 \cdot 38 \\
350 \& 9 \& 56 \cdot 95 \\
3 \& 30 \& 51 \cdot 44
\end{array} \right\rvert\,
\]} \& \\
\hline " \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Station 1} \& \multicolumn{3}{|c|}{Side AB} \& Station B \\
\hline Circuit No. \& Series No. \& Name \& Latitude \& Longitude East of Greenwich \& Aximuth at A \& Log. Feet \& Aximuth at B \& Series No. \\
\hline \multirow[b]{6}{*}{22} \& \multirow[t]{3}{*}{} \& \multirow[b]{3}{*}{\begin{tabular}{l}
Aukli \\
Mansa -
\end{tabular}} \& \multirow[t]{2}{*}{\(\begin{array}{ccc}\circ \& \prime \prime \prime \\ 29 \& 4 \& 13.28\end{array}\)} \& - , " \& \multirow[t]{2}{*}{\begin{tabular}{cccc}
\(\circ\) \\
122 \& 16 \& \(38 \cdot\) \\
\hline 1
\end{tabular}} \& \multirow[b]{2}{*}{4-8578855,6} \& \multirow[t]{2}{*}{\(\begin{array}{ccc}\circ \& \prime \& \prime \prime \\ 302 \& 11 \& 3 \cdot 87\end{array}\)} \& \multirow[b]{2}{*}{LIV} \\
\hline \& \& \& \& 72403.38 \& \& \& \& \\
\hline \& \& \& \(29 \quad 522 \cdot 15\) \& 721714.43 \& \& \(4 \cdot 8333321,9\) \& 623049.21 \& LIV \\
\hline \& LIII \& " \& . \(\quad 3\) \& " \& \multirow[t]{3}{*}{\[
\left|\begin{array}{cccc}
190 \& 2 \& 20^{\circ} 94 \\
129 \& 19 \& 54^{\circ} 90 \\
110 \& 12 \& 47 \cdot 75
\end{array}\right|
\]} \& 4.7091025,0 \& \(10310 \cdot 01\) \& LV \\
\hline \& " \& \multirow[t]{2}{*}{Marot} \& \multirow[b]{2}{*}{\[
291033 \cdot 95
\]} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\prime \prime \\
72 \quad 2835 \cdot 73
\end{gathered}
\]} \& \& \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
\& 4 \cdot 4964028,1 \\
\& 4 \cdot 7388713,6
\end{aligned}\right.
\]} \& 30917 41.77 \& LVI \\
\hline \& IIIV \& \& \& \& \& \& 290884.49 \& LV \\
\hline \multirow[t]{6}{*}{"} \& \multirow[t]{2}{*}{L"} \& \multirow[t]{2}{*}{\begin{tabular}{l}
" \\
Hasan
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\prime \prime \prime \\
29134 \cdot 10
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
7218{ }^{\prime \prime} 55 \cdot 14
\]} \& \(\begin{array}{lll}155 \& 28 \& 8.46\end{array}\) \& 4-6922427,2 \& \(335 \quad 26 \quad 15 \cdot 69\) \& LVII \\
\hline \& \& \& \& \& 472420.13 \& 4.6539955,0 \& \(2272117 \cdot 61\) \& LVI \\
\hline \& " \& " \& \multirow[t]{2}{*}{"} \& " \& \(\begin{array}{llll}230 \& 5 \& 38.82\end{array}\) \& 4.6059499,7 \& 508829.77 \& LVII \\
\hline \& , \& " \& \& \multirow[t]{2}{*}{"} \& \multirow[t]{2}{*}{\[
\begin{array}{lll}
107 \& 28 \& 46 \cdot 83 \\
173 \& 16 \& 22 \cdot 67
\end{array}
\]} \& 4.6732353,? \& 28; 24 38.86 \& LVIII \\
\hline \& " \& " \& " \& \& \& 4.5428074,2 \& \(\begin{array}{llll}353 \& 16 \& 0.09\end{array}\) \& LIX \\
\hline \& \multirow[t]{2}{*}{\begin{tabular}{l}
LVI \\
LVII
\end{tabular}} \& Sultán \& \(29838 \cdot 88\) \& \(721240 \cdot 84\) \& 165 11 54.08 \& 4-654,5259,9 \& \(3451049 \cdot 07\) \& LVIII \\
\hline 23 \& \& Bijli \& \(291757 \cdot 32\) \& \(722444 \cdot 85\) \& \(\begin{array}{lll}104 \& 5 \& 25 \cdot 17\end{array}\) \& 4.5578404,4 \& \(284 \quad 2\)\begin{tabular}{llll}
\\
\hline 11 \& 36
\end{tabular} \& LIX \\
\hline " \& \multirow[t]{2}{*}{LVIII} \& \multirow[t]{2}{*}{Panchkot} \& \multirow[t]{2}{*}{\[
2916^{\prime \prime} 0.97
\]} \& \multirow[t]{2}{*}{\[
721027 \cdot 60
\]} \& \(167 \quad 742 \cdot 01\) \& 4-7819798,8 \& \(\begin{array}{lllll}347 \& 6 \& 27 \cdot 17\end{array}\) \& XXI \\
\hline \& \& \& \& \& \multirow[t]{2}{*}{\[
\begin{array}{llll}
243 \& 16 \& 57 \cdot 65 \\
181 \& 40 \& 42 \cdot 16
\end{array}
\]} \& \(4 \cdot 6600620,7\) \& \[
63 \quad 20 \quad 43 \cdot 39
\] \& LIX \\
\hline \& " \& \begin{tabular}{l}
Panchkot \\
"
\end{tabular} \& \[
\left|\begin{array}{cc}
2916 \& 0.97 \\
3
\end{array}\right|
\] \& \[
\left|\begin{array}{c}
721027 \cdot 60 \\
"
\end{array}\right|
\] \& \& 4.7215129,4 \& \[
140.50 \cdot 71
\] \& XIX \\
\hline \& LIX \& \multirow[t]{2}{*}{Randu} \& \(291924 \cdot 24\) \& \multirow[t]{2}{*}{72188.95

$\prime \prime$} \& \multirow[t]{2}{*}{$\begin{array}{llll}129 & 17 & 59 \cdot 35 \\ 203 & 10 & 4.49\end{array}$} \& \multirow[t]{3}{*}{\[
$$
\begin{aligned}
& 4 \cdot 7052635,0 \\
& 4 \cdot 7375598,9 \\
& 4 \cdot 8021262,9
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

\left|$$
\begin{array}{rrrr}
309 & 14 & 21 \cdot 65 \\
23 & 12 & 43 \cdot 92 \\
73 & 26 & 34 \cdot 58
\end{array}
$$\right|

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& \text { XIX } \\
& \text { XXI } \\
& \text { XXI }
\end{aligned}
$$
\]}

\hline \& " \& \& \multirow[t]{3}{*}{$$
\begin{gathered}
\prime \prime \\
292442 \cdot 15 \\
292741 \cdot 52
\end{gathered}
$$} \& \& \& \& \&

\hline \& XIX \& \multirow[t]{2}{*}{| 99 |
| :--- |
| Kaimsir |
| Kanda |} \& \& \multirow[t]{2}{*}{\[

\left|$$
\begin{array}{c}
\prime \prime \prime \\
721045 \cdot 04 \\
72 \\
722 \\
12 \cdot 29
\end{array}
$$\right|
\]} \& \multirow[t]{2}{*}{$2532056 \cdot 83$} \& \& \&

\hline \& XXI \& \& \& \& \& \& $$
732634 \cdot 58
$$ \&

\hline
\end{tabular}

Nors.-Stations XIX and XXI appertain to the Sutlej Seriee.
September 1878.
J. B. N. HENNESSEY,

In charge of Computing Office.
\qquad

JODHPORE MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. HEIGHTS ABOVE MEAN SEA LEVEL.

The following table gives, first, the usual data of the observed vertical angles and the heights of the signal and instrument, \&c., in pairs of horizontal linex, the first line of which gives the data for the Ist or the fixed station, and the second line the data for the 2nd or the deduced station. This is followed by the arc contained between the two stations, and thein by the terrestrial refraction, and the height of the 2nd station above or below the lst, as computed from the vertical angles in the usial manner. This difference of height applied to the given height above mean sea level of the fired station, gives that of the deduced station. Usually there are two or three independent values of the height of the deduced station; the details are so arranged as to show these consecutively and their mean in the columns of "Trigonometrical Results". The mean results thus obtained are however liable to receive corrections for the errors generated in the trigonometrical operations, which are shown up by the spirit leveling operations, whenever a junction between the two has been effected. Thie spirit leveled determinations, when available, are always accepted as final, and the trigonometrical heights of stations, lying between other stations fixed by the leveling operations, are adjusted - usually by simple proportion-to accord with the latter.

The heights of Jodhpore Meridional Series have been adjusted between the final values of Bonik and Súnda the fixed points of the Karachi Longitudial Series, and those of the fixed stations of Kaimsir and Kanda of the Sutlej Series. The heights of the fixed points are as follows :-
$\left.\begin{array}{llc}\text { XIII, Bonik } & \ldots & 2098 \\ \begin{array}{l}\text { XIIV, Súnda }\end{array} & \ldots & 325: \\ \text { XIX, Krinsir } & \ldots & 461 \\ \text { XXI, Kanda } & \ldots & 4 \pi 8\end{array}\right\}$ feet above Mean Sea Level at Karachi from Karáchi Longitudinal Series.

The trigonometrical heights always refer to the upper mark-stone, or to the upper surface of the pillar on which the theodolite stood. When the pillar of the station is perforated, the height given in the lavt colnmu, is that between the upper surface of pillar and ground level mark-stone in floor of passage; otherwise it is the approximate height of the structure above the ground at the base of the station.

Astronomical Dite		Station	Oliserved Vertical angle		Height in feet			'Terrestrial Kefraction			Height in feet of 2nd Station above Mean Sea Level			
1878	Mean of Times of obser- ration													
						$\stackrel{\Phi}{5}$			品		Trigonom Res	netrical ilts	Final	
						,		$\stackrel{1}{\square}$	คั๋		By ench deduction	Mean	Result	
	h. m.		01				"							feet
		XLI					1715	$113 *$	-066*	-772.7	$1325^{\circ} 3$			
Feb. 15	345	I	E 0252.8	12	4*10	$5 \cdot 25$	175	113		-772	$132{ }^{\circ}$			
Jan. 31	324	XLIV	1) 14443.31	12	$2 \cdot 70$	$5 \cdot 25$	1165	72	$\cdot 062$	$-1926 \cdot 3$	13259	$1326 \cdot 0$	1326	3^{11}
Feb. 15	323	I	E $\circ 4733.9$	12	$2 \cdot 69$	$5 \cdot 25$	1165	72	-062	-19263	13257	1326	1326	31
$\text { " } \quad 11$	320	II	D o 4 r6.7	12										
" 15	319	I	D 01259.8	12	$2 \cdot 56$	$5 \cdot 25$	1188	80	- 068	+ 1525	13269			
" 8	245	XLI	D $03931^{\circ} 2$	12	$2 \cdot 56$		966	64	- 066	$-922 \cdot 8$	$1175{ }^{\circ}$			
" 10	246	II	E 02526.2	12	$4 \cdot 42$	5.25	966	64	- 0	- 9228	1175			

[^7]
\[

$$
\begin{array}{lllll}
\cdot & + & \ddot{\omega} & \neq \\
\hline \omega & \omega & \omega & \cdots \\
\hline & \omega & \omega & \\
\hline
\end{array}
$$
\]

 + Pillar 3 feet in height is sunk having its upper surface flush with the ground.

Astronomical Date		Station	Observed Vertical Angle		Height in feet			Terrestriul Refraction			Hoight in feet of $\mathbf{2}^{n d}$ Station above Mean Sea Level			
1873-74	$\left\|\begin{array}{c} \text { Mean of } \\ \text { Times } \\ \text { of obser-- } \\ \text { vation } \end{array}\right\|$													
					$\begin{aligned} & \text { 或 } \\ & \text { iom } \end{aligned}$			坒			'rig.no Rea	$\begin{aligned} & \text { netrical } \\ & \text { ults } \\ & \text { and } \end{aligned}$	Final	
											By each deduction	Mean	Result	
	$h m$		- '				"							
Jan. 8,9,10	311	XVII	D o 520.7	16	$2 \cdot 57$	5.25								eet
" 13,15,16	320	XVI	D 056.8	12	$2 \cdot 69$	5.25	693	41	-059	- $2 \cdot 3$	$1064 * 9$			
Dec. 31	3 -	XIII	D ○ 1236.8	12	2.70	5.25								
Jan. $\quad 8,9$	30	XVII		12	2.57	5.25	599	34	$\cdot 057$	- 141'9	$1066 \cdot 9$			
" $\quad 3$	318	XV	D 01427.9	12	2.70	5.25								
" 8,9	317	XVII	E ○ 1 47.9	12	$2 \cdot 73$	5.25	867	60	-069	- 2077	$1067 \cdot 6$	1067.5	1065	ot
" 13,15,16	320	XVI	D 056.8	12	2.69	5.25								
" 8,9,10	311	XVII	D 0520.7	16	$2 \cdot 57$	$5 \cdot 25$	693	41	$\cdot 059$	+ 23	1068•1			
" 15,16	38	XVI	D 054.7	12	$2 \cdot 62$	5.25								
" 24,2s	32	XVIII	D ○ 3 54.2	12	2.58	$5 \cdot 25$	593	36	-06I	- 10.3	1055*2			
" 9,10	312	XVII	D o $540 \cdot 9$	12	$2 \cdot 59$	5.25						$1055^{\circ} 1$	1052	- \dagger
" 24,29	331	XVIII	D 0423.3	12	$2 \cdot 71$	5.25	666	39	-059	- 12.6	1054*9			
" 14,15	32	XVI	D o 651.9	12	2.71	5.25								
" 19,20,22	32	XIX	D 0228.7	12	$2 \cdot 58$	$5 \cdot 25$	603	31	-051	- 39*0	$1026 \cdot 5$			
" 29,31	328	XVIII	Do 558.5	8	2.69	5.25						$1026 \cdot 4$	1023	O+
" 20,22	324	XIX	D o $230 \cdot 3$	12	$2 \cdot 62$	5.25	561	37	-066	- 28.7	$1026 \cdot 4$			
" 8,10	257	XVII	E 0 - 13.2	12	$2 \cdot 73$									
Feb. 2,5	255	XX	D $01025^{\circ} 4$	12	$2 \cdot 71$	5.25 5.25	677	41	-061	+ 106.1	1173.6			
Jan. 28	323	XVIII	E 0 I 6.0	12								1173.3	1170	ot
Feb. 2,5	322	XX	D. 01112.3	12	2:67	5.25 5.25	660	40	-06ı	+ $118{ }^{\circ}$	1173*1			
Jan. 29	39	XVIII	D) $346 \cdot 8$	8	2.59									
Feb. 11,12	38	XXI	Do 538.6	12	$2 \cdot 55$	5.25	617	35	-057	+ 16.9	$1072 \cdot 0$			
Jan. 19,22	312	XIX	Do 29.6	12	$2 \cdot 58$									
Feb. 11,13	311	XXI	Do 7117	12	$2 \cdot 70$	5.25 5.25	616	36	-058	+ 45.8	1072.2	1072.2	1069	4
" 6,7	333	XXII	D 01530°	12	$2 \cdot 57$	5.25								
" 11,12	33^{2}	XXI	E 0750	12	$2 \cdot 58$	5.25	561	39	$\cdot 070$	$-186 \cdot 4$	1072.4			
Jan. 24,28,29	246	XVIII	E 04174	12	$2 \cdot 56$	5*25								
Feb. $\quad 7$	248	XXII	D 015 1.7	12	$2 \cdot 56$	$5 \cdot 25$	716	44	$\cdot 061$	+ 2037	1258.8			
" 2,5	37	XX	D o o $36 \cdot 3$	12	$2 \cdot 55$	5.25								
6,7	36	XXII	Do 922.6	12	$2 \cdot 71$	$5 \cdot 25$	662	40	-060	$+85.6$	1258.9	1258.7	1255	3
" 11,12	332	XXI	E 07506	12	2.58	5.25								
" 6,7	333	XXII	D $01530^{\circ} \mathrm{O}$	12	$2 \cdot 57$	$5 \cdot 25$	561	39	$\bullet 070$	$+186 \cdot 4$	1258.5			
" 13	313	XXI	D 01422^{1}	12	$2 \cdot 78$	5.25								
" 16,17	314	XXIII	E $0626 \cdot 9$	12	2.57	$5 \cdot 25$	493	19	-039	-1514	920.8			

[^8]

\ddagger Approximate, see Deacription of the Station.

Astronomical Dato		Station	Observed Vertical Angle		Height in feet			Terrestrial Refraction			Height in feet of 2nd Station above Mean Sea Level			
1875	Mean of Times of obser． vation													
					$\begin{aligned} & \text { 喜 } \\ & \text { 品 } \end{aligned}$	曾		范			$\begin{gathered} \text { Trigono } \\ \mathbf{R e} \end{gathered}$	retrical Its	Final	
											By each deduction	Mean		
	h．m ．		－				＂							feet
Jan． 30 Feb． 5	321	XLII	D 0 7 52．9	12	$2 \cdot 59$		337	36	$\cdot 049$	－47\％9	612.4	610．5	603	5.2
Feb．	323	XLIV	D 03173	12	$6 \cdot 56$	$5 \cdot 25$	737	36	－+9	－ 479		6105	603	52
＂ 16	37	XLIII	D $0342 \cdot 1$	12	$2 \cdot 60$	5．25				$+85.4$				
＂ 7	34	XLIV	D 010 2．0	12	$2 \cdot 70$	5．25	915	52	057	$+854$	6097			
＂16，17	253	XLIII	Do 6 44．1	12	$2 \cdot 56$	5.25		28						
＂ 28	252	XLV	Do $744^{\circ} \mathrm{2}$	12	2．71	5.25	912	28	－31	$+136$	5383			
＂5，6	35	XLIV	D o $939^{\circ} 4$	12	2.57	5.25						$536 \cdot 1$	528	3
＂ 27	37	XLV	Do 335.5	12	$2 \cdot 58$	5.25	859	40	$\cdot 047$	－ 76.7	$533 \cdot 8$			
＂15，16	36	XLIII	D o 8 19＊0	12	$2 \cdot 56$	5．25	789	2		－38．2	486．5			
＂22，23	35	XLVI	D 0.5144	16	$2 \cdot 72$	$5 \cdot 25$	789	2	－003	-382	4865			
＂27，28	312	XLV	D $08^{2} 3^{\circ} \mathrm{I}$	16	$2 \cdot 59$	5.25						483.9	476	$5 \cdot 3$
＂22，23	311	XLVI	Do $25^{6 \cdot 1}$	12	$2 \cdot 56$	$5 \cdot 25$	684	10	$\cdot 015$	－ 54.9	481 2			
＂6，7	314	XLIV	Do 9200	12	$2 \cdot 73$	$5 \cdot 25$								
Mar．$\quad 2$	315	XLVII	D o 535.6	12	$2 \cdot 58$	5.25	978	47	$\cdot 048$	－ $54^{\circ} 0$	$556 \cdot 5$			
Feb．27，28	253	XLV	D 0.418	12	$2 \cdot 73$	$5 \cdot 25$						$55^{\prime \cdot 7}$	551	3
Mar．$\quad 2$	253	XLVII	D。 6 3r＇7	12	2.70	5.25	677	30	－044	＋ 24.9	561•0			
Feb． 27	$=48$	XLV	Do 647°	12	$2 \cdot 73$	5.25								
＂ 24	247	XLVIII	D 0321.4	12	$2 \cdot 56$	$5 \cdot 25$	625	18	－029	－31＇7	$504 * 4$			
＂ 22,23	252	XLVI	D o 242.7	12	2.72	5．25	493	7	－014	$+21.2$	505^{11}	504＊8	496	\bigcirc
＂ 24	252	XLVIII	D 0536.8	12	$2 \cdot 76$	$5 \cdot 25$	493	7	014	＋ 212	505	5048	496	－
Mar．$\quad 21$	258	XLIX	D－7 45\％	12	4.32	5．25	794	－15	－019	-203	504%			
Feb．2t，25	258	XLVIII	Do 659	12	2．60	5.25	794	－15	019	－ 203	5049			
＂ 28	327	－XLV	D o 7 54．6	12	$2 \cdot 60$	5.25								
Mar． 4	326	XLIX	Do 712.6	12	2．71	5.25	881	－ 7	－008	－900	$527 \cdot 1$			
＂$\quad 2 \begin{array}{r}\text { a }\end{array}$	239	XLVII	D o 755%	12	2.60	5.25		12	－016	－ 35.5	523.2	525．1	517	3
＂ 4,6	239	XLIX	D 0448.4	12	$2 \cdot 58$	$5 \cdot 25$	773			－35 5		525.		
Feb．24，25	258	XLVIII	D o 6 5．9	12	$2 \cdot 60$	5．25				＋ 20.3				
Mar． 21	258	XLIX	D 0745%	12	$4 \cdot 32$	$5 \cdot 25$	794	－15	－019	$+203$	5251			
Feb．24，25	34	XLVIII	D ○ $4 \mathbf{2 7}$ ． 2	16	$2 \cdot 69$	5.25	6；6	16	$\cdot 024$	＋21．0	$525 \cdot 8$			
Mar．7，8	35	L	Do 633.7	16	$2 \cdot 71$	$5 \cdot 25$	6，6	16	024	＋ 210	5258	526•0	517	3.2
＂$\quad 4$	253	XLIX	D o 523.8	12	2．57	5.25	667		－023	＋1＊0	$526 \cdot 1$			
＂7，8	253	L	Do 529.3	12	2．71	5.25	667	15	－23	$+10$	526			
Feb．$\quad 25$	258	XLVIII	Do 7 5．2	12	$2 \cdot 57$	5．25	675	－ 1	$\cdot 01$	－ 25.8	$479{ }^{\circ}$			
Mar． 12	258	LI	D $0+28.9$	12	$2 \cdot 73$	$5 \cdot 25$						478．6	470	5

Astronomical Date		Station	Observed Vertical Angle		Height in feet			Terrestrial Refraction			Height in foet of 2nd 8tation above Mean Sea Lovel			
1876	$\left.\begin{gathered} \text { Mean of } \\ \text { Times } \\ \text { of obser- } \\ \text { ration } \end{gathered} \right\rvert\,$													
											TrigonometricalResults		$\begin{gathered} \text { Final } \\ \text { Result } \end{gathered}$	
											By each deduction	Mean		
			0 , "				"							feet
Mar. $\quad 15$	$2{ }^{2} 34$	LV	D o 274.9	12	2.58	5.25	345	9	-026	+ 9*4	496•8			
" 24	234	LIX	D ○ 355.9	12	$2 \cdot 67$	$5 \cdot 25$	345	9		$+94$				
" ${ }^{21}$	$2 \quad 58$	LVII	D o 4 52.3	16	2.57		357	13	-036	- 193	497:9	497×4	487	1'9
, 24,25,28	3	LIX	Do 1115 5	20	$2 \cdot 60$		357	13	${ }^{\circ} 3$	- 193	497 :9	4974	487	19
" 13	312	LVIII	D o 228.9	12	$2 \cdot 58$	5.25				+ $16 \cdot 6$				
" 25	312	LIX	D 0457.8	12	$2 \cdot 70$	$5 \cdot 25$	452	15	-33	$+16.6$	4974			
Dec. ${ }_{\text {lr }} 1876{ }^{14}$	$\begin{array}{ll}2 & 29 \\ 2 & 30\end{array}$	LVIII	D o 437.9	12	13.43					- 5\%9	474*9			
Jan. ${ }^{1876} 181$	230	XIX	D ○ 351×9	12	$2 \cdot 70$	$5 \cdot 25$	520	15	-029	- 59	4749			
Dec. ${ }_{1875}^{1876} 25,28$	3	LIX	D ○ 609.4	16	13.30	5.25		- 8	-016	- 24.6	$472 \cdot 8$	$473 \cdot 8$	46I	$10 \cdot 8$
${ }^{\text {Jan. }} 1875{ }^{1}$	35	XIX	D 0248.6	16	2.57	5.25	501	- 8	-016	- 24.6	$472 \cdot 8$			
Dec. $\quad 22$	243	LVII	D ○ 654.9	12	22.90	5.25								
" 29	250	XXI	D ○ 329.3			$5 \cdot 25$	598	-4	$\cdot 007$	$-30 \cdot 2$	$487{ }^{\circ}$	$486 \cdot 6$	478	$20^{\circ} 4$
" 25	230	LIX	D o 5228.7	12	22.90	$5 \cdot 25$	540	- 1	-002	- 11]3	486.1			
" 29	232	XXI	D 0356.6	12	$2 \cdot 57$	$5 \cdot 25$								

Notr.-Stations XIX and XXI appertain to the Satlej Series.

Ootober 1878.
J. B. N. HENNESSEY, In charge of Computing O.fice.

JODHPORE MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. AZIMUTHAL OBSERVATIONS.

At VIII (Thob)

 March 1873; observed by Lieutenant M. W. Rogers, R. E., with Barrow's 24-inch Theodolite No. 2.

Stars observed
Mean Right Ascension 1873.0
Mean North Polar Distance $1873 \cdot 0$
Local Mean Times of Elongation, Mar. 16
a Ursæ Minoris (West) and No. 1612† (East)
$1^{\mathrm{h}} 12^{\mathrm{m}} 18$

† Of Greenwich New Seven-Year Catalogue of 2760 Stars for 1864.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multicolumn{4}{|c|}{jacr lift} \& \multicolumn{4}{|c|}{jacz biaht}

\hline \& \& \& Observod Horizontal Angle : Diff. of Readings Ref. Mark-Star \& \& Reduction in Are to Time of Elongation \& Reduced Observation Ref. Mark-Star at Elongation \& Obserred Horizontal Angle: Diff. of Readings Ref. Mark-Star \& \& Reduction in Arc to Time of Elongation \& Reduced Obeerration Ref. Mark - Star at Elongation

\hline \multirow{3}{*}{Mar. 19} \& \multirow{3}{*}{W.} \& \multirow{3}{*}{$$
\begin{gathered}
33824 \\
\& \\
158 \\
24
\end{gathered}
$$} \& - ' " \& n : \& ' " \& - ' " \& - ' " \& m : \& ' " \& - ' $"$

\hline \& \& \& \multirow[t]{2}{*}{$$
\begin{array}{r}
1435739.40 \\
5732.28 \\
5724.02 \\
5716.64
\end{array}
$$} \& $$
\begin{array}{ll}
5 & 5 \\
2 & 27
\end{array}
$$ \& \[
\begin{array}{rr}

+ \& 1.35

0 \& 0.31
\end{array}

\] \& \[

$$
\begin{array}{r}
1435740 \cdot 75 \\
32 \cdot 59
\end{array}
$$

\] \& \[

\left\lvert\, $$
\begin{array}{r}
+1435731 \cdot 60 \\
5734: 96
\end{array}
$$\right.

\] \& \[

$$
\begin{aligned}
& 1350 \\
& 12 \\
& 12
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
\\
+\circ \\
\hline
\end{array}
$$ 9.98

\] \& \[

$$
\begin{array}{r}
1435741 \cdot 58 \\
42 \cdot 49
\end{array}
$$
\]

\hline \& \& \& \& $$
\begin{aligned}
& 1651 \\
& 1941
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 014 \cdot 78 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 38 \cdot 80 \\
& 36 \cdot 77
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5735 \cdot 92 \\
& 5734 \cdot{ }^{2}
\end{aligned}
$$

\] \& \[

$$
\begin{array}{lr}
6 & 3 \\
9 & 45
\end{array}
$$

\] \& \[

$$
\begin{array}{lll}
0 & 1 \cdot 90 \\
0 & 4.95
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 37 \cdot 82 \\
& 39 \cdot 71
\end{aligned}
$$
\]

\hline \multirow[t]{2}{*}{" 19} \& \multirow[t]{2}{*}{E.} \& \multirow[t]{2}{*}{$$
\begin{gathered}
33^{8} 24 \\
\& \\
\& 5^{2}
\end{gathered}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{rl}
+135 & 431 \cdot 18 \\
427 \cdot 88 \\
& 548 \cdot 28 \\
6 & 78
\end{array}
$$

\]} \& \[

$$
\begin{array}{lr}
4 & 3 \\
0 & 39
\end{array}
$$

\] \& \[

$$
\begin{array}{rl}
-0 & 4.09 \\
0 & 0.11
\end{array}
$$

\] \& \[

$$
\begin{array}{rr}
135 & 427 \cdot 09 \\
& 27 \cdot 77
\end{array}
$$

\] \& \[

$$
\begin{array}{rrr}
+135 & 5 & 27 \cdot 62 \\
& 5 & 7 \cdot 68
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 1455 \\
& 12521
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
-\quad 055.55 \\
038.07
\end{array}
$$

\] \& \[

$$
\begin{array}{rr}
135 & 432 \cdot 07 \\
29 \cdot 61
\end{array}
$$
\]

\hline \& \& \& \& \& $$
\begin{aligned}
& 120 \cdot 35 \\
& 141.95
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 27 \cdot 93 \\
& 25 \cdot 87
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 447^{\circ} 28 \\
& 457^{\circ} 12
\end{aligned}
$$

\] \& \[

$$
\begin{array}{rr}
8 & 14 \\
10 & 21
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \circ 17 \cdot 02 \\
& -170^{\circ} 93
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 30 \cdot 26 \\
& 30 \cdot 19
\end{aligned}
$$
\]

\hline \multirow[t]{2}{*}{" 20} \& \multirow[t]{2}{*}{W.} \& \multirow[t]{2}{*}{$$
\begin{array}{r}
57{ }_{8}{ }^{6} \\
237 \quad 36
\end{array}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
1435734.08 \\
5734 \cdot 84 \\
5736 \cdot 52 \\
5732 \cdot 48
\end{array}
$$

\]} \& \[

$$
\begin{aligned}
& 936 \\
& 712
\end{aligned}
$$

\] \& \multirow[t]{2}{*}{\[

$$
\begin{array}{rr}
+0 & 4 \cdot 81 \\
0 & 2 \cdot 70 \\
0 & 3 \cdot 25 \\
0 & 4.75
\end{array}
$$

\]} \& \[

$$
\begin{array}{r}
1435738 \cdot 89 \\
37 \cdot 54
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
1435722 \cdot 92 \\
5727 \cdot 66
\end{array}
$$

\] \& \[

$$
\begin{array}{rr}
18 & 7 \\
15 & 50
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
+\quad 017 \cdot 10 \\
013.08
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
+1435740 \cdot 02 \\
40 \cdot 74
\end{array}
$$
\]

\hline \& \& \& \& $$
\begin{aligned}
& 754 \\
& 933
\end{aligned}
$$ \& \& \[

$$
\begin{aligned}
& 39 \cdot 77 \\
& 37 \cdot 23
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5740^{\circ} 72 \\
& 5739.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \circ 59 \\
& 239
\end{aligned}
$$

\] \& \[

$$
\begin{array}{ll}
\circ & 0.05 \\
0 & 0.37
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 40 \cdot 77 \\
& 39 \cdot 87
\end{aligned}
$$
\]

\hline \multirow[t]{2}{*}{" 20} \& \multirow[t]{2}{*}{E.} \& \multirow[t]{2}{*}{$$
\begin{gathered}
573^{6} \\
\& 373^{6}
\end{gathered}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{rl}
+135 & 432.90 \\
4 & 30 \cdot 90 \\
524.70 \\
5 & 48.82
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{rr}
322 \\
1 & 1 \\
14 & 57 \\
17 & 49
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{rrr}
-0 & 2 \cdot 83 \\
0 & 0.26 \\
0 & 56 \cdot 19 \\
1 & 19.73
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
+135430 \cdot 07 \\
30 \cdot 64 \\
28 \cdot 51 \\
29.09
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{rl}
+135 & 5 \\
4 & 8 \cdot 10 \\
& 48 \cdot 08 \\
436 \cdot 12 \\
446 \cdot 10
\end{array}
$$

\]} \& \[

$$
\begin{aligned}
& 1235 \\
& 1041
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
-39.52 \\
-\quad 28.47
\end{array}
$$

\] \& \[

$$
\begin{array}{rr}
135 & 428 \cdot 58 \\
& 29 \cdot 61
\end{array}
$$
\]

\hline \& \& \& \& \& \& \& \& $$
\begin{array}{r}
533 \\
8 \quad 5
\end{array}
$$ \& \[

$$
\begin{array}{ccc}
\circ & 7 \cdot 72 \\
0 & 76 \cdot 40
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 28 \cdot 40 \\
& 29.70
\end{aligned}
$$
\]

\hline \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{W.} \& \multirow[t]{2}{*}{$$
\begin{array}{r}
13649 \\
81649 \\
314
\end{array}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
1435739 \cdot 26 \\
5738 \cdot 14 \\
5732 \cdot 16 \\
5727 \cdot 46
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
541 \\
329 \\
1132 \\
1321
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
+1.69 \\
+\circ 0.63 \\
\circ \\
\circ \\
\circ \\
\circ \\
9.28
\end{array}
$$

\]} \& \[

$$
\begin{array}{r}
+1435740 \cdot 95 \\
38 \cdot 77
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
+1435734 \cdot 78 \\
5731 \cdot 76
\end{array}
$$

\] \& \[

$$
\begin{array}{lll}
12 & 47 \\
11 & 10
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
+08.51 \\
06.50
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
1435743.29 \\
38 \cdot 26
\end{array}
$$
\]

\hline \& \& \& \& \& \& $$
\begin{aligned}
& 39 \cdot 08 \\
& 36 \cdot 74
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 5742 \cdot 48 \\
& 5742 \cdot 40 \\
& 5720 \cdot 04 \\
& 5712 \cdot 84
\end{aligned}
$$

\] \& \[

$$
\begin{array}{rr}
2 & 10 \\
4 & 6 \\
21 & 7 \\
23 & 26
\end{array}
$$

\] \& \[

$$
\begin{array}{ll}
\circ & 0.24 \\
0 & 0.88 \\
0 & 0.83 \\
0 & 23 \\
0 & 28.54
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 42 \cdot 72 \\
& 43 \cdot 28 \\
& 43 \cdot 21 \\
& 41 \cdot 38
\end{aligned}
$$
\]

\hline \multirow[t]{2}{*}{" 21} \& \multirow[t]{2}{*}{E.} \& \multirow[t]{2}{*}{$$
\begin{gathered}
13648 \\
81649
\end{gathered}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{rl}
+135 & 439.04 \\
4 & 32 \cdot 50 \\
5 & 6.74 \\
5 & 25 \cdot 72 \\
& 649.08
\end{array}
$$
\]} \& 552

329 \& $$
\begin{array}{r}
-08 \cdot 6 \mathrm{I} \\
03 \cdot 02
\end{array}
$$ \& $1355430 \cdot 43$

29.48 \& $$
\begin{array}{rl}
+135 & 5 \\
& 26 \cdot 66 \\
5 & 10 \cdot 74
\end{array}
$$ \& \[

$$
\begin{array}{ll}
14 & 35 \\
12 & 25
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
-\quad 53^{1} 10 \\
038 \cdot 48
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
+135 \quad 433.56 \\
\\
32 \cdot 26
\end{array}
$$
\]

\hline \& \& \& \& $$
\begin{array}{ll}
11 & 55 \\
14 & 51 \\
23 & 23
\end{array}
$$ \& \[

$$
\begin{aligned}
& \circ 35.63 \\
& 055^{\circ} \cdot 42 \\
& 217.69
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3 I \cdot 1 I \\
& 30 \cdot 30 \\
& 3 \mathrm{I} \cdot 39
\end{aligned}
$$
\] \& $435 \cdot 60$

$439 \cdot 02$

714.10 \& $$
\begin{array}{r}
319 \\
624 \\
2530
\end{array}
$$ \& \[

$$
\begin{array}{ll}
\circ & 2 \cdot 77 \\
0 & 10 \cdot 25 \\
2 & 43.67
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 32.83 \\
& 28 \cdot 77 \\
& 30 \cdot 43
\end{aligned}
$$
\]

\hline " 22 \& \multirow[t]{2}{*}{W} \& \multirow[t]{2}{*}{$$
\begin{gathered}
180 \\
\& \\
0 \\
0
\end{gathered}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
1435734 \cdot 50 \\
5734 \cdot 94 \\
5726 \cdot 42 \\
5722 \cdot 34
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{rr}
5 & 0 \\
3 & 1 \\
15 & 1 \\
17 & 6
\end{array}
$$

\]} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
+1435735 \cdot 80 \\
35 \cdot 41 \\
38 \cdot 15 \\
37 \cdot 56
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
1435731 \cdot 80 \\
5733 \cdot 14 \\
5744 \cdot 06 \\
5738 \cdot 18 \\
578 \cdot 64
\end{array}
$$

\]} \& \[

$$
\begin{aligned}
& 145 \\
& 12
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
+10.35 \\
+\quad 7.89
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
1435742 \cdot 15 \\
41 \cdot 03
\end{array}
$$
\]

\hline \& \& \& \& \& \& \& \& $$
\begin{array}{r}
349 \\
639 \\
2613
\end{array}
$$ \& \[

$$
\begin{array}{lll}
\circ & 0.76 \\
\circ & 2.30 \\
\circ & 2.30
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 44 \cdot 82 \\
& 40.48 \\
& 44 \cdot 34
\end{aligned}
$$
\]

\hline n 22 \& \multirow[t]{2}{*}{E.} \& \multirow[t]{2}{*}{$$
\begin{array}{cc}
180 & 1 \\
\& & 1 \\
0 & 1
\end{array}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{rl}
+135 & 431 \cdot 02 \\
& 427 \cdot 34 \\
& 528 \cdot 64 \\
& 543 \cdot 90
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{rr}
3 & 32 \\
1 & 3 \\
15 & 37 \\
17 & 30
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{rrr}
-0 & 3.12 \\
0 & 0.28 \\
1 & 1.32 \\
1 & 17.08
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{rr}
+135 \quad 427.90 \\
& 27 \cdot 06 \\
& 27 \cdot 32 \\
& 26 \cdot 82
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{rll}
+135 & 5 & 7 \cdot 68 \\
& 4 & 53.06 \\
& 4 & 39 \cdot 28 \\
& 4 & 5 \mathrm{I} \cdot 86
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{rr}
11 & 52 \\
10 & 0 \\
5 & 12 \\
9 & 28
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
-\quad 35 \cdot 14 \\
024.95 \\
06.76 \\
022.51
\end{array}
$$
\]} \& \multirow[t]{2}{*}{135432.54

28.11
32.52
29.35}

\hline \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Abstract of Astronomical Azimuth observed at VIII (Thob) 1873.

1. By Eastern Elongation of No. 1612†.

2. By Western Elongation of a Ursæ Minoris.

[^9]Notk.-Whrre observatiuns occurred on the same pair of zeros in different nights they are reduced in this abstract to one date-the most convenient-by allowing for otar's clange of place. The date so adopted appears at the head of the column, and the reduced obsorration is preceded by an asteriak.

At VIII (Thob)-(Continued).

Astronomical Azimuth of Referring Mark or $\left\{\begin{array}{llllllll}\text { by Eastern Elongation } & \text {... } & \text {... } & \text {... } & 322 & 26 & 25^{\circ} 19 \\ \text { by Western } & \text { " } & \text {... } & \text {... } & \text {... } & 2 & 25^{\circ} 13\end{array}\right.$
VII (Samdari)
Astronomical Azimuth of VII (Samdari) by observation, mean of above $322 \quad 2625^{\circ} 16$ Geodetical Azimuth of \quad, by calculation from that adopted (Vol. II, page 141) at Kaliánpur, see page 93 ante 3222621.42
Astronomical-Geodetical Azimuth at VIII (Thob) + 3.74

At XXVI (Jambo)

February aud March 1874 ; observed by Lieutenaut J. Hill, R. E., with Barrow's 24 -iuch Theodolite No. 2.

Stars observed
Mean Right Ascension 1874.0
Mean North Polar Distance 1874.0
Local Mean Times of Elongation, Feb. 26
a Urse Minoris (West) and 1612† (East).

$$
\begin{array}{lll}
1^{\mathrm{D}} 12^{\mathrm{m}} 38^{\mathrm{D}} & 13^{\mathrm{h}} 46^{\mathrm{m}} \quad 2^{\mathrm{o}} \\
1^{\circ} 21^{\prime} 45^{\prime \prime} \cdot 24 & 6^{\circ} 36^{\prime} 56^{\prime \prime} \cdot 74
\end{array}
$$

Western $8^{\text {b }} 44^{\text {m }}$
Eastern $9^{\text {h }} 35^{\text {m }}$

+ Of Greenwich Siew Seven-Year Catalogue of 2760 Stars for 1864.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multicolumn{4}{|c|}{pace meyt} \& \multicolumn{4}{|c|}{jace bight}

\hline \& \& \& Observed Horizontal Angle : Dift. of Readitus Ref. Mark-Star \& \& Reduction in Are to Time of Klongation \& Reduced Observation Ref. Mark - Star at Elongation \& Observed Horizontal Angle : Diff. of Roadings Kef. Mark - Star \& \& Reduction in Are to time of Elungation \& Reduced Observation Ref. Mark - Stur nt Elongation

\hline \multirow{3}{*}{Feb. 27} \& \multirow{3}{*}{W.} \& \multirow{3}{*}{$$
\begin{gathered}
4248 \\
\& \\
222
\end{gathered}
$$} \& - ' " \& \boldsymbol{m} : \& " \& - 1 " \& - ' " \& m 3 \& - \& - ' "

\hline \& \& \& - 214536.44 \& $\begin{array}{ll}14 & 12 \\ 11 & 13 \\ 15\end{array}$ \& 1
+010.55
0.659
0.12 .06 \& \& r
-21464.68
45
452.24
4522.32 \& $\begin{array}{rrr}28 & 15 \\ 24 & 28 \\ 1 & 26\end{array}$ \& 0
$+04 r 80$
$031 \cdot 37$
0
0.11 \& $$
\begin{array}{r}
-214522.88 \\
20.87 \\
22.21
\end{array}
$$

\hline \& \& \& 4539.60
4545.44 \& 1511
18
18 \& 0
-12.06
-18.40 \& 27.54
27.04 \& $4522 \cdot 32$
$4522 \cdot 20$ \& 126
215 \& $\begin{array}{ll}0 & 0.11 \\ 0 & 0.27\end{array}$ \& $22 \cdot 21$
21.93

\hline \multirow[t]{2}{*}{" 27} \& \multirow[t]{2}{*}{E.} \& \multirow[t]{2}{*}{$$
\begin{gathered}
424^{48} \\
\& 2248
\end{gathered}
$$} \& \multirow[t]{2}{*}{$$
\begin{array}{r}
3042 \mathrm{I} \cdot 22 \\
4248 \cdot 14 \\
4412 \cdot 40 \\
4359.32
\end{array}
$$} \& 23
19
19
6 \& 219.74
-131.47

0 \& - $3044 \begin{array}{r}20.96 \\ 19.61\end{array}$ \& - | |
| ---: |
| $04357 \cdot 82$ |
| $4411 \cdot 16$ | \& 842

5.7 \& - 019.16 \& -304416.98
17.77

\hline \& \& \& \& \[
$$
\begin{array}{ll}
619 \\
9 & 23
\end{array}
$$

\] \& | - 10.13 |
| :--- |
| |
| +22.33 | \& 22.53

21.65 \& 4227.54

4138.16 \& $\begin{array}{rrr}21 & 1 \\ 34 & 56\end{array}$ \& \[
$$
\begin{aligned}
& 152 \cdot 58 \\
& 238 \cdot{ }_{4}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 20 \cdot 12 \\
& 16 \cdot 64
\end{aligned}
$$
\]

\hline \multirow[t]{2}{*}{n 28} \& \multirow[t]{2}{*}{W.} \& \multirow[t]{2}{*}{$$
\begin{array}{cc}
122 & 1 \\
\& & 1 \\
302 & 1
\end{array}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
\text { 21 } 4532 \cdot 52 \\
4529 \cdot 90 \\
4543 \cdot 76 \\
4551 \cdot 18
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{rr}
12 & 29 \\
9 & 8 \\
18 & 19 \\
21 & 15
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
\circ \\
+\quad 8.16 \\
0 \\
0.37 \\
017.55 \\
023.60
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
214524 \cdot 36 \\
25 \cdot 53 \\
26 \cdot 21 \\
27 \cdot 58
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
2146 \quad 0 \cdot 26 \\
4552 \cdot 76 \\
4524 \cdot 60 \\
4526 \cdot 34
\end{array}
$$

\]} \& \[

$$
\begin{array}{ll}
26 & 12 \\
22 & 48
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
+\quad 35 \cdot 96 \\
027.25
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
214524.30 \\
25.51
\end{array}
$$
\]

\hline \& \& \& \& \& \& \& \& $$
\begin{aligned}
& 253 \\
& 6 \begin{array}{l}
59 \\
39
\end{array}
\end{aligned}
$$ \& \[

$$
\begin{array}{lll}
\circ & 0 & 0 \\
0 & 23 \\
0 & 2 \cdot 32
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 24^{\circ} 17 \\
& 24.02
\end{aligned}
$$
\]

\hline 11 28 \& E. \& 1221 \& $$
\begin{array}{r}
-304257.68 \\
432.4 .68
\end{array}
$$ \& \[

$$
\begin{aligned}
& 1757 \\
& 1453
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
121.23 \\
-55.97
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
-304418 \cdot 91 \\
20 \cdot 65
\end{array}
$$
\] \& \& \& \&

\hline \multirow[t]{2}{*}{Mar. 3} \& \multirow[t]{2}{*}{W.} \& \multirow[t]{2}{*}{$$
\begin{gathered}
201 \quad 14 \\
\text { \& } \\
2114
\end{gathered}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
-214540 \cdot 94 \\
4535.78 \\
4532.76 \\
4540.10
\end{array}
$$

\]} \& $\begin{array}{lll}17 & 33 \\ 14 & 31 \\ 1\end{array}$ \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
+016 \cdot 15 \\
011 \cdot 04 \\
010 \cdot 90 \\
017.06
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
-214524.79 \\
24.74 \\
21 \cdot 86 \\
-\quad 23.04
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
214614.66 \\
46 \quad 3.14 \\
4524.62 \\
4522.66
\end{array}
$$

\]} \& \[

$$
\begin{array}{rr}
31 & 38 \\
27 & 32 \\
2 & 29
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
052.40 \\
039.72 \\
030.32
\end{array}
$$
\] \& - 214522.26

\hline \& \& \& \& $\begin{array}{rr}1426 \\ 18 & 3\end{array}$ \& \& \& \& $\begin{array}{rrr}2 & 29 \\ 1 & 7\end{array}$ \& 0
0 0.32 \& 24.30
22.60

\hline \multirow[t]{2}{*}{„ 3} \& \multirow[t]{2}{*}{E.} \& \multirow[t]{2}{*}{$$
\left.\begin{array}{cc}
201 & 14 \\
8 \& & 14 \\
21 & 14
\end{array} \right\rvert\,
$$} \& $-304159 \cdot 86$

$4237 \cdot 18$ \& $\begin{array}{rr}23 & 31 \\ 20 & 13\end{array}$ \& \[
\left\lvert\, $$
\begin{array}{r}
-219.13 \\
-143.01
\end{array}
$$\right.

\] \& \[

$$
\begin{array}{r}
-304418 \cdot 99 \\
20 \cdot 19
\end{array}
$$

\] \& \[

$$
\begin{array}{|r}
-3043 \\
44 \quad 7 \cdot 80 \\
7 \cdot 96
\end{array}
$$

\] \& $\begin{array}{ll}9 & 36 \\ 6 & 15\end{array}$ \& \[

$$
\begin{array}{r}
023.33 \\
-\quad 9.88
\end{array}
$$

\] \& \[

-3044 $$
\begin{array}{r}
20 \cdot 13 \\
17 \cdot 84
\end{array}
$$
\]

\hline \& \& \& $\begin{array}{r}4412 \cdot 34 \\ 44 \\ \hline 1092\end{array}$ \& \[
$$
\begin{aligned}
& 528 \\
& 840
\end{aligned}
$$

\] \& \[

$$
\begin{array}{lll}
\circ & 7 . & 58 \\
0 & 19.04
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 199^{92} \\
& 19.96 .
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4241 \cdot 78 \\
& 4157 \%
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1932 \\
& 2342
\end{aligned}
$$

\] \& \[

$$
\begin{array}{lll}
1 & 37 \\
2 & 3 & 19 \\
2 & 19
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 18 \cdot 97 \\
& 20 \cdot 90
\end{aligned}
$$
\]

\hline , 6 \& W. \& $$
\begin{array}{cc}
280 & 23 \\
\& & 23 \\
100 & 23
\end{array}
$$ \& - $2145 \begin{array}{r}33 \cdot 96 \\ 4531.60\end{array}$ \& \[

$$
\begin{aligned}
& 1456 \\
& 1142
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
+011 \cdot 68 \\
0 \quad 718
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
-214522 \cdot 28 \\
24 \cdot 42
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
-214610 \cdot 24 \\
4559^{\circ} 10 \\
4520 \cdot 82
\end{array}
$$

\] \& $\begin{array}{rrr}30 & 33 \\ 27 & 0\end{array}$ \& \[

$$
\begin{array}{r}
+\quad 048 \cdot 92 \\
038 \cdot 19 \\
0 \quad 0.00
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
214521 \cdot 32 \\
20 \cdot 91 \\
20 \cdot 82
\end{array}
$$
\]

\hline \multirow[t]{2}{*}{n 6} \& \multirow[t]{2}{*}{W.} \& \multirow[t]{2}{*}{$$
\begin{gathered}
280 \quad 23 \\
\& \quad \& \quad 23 \\
100 \quad 23
\end{gathered}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
-214527.98 \\
4525.64 \\
4541 \cdot 98
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
920 \\
543 \\
1926
\end{array}
$$

\]} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
-214523 \cdot 42 \\
23.92 \\
22 \cdot 23
\end{array}
$$

\]} \& \[

$$
\begin{array}{r}
214553: 28 \\
4544 \cdot 14
\end{array}
$$

\] \& \[

$$
\begin{array}{ll}
24 & 31 \\
20 & 10
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
+031 \cdot 51 \\
+021.30
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
214521 \cdot 77 \\
22 \cdot 84
\end{array}
$$
\]

\hline \& \& \& \& \& \& \& 4523.92

4527.14 \& \[
$$
\begin{aligned}
& 622 \\
& 921
\end{aligned}
$$

\] \& | 0 |
| :--- | \& \[

$$
\begin{aligned}
& 21 \cdot 80 \\
& 22 \cdot 56
\end{aligned}
$$
\]

\hline \& \multirow[t]{2}{*}{E.} \& \multirow[t]{2}{*}{$$
\begin{gathered}
280 \quad 23 \\
\& \quad 8 \\
100 \quad 23
\end{gathered}
$$} \& \[

$$
\begin{array}{r}
-304244.72 \\
436.00
\end{array}
$$

\] \& \multirow[t]{2}{*}{\[

$$
\begin{array}{rr}
19 & 21 \\
17 & 7 \\
4 & 56 \\
8 & 11
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
134.35 \\
113.83 \\
0 \quad 6.18 \\
016.97
\end{array}
$$

\]} \& \[

$$
\begin{array}{r}
-304419.07 \\
19.83
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
-30442 \cdot 60 \\
4413.30
\end{array}
$$

\] \& \[

$$
\begin{array}{ll}
8 & 13 \\
4 & 47
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
-017.08 \\
0 \quad 5.78
\end{array}
$$

\] \& \[

$$
\begin{array}{|r|}
\hline-304419.68 \\
19.08
\end{array}
$$
\]

\hline \& \& \& $$
\begin{array}{rr}
44 & 15^{\circ} 12 \\
44 & 4.00
\end{array}
$$ \& \& \& \[

$$
\begin{aligned}
& 21 \cdot 30 \\
& 20 \cdot 97
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
4248 \cdot 68 \\
42 \quad 9.62
\end{array}
$$

\] \& \[

$$
\begin{array}{ll}
18 & 43 \\
22 & 31
\end{array}
$$

\] \& \[

$$
\begin{array}{rr}
1 & 29 \cdot 21 \\
2 & 9 \cdot 12
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 17.89 \\
& 18.74
\end{aligned}
$$
\]

\hline \& \multirow[t]{2}{*}{E.} \& \multirow[t]{2}{*}{$$
\begin{array}{cc}
122 & 1 \\
8 & 1 \\
302 & 2
\end{array}
$$} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{$\begin{array}{rrr}5 & 7 \\ 12 & 28\end{array}$} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{|}
-06.65 \\
-39.55
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
-304412.59 \\
13.85
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
-304320 \cdot 24 \\
4341 \cdot 66 \\
38 \quad 1 \cdot 18
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 15,22 \\
& 1221 \\
& 3822
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
-\quad 059.59 \\
038.48 \\
615.89
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
-304419.83 \\
20.14 \\
17.07
\end{array}
$$
\]}

\hline \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Abstract of Astronomical Azimuth observed at XXVI (Jambo) 1874.

1. By Eastern Elongation of No. $1612 \dagger$.

Face Zero	L 324°	$\begin{gathered} \mathbf{K} \\ 144^{\circ} \end{gathered}$	I 43°	$\begin{gathered} \mathbf{R} \\ 223^{\circ} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ 122^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 302^{\circ} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ 201^{\circ} \end{gathered}$	R 21°	$\begin{gathered} \mathbf{L} \\ 280^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 100^{\circ} \end{gathered}$
Date	February 26		February 27		March 7		March 3		March 6	
	"	11	"	"	"	"	"	"	"	"
Observed difference of Circle-Readings, Ref. M.-Star reduced to Elongation	16.66	20.21	20.96	16.98	*1-927	$19 \cdot 83$	18.99	20'13	19*07	19.68
	19.71	20.28	$19 \cdot 61$	17.77	*ig.01	20.14	20.19	$17 \cdot 8+$	19.83	19.08
	19.68	20.39	$22 \cdot 53$	$20 \cdot 12$	12.59	17.07	19.92	18.97	21•30	$17 \cdot 89$
	19.40	$19 \cdot 84$	$21 \cdot 65$	16.64	13.85		19'96	20.90	20'97	18.74
Means	$18 \cdot 86$	20•18	21•19	17•88	$15 \cdot 68$	19.01	19*77	$19 * 46$	20•29	18.85
\bigcirc	1									
Means of both faces - 30	441									
Level Corrections.	-									
Corrected Means ${ }^{\text {a }}$ - 30	441									
Az. of Star fr. S., by W. ${ }^{187}$	271									
Az. of Ref. M. " 156	425									

2. By Western Elongation of a Ursæ Minoris.

Notk. Where observations occurred on the sanlie pnir of zeros on different nights they are reduced in this abstract to one date-the most convenient-by allowing for star's change of place. The date ew adopted appeare at the head of the colunn, and the reduced observatiou is preceded by an anterisk.

At XLIII（Mugrala）

February 1875 ；observed by Captain M．W．Rogers，R．E．，with Barrow＇s 24－inch Theodolite No． 2.

Stars observed
Mean Right Ascension $1875 \cdot 0$ Mean North Polar Distance 1875.0
Local Mean Times of Elongation，Feb． 15
a Ursæ Minoris（West）and No．1612 \dagger（East）．
$1^{\mathrm{h}} 12^{\mathrm{m}} 59^{\mathrm{a}} \quad 13^{\mathrm{h}} 4^{\mathrm{m}} \quad 0^{\mathrm{m}}$
$\begin{array}{llllll}I^{\circ} & 21^{\prime} & 26^{\prime \prime} \cdot 18 & 6^{\circ} & 37^{\prime} & 14^{\prime \prime} \cdot 77\end{array}$
Western $9^{\text {h }} \mathbf{2 8}^{\mathrm{m}} \quad$ Eastern $\mathbf{1 0}^{\text {h }}$ 19 $^{\text {m }}$

			phat lipt				paob bight			
			Observed Horizontal Angle Diff of Readings Ref．Mark－Atar		Reduction in Aro to Time of Elongation	Reduced Observation Ref．Mark－Star at Elongation	Observed Horizontal Angle ： Diff．of Reading Ref．Mark－Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref．Mark－Star at Elongation
Feb． 15	W．	$\begin{gathered} 18025 \\ \& 25 \\ 025 \end{gathered}$	－ 1	m s				m	，＂	－
			$\begin{array}{r} -614558.40 \\ 4551 \cdot 22 \\ 4550.42 \\ 4552.62 \\ 46 \% \cdot 22 \end{array}$	$\begin{array}{rrr}12 & 19 \\ 9 & 47\end{array}$	1 +07.99 05.05		－6146 $\begin{array}{r}15 \cdot 62 \\ 4611.18\end{array}$	$\begin{array}{lll}20 & 12 \\ 18 & 26\end{array}$	+021.50 017.93	－6145 $\begin{array}{r}54.12 \\ 53.25 \\ 50\end{array}$
				53	－ 2.49		$4550 \cdot 40$	150	$\bigcirc 0.18$	50．22
				928	$\bigcirc 4.72$	47.9	4549.58	－ 30	$\bigcirc 0 \cdot 01$	49.57
				1744	－ $16 \cdot 55$	49.67	4617.64	2145	－ $24 \cdot 90$	52．74
， 15	E．	$\begin{array}{cc} 180 & 25 \\ \& & 25 \\ 0 & 25 \end{array}$	$\begin{array}{r} -7050 \quad 55.68 \\ 5054.50 \\ 5014.42 \\ 50 \quad 3.64 \\ 4918.78 \end{array}$	217	－0 1．34	－ 705057.02	$\begin{array}{r} -704852 \cdot 54 \\ 4916 \cdot 24 \end{array}$	22 20 20	$\begin{array}{r} 28.91 \\ -\quad 142.56 \end{array}$	$\begin{array}{r} -705061.45 \\ 58.80 \end{array}$
				（12r $\begin{array}{rrr}8 \\ 12 & 10\end{array}$		54.50		20 3 5 7	$\begin{array}{r} 142 \cdot 56 \\ 0 \quad 6 \cdot 72 \end{array}$	$58 \cdot 80$ $60 \cdot 38$
				12 12 13 10	－${ }^{\circ} \mathrm{3} \times 111$	53.75	505 50 47 174	$\begin{array}{ll}5 & 7 \\ 7 & 1\end{array}$	$\bigcirc 12.66$	$60 \cdot 20$
				1927	137.65	56．43	4833.80	2355	22767	61：47
＂ 16	W．	$\begin{gathered} 25937 \\ \& \quad 87 \\ 7937 \end{gathered}$	$\begin{array}{r} -6145 \begin{array}{l} 5 \mathrm{I} \cdot 22 \\ 45 \\ 48 \cdot 68 \end{array} \end{array}$	46	$+\begin{array}{rrr}\circ & 0 & 89 \\ 0 & 0.18\end{array}$	$-6145{ }_{48}^{50 \cdot 33}$	$\begin{array}{rl} -61 & 46 \\ 46 & 0 \cdot 32 \\ 46 \end{array}$	$\begin{array}{lr} 13 & 2 \\ 10 & 58 \end{array}$	$\begin{array}{r} +8.95 \\ +6.35 \end{array}$	$\begin{array}{r} -614551.37 \\ 56.35 \end{array}$
				152						
					－9．64	$47^{4}{ }^{\circ} \mathrm{O}$	45 58．10	－ $\begin{aligned} & 4 \\ & 6 \\ & 6 \\ & 19\end{aligned}$	\circ 	$5{ }^{56} 00$
			46 11 ${ }^{\text {5 }}$	207	－21．29	50＇29	$4626 \cdot 70$	2432	－31．67	$55^{\circ} 03$
＂ 16	E．	$\begin{gathered} 25937 \\ \& \quad 37 \\ 7937 \end{gathered}$	$\begin{array}{r} -705053.50 \\ 5053.06 \\ 5011.38 \\ 4957.66 \\ 4855.28 \end{array}$	451	－0 $\begin{array}{r}\text {－} \\ 0 \\ 0\end{array}$	$\begin{array}{r} -705059 \cdot 53 \\ 54 \cdot 72 \end{array}$	$\begin{array}{r} -7049 ? 55 \cdot 98 \\ 492 I \cdot 16 \\ 5032 \cdot 24 \end{array}$	$\begin{array}{lll}16 & 42 \\ 12 & 57 \\ 15 & \end{array}$	$\begin{array}{r} 111.18 \\ -142.90 \end{array}$	－70 $50 \begin{array}{r}67 \cdot 16 \\ 64.06 \\ 64.38\end{array}$
				233						
				1256				112	－31－14	$63 \cdot 38$
				1451	$\bigcirc 56.87$	54.53				
				2129	1．59．14	54.42	5053.24	612	－ 9.90	$63 \cdot 14$
＂ 18	W．	$\begin{gathered} 33_{8}^{8} 49 \\ 158 \\ 15849 \end{gathered}$	$\begin{array}{r} -61460 \cdot 02 \\ 4.553 \cdot 14 \\ 460.70 \\ 46 \\ 46 \cdot 78 \\ 46 \\ 20.26 \end{array}$	320	＋00．59	－61 4559.43	－6146 $7 \cdot 80$	1513	＋012．20	－6145 55．60
				$\bigcirc 2$	0	$53 \cdot 14$	$46 \quad 0 \cdot 66$	1122	－ $6 \cdot 82$	53.84
				$14{ }^{52}$	－11．65	49.05	45 56•84	952	－5．13	51．71
				$17 \quad 3$	$\bigcirc 15.30$	$50 \cdot 48$	$460 \cdot 10$	551	－ $\mathbf{1} \cdot 8 \mathrm{I}$	58．29
				2241	$\bigcirc 27.05$	$53^{\circ} 21$	4559.46	733	－3＊01	$56 \cdot 45$
， 18	E．	$\begin{gathered} 338 \quad 49 \\ 158 \quad 49 \end{gathered}$	$\begin{array}{r} -705049 \cdot 12 \\ 5052 \cdot 40 \end{array}$		-08.3500.88	$\begin{array}{r} 705057.47 \\ 56 \cdot 28 \end{array}$	$\begin{array}{r} -704950.32 \\ 5020.86 \\ 5027.22 \end{array}$	$\begin{array}{lll}16 & 54 \\ 12 & 32 \\ 10\end{array}$	$\begin{array}{r} 112.94 \\ -40.22 \end{array}$	－70 $50 \begin{array}{r}63.26 \\ 61\end{array}$
				353						
			$50^{\circ} 3$		021.27	$58 \cdot 15$		1047	$\bigcirc 29^{\circ} 77$	56．99
			5028.38	1046	－29．81	58．19		41	－ $0 \cdot 73$	62.63
			4937.50	1657	114.00	51．50	$5057 \cdot 84$	339	－3．42	61．26
＂ 19	W．	$\begin{array}{cc} 22 \\ -8 \\ 302 & 1 \\ 202 \end{array}$	\％1．45 50.864546.344551.204545.60464.30		＋ 01.67	－614549．19	－61 466.28		＋ 016.33	－61 4549.95
				343	＋00．73	－6．4549．61	－6146 46	1346	+010.00 $+\quad 065$	－6145 ${ }_{51}{ }^{49.92}$
				946		$46 \cdot 18$	$4556 \cdot 00$	117	－6．52	$49 \cdot{ }^{8}$
				$\begin{array}{ll}11 & 50 \\ 1756\end{array}$	0 0 16.98	$45 \cdot 22$ 47.38	$\begin{aligned} & 4548 \cdot 88 \\ & 4549 \cdot 76 \end{aligned}$	$\begin{array}{ll}1 & 39 \\ 3 & 29\end{array}$	$\begin{array}{lll} 0 & 0.14 \\ 0 & 0.64 \end{array}$	$\begin{aligned} & 48 \cdot 74 \\ & 49 \cdot 12 \end{aligned}$

† Of Greenwich Niew Seven－Year Catalogue of 2760 Stars for 1864．

			pace ligt				pace pight			
			Observed Horizontal Angle : Diff. of Readings Ref. Mark-Star		Reduction in Are to Time of Elongation	Reduced Observation Ref. Mark-Star at Elongation	Observed Horizontal Angle : Diff. of Readings Ref. Mark - Star		Reduction in Are to lime of Ehongation	Roduced Observation Bef. Mark - Star at Flongation
Feb. 19	E.	$\begin{array}{rr} 0 & 1 \\ 22 & 1 \\ \& & 1 \\ 202 & 1 \end{array}$	$0 \prime \prime \prime$$-704938 \cdot 42$5059.90$5055 \cdot 72$4937.264918.14	$\begin{array}{rc} m & 8 \\ 17 & 51 \\ 1 & 43 \\ 3 & 31 \\ 17 & 53 \\ 19 & 43 \end{array}$	$\begin{array}{r} -121.27 \\ 0 \\ 0 \\ 0 \\ 0.75 \\ 122.18 \\ 1 \\ 140.28 \end{array}$	$\begin{array}{r} -705059.69 \\ 60.65 \\ 58.90 \\ 59.69 \\ 58.42 \end{array}$	$\begin{array}{r} -705019 \cdot 92 \\ 5030 \cdot 76 \end{array}$		10	$-705060 \cdot 72$
								1238	$\begin{array}{r} -040 \cdot 80 \\ 030.93 \end{array}$	
										$\begin{array}{r} -705060.72 \\ 61.69 \end{array}$
							$5042 \cdot 90$	852	020.21	$63^{\circ} 11$
							$5017{ }^{\circ} 96$	1230	$040 \cdot 25$	58.21
							$4755{ }^{\prime} 96$	2642	$34^{\circ} 12$	60*08
" 20	W.	$\begin{aligned} & 101 \text { 13 } \\ & \text { \& } 1318 \end{aligned}$	$\begin{array}{r} -614545 \cdot 62 \\ 4557 \cdot 86 \\ 4556 \cdot 02 \\ 4635 \cdot 38 \\ 4650.04 \end{array}$	$\begin{array}{r} 047 \\ 10 \\ 10 \\ 13 \\ 136 \\ 29 \\ 34 \\ 34 \\ 12 \end{array}$	+00	-614545'59	-61 $4550 \cdot 78$		+ 0155	-61 $4549^{\circ} 19$
						51.90	4555.96	${ }^{5} 12$	0202	+ 51.94
					- 9.52	$46 \cdot 50$	46 11.44	$18 \quad 2$	$\bigcirc 1712$	$54 \cdot 32$
					$045^{\circ} 30$	$50 \cdot 08$	4614.06	1934	$\bigcirc 19.82$	
					1 1-44	$48 \cdot 60$	$4718 \cdot 92$	4019	$125^{\circ} 27$	53.65
" 20	E.	$\begin{gathered} 101 \quad 13 \\ 481 \quad 13 \end{gathered}$	- $704919{ }^{\circ}$	1919	- $135 \cdot 28$	- 705054.70	- $705049 \% 74$	647	$-011 \cdot 78$	$\begin{array}{r} -705061 \cdot 52 \\ 61 \cdot 42 \end{array}$
			$5057 \cdot 30$	027	$\bigcirc 0.05$	57.35	$5055 \cdot 32$	453	$06 \cdot 10$	
			5053.92	258	- 2.27	$\begin{aligned} & 56 \cdot 19 \\ & 55 \cdot 65 \end{aligned}$	$5045 \cdot 36$	718	013.69	$59^{\circ} \mathrm{O}$
			$4838 \cdot 96$	231	216.69		$5040 \cdot 36$	855	- 20.46	60-82
							4717×46	2921	$34^{\circ} 50$	$59^{\circ} 96$

Abstract of Astronomical Azimuth observed at XLIII (Mugrala), 1875.

1. By Eastarn Elongation of No. $1612 \dagger$.

Face Zero	$\begin{gathered} L \\ 180^{\circ} \end{gathered}$	$\begin{aligned} & \mathbf{R} \\ & \mathbf{0}^{\circ} \end{aligned}$	$\begin{gathered} L \\ 260^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 80^{\circ} \end{gathered}$	$\begin{gathered} \text { L } \\ 839^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 159^{\circ} \end{gathered}$	$\begin{gathered} \text { L } \\ 22^{\circ} \end{gathered}$	$\begin{gathered} \text { R } \\ 202^{\circ} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ 101^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 281^{\circ} \end{gathered}$
Date	February 15		February 16		February 18		February 19		February 20	
Observed difference of Circle-Readings, Ref. M. - Star reduced to Elongation	-	"	"	"	"	*	-	,	"	"
	$\begin{aligned} & 57.02 \\ & 54.50 \end{aligned}$	$\begin{aligned} & 6 \mathrm{I} \cdot 45 \\ & 58 \cdot 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 59.53 \\ & 54 \cdot 72 \end{aligned}$	$\begin{aligned} & 67 \cdot 16 \\ & 64 \cdot 06 \end{aligned}$	$\begin{aligned} & 57.47 \\ & 56.28 \end{aligned}$	$\begin{aligned} & 63 \cdot 26 \\ & 61 \cdot 08 \end{aligned}$	$\begin{aligned} & 59.69 \\ & 60.65 \end{aligned}$	$\begin{aligned} & 60 \cdot 72 \\ & 61 \cdot 69 \\ & \hline \end{aligned}$	$\begin{aligned} & 54.70 \\ & 57.35 \end{aligned}$	$\begin{aligned} & 6 \mathrm{r} \cdot 52 \\ & 6 \mathrm{I} \cdot 42 \end{aligned}$
	$\begin{aligned} & 54.50 \\ & 52.50 \end{aligned}$	$\begin{aligned} & 58.80 \\ & 60 \cdot 38 \end{aligned}$	$54 \cdot 47$	$63 \cdot 38$	$58 \cdot 15$	$56 \cdot 99$	58.90	$63 \cdot 11$	$\begin{aligned} & 57.35 \\ & 56 \cdot 19 \end{aligned}$	59.05
	53.75	$60 \cdot 20$	54.53	${ }_{63} 6.23$	58.19	62.63 6.62	59.69	58.21 60.08	$\begin{aligned} & 50.69 \\ & 55 \cdot 6 \end{aligned}$	60.82
	$56 \cdot 43$	61.47	54.42	63.14	51.50	61.26	58.42	60.08		$59^{\circ} 96$
Means	54.84	$60 \cdot 46$	55*53	64*19	56.32	61.04	59.47	60:76	55*97	60.55
-	1									
Means of both faces - 70	505									
Level Corrections										
Corrected Means ${ }^{\text {- }} 70$										
Az. of Star fr. S., by W. ${ }^{187}$										
Az. of Ref. M. " 116	414									

† Of Greenwich New Seven-Year Catalogue of 2760 Stars for 1864.

Abstract of Astronomical Azimuth observed at XLIII (Mugrala) 1875-(Continued).
2. By Western Elongation of a Ursæ Minoris.

October 1878.
J. B. N. HENNESSEY, In charge of Computing Office.
\cdot
ogitiex by Google
Fig. No. 4

Fig. No. 2

Scale 1 Onch $=12$ Miks a $\frac{1}{\text { y60320 }}$

Ogivecoby, Google

Fig. No. 13

Fig. No. 12

Fig. No. 7 XXIII

XXI

Slake 1 Swat $=12$ Mobile at $\frac{1}{760.320}$ xxxIv 管

Fig. No. 9

Fig. No. 8

Fig. No. 5

Ogitireoby, Google

EASTERN SIND MERIDIONAL SERIES.

Ogitieoby, Google

EASTERN SIND MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. ALPHABETICAL LIST OF STATIONS.

EASTERN SIND MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. NUMERICAL LIST OF STATIONS.

EASTERN SIND MERIDIONAL SERIES.

DESCRIPTION OF PRINCIPAL STATIONS.

Of the 51 Principal Stations composing this Series, those numbered I to XLIII and XLVII are situated on sand hills. Each consists of a solid, circular, isolated pillar of masonry surrounded by an annular wall, the pillar being sunk to a depth of 3 feet, and having its upper surface flush with the hill top. In the centre and upper surface of the pillar a mark (circle and dot) engraved either on stone or brick, was imbedded in the normal of one or two other similar marks previously inserted within the pillar. Stations LXXV and LXXVIII of the Karáchi Longitudinal Series are similar in construction to those above described, with the exception that the pillars are not sunk but rise above the hill tops and are surrounded by platforms about 14 feet square for the observatory tent to stand on. The remainder with stations LIX and LXII of the Great Indus Series, on which this Series closes, are tower stations. Each consists of either a solid or perforated central pillar surrounded by solid towers of sun-dried bricks set in mud cement for the accommodation of the observatory tent : the pillars themselves are composed of rectangular blocks of masonry surmounting one another, each succeeding block being contracted, so as to leave a plinth at its base, the uppermost block, for the theodolite to stand on, is circular, $3 \frac{1}{3}$ feet in diameter, and isolated from the tower. The solid pillars have marks, as already described, at top and bottom and others intermediately, the perforated pillars have a mark imbedded at about the level of the floor and another below in the foundation. In the case of perforated pillars access to the upper mark is obtained by a vaulted passage, especially constructed for the purpose, through the tower and the central pillar. The upper mark-stones, where the pillars are solid, are protected by a rectangular pyramidal pillar of masonry erected after the completion of the observations, and bearing a sufficiently accurate mark for 'Topographical and Revenue Survey purposes-as shown at page 74 of Volume II of the Account of the Operations $\& c$.

The following descriptions have been compiled from those given by the officers who executed the Series. The orthography of such names of parganas, districts \&c., as has been fixed by Government for Rajputana and Sind has been adhered to. A few details, such as the name of a village or pargana within which a station is situated, have been obtained from the returns furnished by the political authorities to whose charge the stations have been committed.
LXXV.-(Of the Karachi Longitudinal Series). Rojhra Hill Station, lat. $24^{\circ} 57^{\prime}$, long. $70^{\circ} 17^{\prime}$ observed at in 1851 and 1876 -is situated on a high, narrow hill $1 \frac{1}{4}$ miles west of the road from Cháchra to Islámkot. The hill lies in that part of the Thar or little desert which appertains to Bhuj. It is in the lands of Rohrara village, taluka Cháchra, district Thar and Párkar.

The masonry pillar, which is surrounded by an annular wall, is solid and 3 feet high. It contains three mark-stones, one at the foundation, another 2 feet above it, and the third at the surface of the pillar. When visited in 1876 for originating the Eastern Sind Meridional Series, the pillar was found in good order and the upper mark-stone intact, and no alteration in the construction of the station was made. The azimuths and distances of the circumjacent villages are :-Pariara 143°, miles 3.4 ; and Dhakla 297°, miles 2.
LXXVIII.-(Of the Kar'achi Longitudinal Series). Sandohar Hill Station, lat. $25^{\circ} 3^{\prime}$, long. $\mathbf{7 0}^{\circ} \mathbf{1}^{\prime}$ observed at in 1851 and 1876-is situated on a narrow and extensive hill in that portion of the Thar or little desert appertaining to Bhuj, about 2 miles N. of the road from Cháchra to Chelár. It is in the lands of Akli village, taluka Cháchra, district Thar and Párkar.

The masonry pillar, which is surrounded by an annular wall, is solid and 3 feet high. It contains three mark-stones, one at the foundation, another 2 feet above, and the third at the upper surface of the pillar. When visited in 1876 for originating the Eastern Sind Meridional Series, the pillar was found in good preservation, but there was no upper mark : on cutting into the pillar the second mark on stone was found intact one foot below the surface. The pillar was then re-built to its original height and a new mark was placed in its upper surface oue foot above and in the normal of the mark found. The azimuths and distances of the circumjacent villages are :-Sandohar 88°, mile 0.5 ; and Arnára 198°, mile 1.
I. Fulrár Hill Station, lat. $24^{\circ} 53^{\prime}$, long. $70^{\circ} 6^{\prime}$-observed at in 1876 -is on a high and narrow sand hill in that portion of the Thar or little desert appertaining to Bhuj. It is in the lands of Fulrar village, taluka Cháchra, district Thar and Párkar.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 \frac{1}{f}$ feet in diameter. It contains two mark-stones, one at the bottom and the other 3 feet above it at the surface of the pillar. This station is nearly identical with station LXXVI of the Karáchi Longitudinal Series established in 1851, which was found almost totally destroyed in 1876. The centre of the old pillar was determined from the lowest layer of bricks indicating its circumference. The azimuths and distances of the circumjacent villages are:-Fulrár 157°, mile 1 ; Dhurio 10°, miles 2; and Bisasar 44°, miles 4.
II. Chánga Hill Station, lat. $24^{\circ} 59^{\prime}$, long. $69^{\circ} 54^{\prime}$-observed at in 1876 -is situated on a sand hill bearing that name in that portion of the Thar or little desert appertaining to Bhuj. It lies $1 \frac{1}{2}$ miles S .W. of the road from Chelár to Nabisar. The nearest good water is at Asar 2.4 miles S.E. The station is in the lands of Chelár village, taluka Cháchra, district Thar and Párkar.

The masonry pillar, which is surrounded by an annular wall, is solid and 34 feet deep. It contains three marks, two on stone, one at the foundation, the other $1 \nmid$ feet above it, and the third on brick at the surface of the pillar. This station is nearly identical with station LXXX of the Karáchi Longitudinal Series established in 1851, which was found entirely destroyed. The present pillar is erected on the ruins of the base of the old pillar. The azimuths and distances of the circumjacent villages are :-Chelar 275°, miles $3 \cdot 8$; and Jojar 263°, miles 4.5 .
III. Patatonk Hill Station, lat. $25^{\circ} 10^{\prime}$, long. $69^{\circ} 48^{\prime}$-observed at in 1876 -is situated on a hill peak midway between the high roads from Umarkot to Nabisar and Chelár, 7 miles E. of the former and the same distance W. of the latter, and 4 miles E. of the plains of Sind. It is in the lands of Pata village, taluka Cháchra, district Thar and Párkar.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 \frac{1}{3}$ feet in diameter. It contains three marks, two on stone, one at the foundation, the other 1 foot above it, and the third on brick at the surface of the pillar. The station mark at the foundation was originally fixed in the course of the execution of the Umarkot Minor Series of the Karáchi Longitudinal Series. Pata (Ali Akbar) well azimuth 187°, mile 0.5 .
IV. Narithal Hill Station, lat. $25^{\circ} 16^{\prime}$, long. $69^{\circ} 55^{\prime}$-observed at in 1876 -is situated on a sand hill of the same name. The high road from Umarkot to Cháchra runs $1 \frac{1}{2}$ miles W. and that to Kesar 4 miles N. It is in the lands of Kacholi village, taluka Umarkot, district Thar and Párkar.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 \frac{1}{z}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar. The station is identical with that of the Umarkot Minor Series of the Karachi Longitudinal Series, the marks being plumbed over the old station mark. The azimuths and distances of the circumjacent places are:-Ajba well 205°, mile $\frac{1}{\frac{1}{2}}$; and Rojhra or Rodhar well 36°, miles 2.
V. Bhádi Hill Station, lat. $25^{\circ} 15^{\prime}$, long. $70^{\circ} 14^{\prime}$-observed at in 1876 -is situated on a high, narrow and very long sand hill, 2 miles E.N.E. of Bhádi sweet-water well. Gatta village and well lie at the foot of the hill to the N.W. The road from Umarkot to Kesar runs about 7 miles N. It is in the lands of Bhadi village, taluka Cháchra, district Thar and Párkar.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 \frac{1}{3}$ feet in diameter. It contains three marks, the upper engraved on stone is let into the surface of the pillar, and two others on bricks are 2 and 3 feet respectively below it. The azimuths and distances of the circumjacent villages are:-Bhádi 75°, miles 2; and Gatta 230°, mile 1 .
VI. Hatodan Hill Station, lat. $25^{\circ} 30^{\prime}$, long. $69^{\circ} 52^{\prime}$-observed at in 1876 -is situated on the northern extremity of a long sand hill running in the usual direction and terminating abruptly towards the north, about $1 \frac{3}{4}$ miles W. of the road from Umarkot to Ranáhu village, 3 miles W. of the low ground inundated by the Nára river, and $2 \frac{1}{2}$ miles S.E. of Sinai (new) sweet-water wells. It is in the lands of Chor village, taluka Umarkot, district Thar and Párkar.

The masonry pillar, which is surrounded by an annular wall, is $\mathbf{3}$ feet deep and $3 \frac{1}{3}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third on the surface of the pillar. The azimuths and distances of the circumjacent places are :-Kerlo sweet-water well 280°, miles $1 \frac{1}{2}$; Chor village old (Sínai) $184{ }^{\circ}$, miles 4 ; and Chor village new 186°, miles $2 \cdot 2$.
VII. Rupihar Hill Station, lat. $25^{\circ} 27^{\prime}$, long. $70^{\circ} 5^{\prime}$-observed at in 1876 -is situated on a sand hill 1 mile north of the village so called on the high road from Umarkot to Gadra and Balmer. It is in the lands of Rupihar village, taluka Umarkot, district Thar and Párkar.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 \frac{1}{8}$ feet in diameter. It contains three marks, the upper engraved on stone is flush with the surface of the pillar, and two others on brick are 2 and 3 feet respectively below it. Rupihar well azimuth $23 \frac{1}{2}^{\circ}$, mile 0.9.
VIII. Kanakotri Hill Station, lat. $25^{\circ} 30^{\prime}$, long. $70^{\circ} 17^{\prime}$-observed at in 1876 -is situated on a high sand hill about $3 \frac{1}{2}$ miles S. E. of the road from Umarkot to Kesar village. It is in the lands of Kanakotri village, taluka Umarkot, district Thar and Párkar.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 \frac{1}{\frac{1}{8} \text { feet in diameter. It contains }}$ three marks, the upper engraved on stone flush with the surface of the pillar, and two others on brick 2 and 3 feet respectively below it. The azimuths and distances of the circumjacent villages are:-Jagmal 174°, miles 1.5 ; and Silali 104°, mile 0.7 .
IX. Mangtor Hill Station, lat. $25^{\circ} 39^{\prime}$, long. $69^{\circ} 57^{\prime}$-observed at in 1877 --is situated on a low flat hill, about 2 miles S. of the well of the same name, and 5 miles E. of the road from Chor and Umarkot to Ránáhu. It is in the lands of Mangtor village, taluka Umarkot, district Thar and Párkar.

The masonry pillar, which is surrounded by an annular wall $1 \frac{1}{\frac{1}{2}}$ feet thick, is solid, 3 feet deep and $3 \frac{1}{3}$ feet in diameter. It contains three marks, one at the foundation, another 1 foot above it, and the third on the surface of the pillar. The azimuths and distances of the circumjacent wells are:-Goedani 48°, miles 4 (by road 4.7 miles) ; Bandho 48°, miles 6.7 ; and Mangtor 180°, miles 2.
X. Bhitala Hill Station, lat. $25^{\circ} 39^{\prime}$, long. $70^{\circ} 11^{\prime}$-observed at in 1877 -is situated on a long, narrow sand hill running N. E. and S. W., about 3 miles S. W. by S. of Khuiri or Khokro village, and 3 miles S. of Lapla well. It is in the lands of Khara Lapla village, taluka Umarkot, district Thar and Párkar.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and 3 年 feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third on the surface of the pillar. The azimuths and distances of the circumjacent wells are:--Datura 133°, miles 8.5°; and Somo 157°, miles 8.9 .
XI. Narhar Hill Station, lat. $25^{\circ} 51^{\prime}$, long. $69^{\circ} 57^{\prime}$-observed at in 1877 -is situated on the hill on which the Revenue Survey station of Bamniwaro formerly existed, and about $5 \frac{1}{2}$ miles E. of the road from Umarkot and Chor to Ránáhu. It is in the lands of Narhar village, taluka Khipra, district Thar and Párkar.

The masonry pillar, which is surrounded by an annular wall $1 \frac{1}{2}$ feet thick, is solid, 3 feet deep and $3 \frac{1}{2}$ feet in diameter. It contains three mark-stones, one at the foundation, another one foot above it, aud the third on the surface of the pillar. Narhar village distant $1 \cdot 6$ miles, azimuth 68°.
XII. Thakur Hill Station, lat. $25^{\circ} 50^{\prime}$, long. $70^{\circ} 10^{\prime}$-observed at in 1877 -is situated on a sand ridge, about 3 miles W. of the boundary between Jodhpore and Sind. It is in the lands of Juma village, taluka Khipra, district Thar and Párkar.

The masonry pillar, which is surrounded by an annular wall $1 \frac{1}{2}$ feet thick, is solid, 3 feet deep and $3 \frac{3}{2}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third on the surface of the pillar. The azimuths and distances of the circumjacent places are :-Katarlo well 3450, miles 3; Tar Rang Dahar (large village) 152°, miles $5 \frac{1}{\frac{1}{2}}$; Marwar village 258°, miles 5 ; and Juma well 69°, miles 2. It is identical with the Revenue Survey station of the same name.
XIII. Jeysulmere Hill Station, lat. $26^{\circ} 5^{\prime}$, long. $69^{\circ} 54^{\prime}$-observed at in 1877 -was situated on the highest elevated sand knoll of the Jeysulmere draen (a tract of shifting sand) which extends for a space of about 50 square miles and has in parts sand knolls of considerable height. It was close to the Revenue Survey station of the same name. There are two wells of good water in the draen, about $\frac{3}{4}$ and $1 \frac{1}{2}$ miles respectively W. of the site of the station, which is in the lands of Lodhar village, taluka Khipra, district Thar and Párkar.

The masonry pillar, which was surrounded by an annular wall, was solid, 5 feet deep and $3 \frac{1}{3}$ feet in diameter. It contained three mark-stones, one at the foundation, another 2 feet above it, and the third on the surface of the pillar. Lodhar village is distant 3.6 miles, azimuth 77°. This station was reported by the district officer in May 1879 to have been completely carried away by the shifting sand, the debris were collected and heaped together close to the original site.
XIV. Malar Hill Station, lat. $26^{\circ} 2^{\prime}$, long. $70^{\circ} 6^{\prime}$-observed at in 1877 -is situated on the lowest and southernmost of three sand hills about a mile distant from each other, named after a hamlet about 2 miles to N.W., and 2 miles W. of the boundary between Sind and Marwar. It is in the lands of Saiadáhu village, taluka Khipra, district Thar and Párkar.

The masonry pillar, which is surrounded by an annular wall $1 \frac{1}{2}$ feet thick, is solid, 3 feet deep and $3 \frac{1}{\frac{1}{2}}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third ou the surface of the pillar. Saiadáhu village, on the road from Khipra to Jeysulmere town, is distant 4 miles, azimuth 128°.
XV. Badhor Hill Station, lat. $26^{\circ} 0^{\prime}$, long. $70^{\circ} 20^{\prime}$-observed at in 1877 -is situated on a high sand hill in division Giraub, taluka Shiu, territory Jodhpore.

The masonry pillar, which is surrounded by an annular wall $1 \frac{1}{2}$ feet thick, is solid, 3 feet deep and $3 \frac{1}{\frac{1}{3}}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third on the surface of the pillar. The azimuths and distances of the circumjacent places are :-Saijado well 217°, miles 3 ; and Sundra 143°, miles 10 .
XVI. Ramsar Hill Station, lat. $26^{\circ} 13^{\prime}$, long. $70^{c} 2^{\prime}$-observed at in 1877 -is situated on a hill 2 miles N. of the boundary between Thar and Párkar and Khairpur State. It is in lands of Wuriáhu village, Khairpur State, Sind.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 \frac{1}{\frac{3}{f}}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third on the surface of the pillar which is flush with the hill top. 'The azimuths and distances of the circumjacent villages are:-Ramsar Bhil 325°, mile 1 ; and Wuriáhu 175°, miles 2.
XVII. Sinaba Hill Station, lat. $26^{\circ} 12^{\prime}$, long. $70^{\circ} 14^{\prime}$-observed at in 1877 -is situated on the northern summit of a long sand ridge, about 4 miles N.E. of Khara well and a mile N.W. of the path from Saidáhu to Jeysulmere town, which passes by Khara. The nearest good water is at Saidáhu, 14 miles S:W. It is in village and division of Mehájliar, Jeysulmere State.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 \frac{1}{\frac{1}{8}}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third on the surface of the pillar which is tlush with the hill top. The azimuths and distances of the circumjacent places are:-Badhi Baor hill (close to which is the quadri-junction pillar of Thar and Párkar, Jeysulmere, Khairpur and Jodhpore) 36°, miles 4; Sundra (in Jodhpore) 340 ${ }^{\circ}$, miles 9; and Mehájliar (in Jeysulmere) 250°, miles 12.
XVIII. Połanawári Hill Station, lat. $26^{\circ} 24^{\prime}$, long. $69^{\circ} 56^{\prime}$-observed at in 1877 -is situated on a low sand hill 2 miles W. 19° N. of Bakshiwári village. It is in the lands of Bakshiwári village, Khairpur State, Sind.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 y$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third on the surface of the pillar which is fush with the hill top. The azimuths and distances of the circumjacent places are:-Juma wells 332°, miles 2 and 3 ; Chanáhu well 116°, miles 1.6; Raknáhu well 255°, miles $3 \cdot 3$; and Bakshiwári village 289°, miles $2 \cdot 3$.
XIX. Joganali Hill Station, lat. $26^{\circ} 25^{\prime}$, long. $70^{\circ} 6^{\prime}$-observed at in 1877 -is situated on the second highest hill in the locality, about $1 \frac{1}{2}$ miles S.E. of Gauj Sing's wand and the same distance S.W. of Gagu hill which is the highest in this part of the country. It is in the lands of Sartanahu village, Khairpur State, Sind.

The masonry pillar, which is surrounded by an annular wall, is solid, $3 \frac{1}{\frac{1}{2}}$ feet deep and $3 \frac{1}{y}$ feet in diameter. It contains three mark-stones, one at the foundation, another $1 \frac{1}{4}$ feet above it, and the third $3 \frac{1}{\frac{1}{2}}$ feet above, on the surface of the pillar which is flush with the ground. Azimuth and distance of Sartanáhu village are 54°, miles 48 .
XX. Kardo Hill Station, lat. $26^{\circ} 24^{\prime}$, long. $70^{\circ} 17^{\prime}$-observed at in 1877 -is situated on a long sand ridge running N.E. and S.W. in the lands of Kardo (Karora) village, division Mehajliar, Jeysulmere State.

The masonry pillar, which is surrounded by an annular wall, is solid, $\mathbf{3}$ feet deep and $8 \frac{1}{f}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third on the surface of the pillar which is flush with the hill top. The azimuths and distances of the circumjacent places are:-Pochina well 850°, miles 2 ; and Komprajro Par 27°, miles $8 \frac{1}{4}$; and Kardo or Karora village 204°, miles $2 \cdot 2$.
XXI. Sanahu Hill Station, lat. $26^{\circ} 344^{\prime}$, long $70^{\circ} 1^{\prime}$-observed at in 1877 -is situated on a sand hill conspicuous from its having several large trees on it, about $\frac{1}{8}$ of a mile N. E. of a well so called, and 2 miles S . of the boundary between Khairpur and Jeysulmere. To the west, north and south there are extensive draens. It is in the lands of Sanahu village, Khairpur State, Sind.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 \frac{3}{3}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar. The aximuth and distance of Sumrahu village are 853°, miles $5 \frac{1}{2}$.
XXII. Arrabhit Hill Station, lat. $26^{\circ} 34^{\prime}$, long. $70^{\circ} 12^{\prime}$-observed at in 1877-was situated on a long sand hill, about 200 yards N.E. of the boundary between Jeysulmere and Khairpur, and 4 miles N.E. of Sonhar village. It is in the lands of Shem village, Jeysulmere State.

The masonry pillar, which was surrounded by an annular wall, was solid, 8 feet deep and 38 feet in diameter. It contained three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar which was flush with the hill top. The azimuths and distances of the circumjacent villages are:-Petrio 49°, miles $2 £$; Sumráhu 61°, miles 12 . This station was reported in 1880 by the District Officer as totally destroyed.
XXIII. Harnáo Hill Station, lat. $26^{\circ} 44^{\prime}$, long. $69^{\circ} 59^{\circ}$-observed at in 1877 -was situated on the highest knoll of the draen called after the well of Harnáo about $1 \frac{1}{\frac{1}{8}}$ miles east. It was in the lands of Harnáo village, taluka Sháhgarh, Jeysulmere State.

The masonry pillar, which was surrounded by an annular wall, was solid, 5 feet deep and $3 \frac{1}{3}$ feet in diameter. It contained three mark-stones, one at the foundation, another 2 feet above it, and the third flush with the surface of the pillar. The directions and distances of the circumjacent places are:-Harnhar conspicuous sand-hill N.N.E., miles 4; Saunhar well E.N.E., miles 8; Kharodi well W., mile 1. This station was reported by Major hogers in 1880 to have been completely carried away by the shifting sand.
XXIV. Dhanono Hill Station, lat. $26^{\circ} 45^{\prime}$, long. $70^{\circ} 13^{\prime}$-observed at in 1877 -is situated on the highest part of a long sand ridge, about 5 miles N.W. of Dhanono well, 9 miles E.S.E. of Saunhar well, and 8 miles S.S.W. of Bhoiana well. It is in the lands of Dhanono village, division Shem, Jeysulmere State.

The masonry pillar, which is surrounded by an annular wall, is solid, 8 feet deep and $3 \frac{1}{8}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar.
XXV. Bándri Hill Station, lat. $26^{\circ} 55^{\prime}$, long. $69^{\circ} 52^{\prime}$-observed at in 1877 -is situated on a sand hill, which, though low, is the highest for some miles around. It is in the midst of draens, the largest of which is to the west and extends to the foot of the station hill. Saira well is 4.7 miles to the west. The station is in the lands of Bándri well, division Sháhgarh, Jeysulmere State.

The masonry pillar, which is surrounded by an annular wall, is solid, 8 feet deep and $3 \frac{1}{\frac{1}{s} \text { feet in diameter. It contains }}$ three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar.
XXVI. Ráviláhu Hill Station, lat. $26^{\circ} 52^{\prime}$, long. $70^{\circ} 5^{\prime}$-observed at in 1877 and 1880 -is situated on the highest sand hill in the vicinity. Ráviláhu fresh water well is distant 1.5 miles and Saunhar well 5.7 miles. It is in the lands of Ráviláhu well, taluka Sháhgarh, Jeysulmere State.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 \frac{1}{8}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar. When again visited in 1880 for continuing the Series northwards, the station was found in good order and the upper mark-stone intact, and no alteration in its construction is stated to have been made.
XXVII. Máhu Hill Station, lat. $27^{\circ} 5^{\prime}$, long. $69^{\circ} 48^{\prime}$-observed at in 1880 -is situated on a sand hill which is also called Ramúwaribhit from the toba (or tank) of that name at its N.W. foot. About $3 \frac{1}{4}$ miles W. of Máhu well. Maiha conspicuous Tar tree on a draen is distant 4 miles. The station is in the lands of Máhu well, taluka Sháhgarh, Jeysulmere State.

The masonry pillar, which is surrounded by an annular wall, is solid, 8 feet deep and $3 \frac{f}{\text { feet in diameter. It con- }}$ tains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar.
XXVIII. Giraja Hill Station, lat. $27^{\circ} 2^{\prime}$, long. $70^{\circ} 3^{\prime}$-observed at in 1880 -is situated on a high sand hill 8 miles S.S.W. of the village of Sháhgarh, and 3 miles E. of Giraja well. It is in the lands of Giraja well, taluka Sháhgarh, Jeysulmere State.

The masonry pillar, which is surrounded by an annular wall, is solid, 8 feet deep and $3 \frac{1}{3}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar.
XXIX. Máringra Hill Station, lat. $26^{\circ} 59^{\prime}$, long. $70^{\circ} 15^{\prime}$-observed at in 1880 -is situated on the highest part of a long sand hill, $4: 6$ miles S . of Mírwála well; and about 3 miles W . of Máringra well. It is in the lands of Máringra well, taluka Shem, Jeysulmere State.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 \frac{1}{\frac{1}{3}}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar.
XXX. Singra Hill Station, lat. $27^{\circ} 14^{\prime}$, long. $70^{\circ} 1^{\prime}$-observed at in 1880 -stands on a rather conspicuous sand hill midway between the villages of Sháhgarh and Gotaru, the road between them passing by the eastern base of the hill. The nearest fresh water is obtained from a small well on the north side of the Sháhgarh draen, distant about 6 miles. The station is in the lands of Sháhgarh village, taluka Sháhgarh, Jeysulmere State.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 \frac{1}{8}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar. The directions and distances of the following places are:-Gotaru fort N., miles 8 ; and Sháhgarh village S., miles 8.
XXXI. Asu Hill Station, lat. $27^{\circ} 11^{\prime}$, long. $70^{\circ} 13^{\prime}$-observed at in 1880 -is situated on a sand hill known in the neighbourhood as Báwalwála, which has several of equal or even greater height near it. The road from Gotaru to Jeysulmere, vid Khiwála, passes about 8 miles N . Asu well is distant about 5 miles. The station is in the lands of Asu well, taluka Khiwála (Kháro), Jeysulmere State.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $8 \frac{1}{3}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar.
XXXII. Bitri Hill Station, lat. $27^{\circ} 23^{\prime}$, long. $69^{\circ} 59^{\circ}$-observed at in 1880 -is situated on a sand hill locally known as Saian-ki-Khabri, about $1 \frac{1}{2}$ miles S. of the path from Gotaru to Mitrau in Sind, and 4 miles E. of the Sind boundary. Gotaru fort and village, the nearest places for water, are about $7 \frac{1}{\frac{1}{2}}$ miles S.E. by E. The station is in the lands of Gotaru village, taluka Gotaru, Jeysulmere State.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $8 \frac{1}{3}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar.
XXXIII. Parethal Hill Station, lat. $27^{\circ} 22^{\prime}$, long. $70^{\circ} 8^{\prime}$-observed at in 1880 -is situated on the highest sand hill in the neighbourhood, which is not much above the general level of the country, about $\frac{1}{8}$ mile E. of the path from Gotaru to Hingora well. Gotaru fort, at which fresh water is obtained, is distant 5 miles S.W. The station is in the lands of Gotaru village, taluka Gotaru, Jeysulmere State.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $9 \frac{1}{8}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar.
XXXIV. Kolu Hill Station, lat. $27^{\circ} 25^{\prime}$, long. $70^{\circ} 20^{\prime}$-observed at in 1880 -is situated on a low sand hill locally called Baurawála, about 2 $\frac{1}{2}$ miles E. of Kolu well, and 7 miles distant in the same direction from Hassu and Hakara wells. It is in the lands of Kolu well, taluka Khiwála (Kháro), Jeysulmere State.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 \frac{1}{8}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar.
XXXV. Chauki Hill Station, lat. $27^{\circ} 34^{\prime}$, long. $69^{\circ} 56^{\prime}$-observed at in March and December 1880is situated on the top of the sand hill which rises about 120 feet above the adjacent hollows. Fresh water is available from the Kiridi wells, 12 miles to N. The station is in Deh Sutiyáro, taluka Mirpur, district Shikárpur.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 \frac{1}{3}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar. When again visited in December 1880 for continuing the Series northwards, "the station was evidently in perfect order, and the upper mark-stone intact," and no alteration in its construction is stated to have been made. The directions and distances of the circumjacent places are :-Ditta-ka-Toba N.E., mile $\frac{3}{4}$; Korárdara N.W., miles 3; Sháhbáz Khán Wali Toba S.S.W., miles 2; Bandli N, miles 9 ; and Sone-ka-Dara (Daro Sono) W.S.W., miles 2.
XXXVI. Kháro Hill Station, lat. $27^{\circ} 33^{\prime}$, long. $70^{\circ} 8^{\prime}$-observed at in 1880 -is situated on a flattopped sand hill called by the natives Koudíwáladara from the tank at its northern base. The road from Kháro to Bandli in Sind passes 2 miles S. of the station. Kháro ruined fort is distant $3 \frac{3}{4}$ miles S.S.E., and Hingora well 7 miles S. Drinking water must be brought from Hassu well, about 12 miles S.E. It is in the lands of Hingora village, taluka Khiwála (Kháro), Jeysulmere State.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $8 \frac{1}{8}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar.
XXXVII. Morgich Hill Station, lat. $27^{\circ} 35^{\prime}$, long. $70^{\circ} 17^{\prime}$-observed at in 1880 -is situated on a small sand hill west of and close to the track from Kolu well to Khairgarh in Sind, and about 5 miles N. of the Karibhar well. It is in the lands of Karibhar well, taluka Khiwála (Kháro), Jeysulmere State.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 \frac{1}{8}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar.
XXXVIII. Trising Hill Station, lat. $27^{\circ} 42^{\prime}$, long. $70^{\circ} 8^{\prime}$ —observed at in March and December 1880is situated on the northernmost of three high sand hills of that name lying together in the heart of the desert, far from any place. The station is built 200 yards S. of the declivity. The hill is a narrow ridge, 120 feet high, and steep except on the south side; a stone on the boundary of Sind and Jeysulmere, at the S.W. foot of the hill, is distant 1,105 feet W.S.W. from the station. Good water is available from the Kiridi and Sand (Khairgarh) wells in Sind, distant 16 and 14 miles respectively. The station is in the lands of Hingora well, taluka Khiwála (Kháro), Jeysulmere State.

The masonry pillar, which is surrounded by an annular wall, is solid, 8 feet deep and $8 \frac{1}{\frac{1}{3}}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar. The approximate directions and distances of the circumjacent places are:-Islam-ka-Tarai S. by W., miles 3 or 4; Kardo W. by S., miles 8 or 4; and Band Lodi E.N.E., miles 8 or 4. When again visited in December 1880 for continuing the Series northwards, it is presumed from the absence of any remarks in the original records that the station was found in good order and the upper mark-stone intact; and that no alteration in its construction was made.
XXXIX. Thar Muhári Hill Station, lat. $27^{\circ} 42^{\prime}$, long. $69^{\circ} 43^{\prime}$-observed at in 1880 -is situated on the northern summit of the sand hill of that name which rises to a height of about 100 feet above its base, 1衣 miles S.S.W. from the present hamlet. It is in the lands of Saranwaro village, Deh Sutiyáro, taluka Mirpur, district Shikárpur.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 \frac{1}{5}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar. The directions and distances of the circumjacent places are:-Saranwaro village N.N.E., miles $1 \frac{1}{2}$; Yáru Lund N.W., miles $9 \frac{1}{2}$; and Thar Bangáhu well W., miles $1 \frac{1}{2}$.
XL. Kiraríwáro Hill Station, lat. $27^{\circ} 46^{\prime}$, long. $69^{\circ} 52^{\prime}$ —observed at in 1880 -is situated on the sand hill locally known as Kír-ri-waro, about 80 feet high, which stands out from the more desert tract to the southeast, in the Patti or low ground which is still occasionally reached by the (Sind) inundation, and is called Kirari and Kanderawála. It is in Deh Sutiyáro, taluka Mirpur, district Shikárpur.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 \frac{1}{3}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar. The directions and distances of the circumjacent places are:-Bandli S.S.E., miles 5 ; and Janganwali N.N.E., miles 6.
XLI. Mári Hill Station, lat. $27^{\circ} 51^{\prime}$, long. $69^{\circ} 46^{\prime}$-observed at in 1880 -is situated on the top of a large sand ridge about 70 feet above the plain, known as Daro Mári from an old deserted hamlet at its southwest foot. It is in the lands of Bhághibhit, Deh Sutiyáro, taluka Mirpur, district Shikárpur.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $8 \frac{1}{z}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar. The directions and distances of the circumjacent places are:-Yáru Lund W.S.W., miles 8; Bhaghibhit S.S.E., mile 1; Chanesar E.N.E., miles $\mathbf{5}$; Chándan N.N.W., miles 9 ; and Simna or Sinwala N.E., mile 1 .
XLII. Yáru Hill Station, lat. $27^{\circ} 55^{\prime}$, long. $69^{\circ} 51^{\prime}$-observed at in 1880 -is situated on a sand hill, locally known as Chor-ka-Dara, rising about 70 feet above the adjacent ground to its N. and W. It is in Deh Sutiyáro, taluka Mirpur, district Shikárpur.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 \frac{1}{z}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it , and the third at the surface of the pillar. The directions and distances of the circumjacent places are:-Reti Railway Station N. by E., miles 121 ; Chándan Imámwah W.N.W., miles 81 ; Chanesar S.S.W., miles $2 \frac{1}{2}$; and Khenju N.E. by E., miles $5 \frac{1}{2}$.
XLIII. Ntrpír Hill Station, lat. $27^{\circ} 55^{\prime}$, long. $70^{\circ} 2^{\prime}$-observed at in 1880 -is situated on the present central summit of the somewhat isolated sand hill of that name which rises to a height of about 120 feet above the ground at its base, about $1 \frac{1}{2}$ miles W. by S. of Khairgarh fort, and 330 feet S.S.W. of the piles of old bricks supposed to mark the grave of Núrpir, after whom the place is named. It is in the lands of Deh Poh, taluka Mirpur, district Shikarpur.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 \frac{1}{y}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar. The directions and distances of the circumjacent places are:-Kheuju W.N.W., miles 7; Sand wells S.S.E., miles 2; and Khángarh village N ., miles $2 \mathbf{1}$.
XLIV. Vijnot Tower Station, lat. $28^{\circ} 2^{\prime}$, long. 69° 53^{\prime}-observed at in 1880 and 1881 -stands on one of the highest mounds of the ruins of the ancient Hindu town of Vijnot, 3.8 miles S. by W. from the Railway Station of Reti. It is in Deh Vijnot, taluka Mirpur, district Shikárpur.

The station consists of a tower of sun-dried bricks set in mud cement, 20 feet square at base and 14 feet square at top, enclosing a central, perforated pillar of masonry 13 feet high. There are two marks, one engraved on stone is imbedded in the floor (15 feet above ground level) and the other, cut on a large brick, is 3 feet below it in the foundation of the pillar. A vaulted passage especially constructed for the purpose gives access to the upper mark. When again visited in 1881, the station was found in good preservation, the upper mark-stone intact, and no alteration in its construction is stated to have been made. The directions and distances of the circumjacent places are:-Reti village N.W., miles $4 \cdot 2$; and Reninadi W., miles 3 .
XLV. Longwáli Hill Station, lat. $28^{\circ} 2^{\prime}$, long. $70^{\circ} 2^{\prime}$-observed at in 1881 -is situated on the N.N.W. summit of the somewhat isolated sand ridge which rises to a height of 80 or 90 feet above the low ground at its base on three sides, viz., the western, northern and eastern. The ridge is known as Rabbanwála Tibba, and among the Játs as Lániwáli Muhár, and is about $1 \frac{3}{4}$ miles N.E. by E. from the pond called Longwáli Talái, and 11 miles E.S.E. from the Reti Railway Station. The station is in the lands of Lakhíwáh village, tahsíl Sádikabad, Baháwalpur State.

The masonry pillar, which is surrounded by an annular wall, and a platform of earth and brushwood, is solid, 10 feet high and $3 \frac{1}{\mathrm{~g}}$ feet in diameter. It contains five mark-stones, one at its upper surface, and four others at 4, 7, 9 and 10 feet below it respectively.
XLVI. Vín Tower Station, lat. $28^{\circ} 7^{\prime}$, long. $69^{\circ} 57^{\prime}$-observed at in 1881 -is built on a small mound on the northern edge of the southern branch of the rice fields, about a mile S.E. of the Indus Valley State Railway, and 750 yards S.E. by E. from the old masonry well of Vin deserted village. It is in the lands of Sabzalwáh village, tahsíl Sádikabad, Baháwalpur State.

The station consists of a tower of sun-dried bricks set in mud cement $16 \frac{1}{2}$ feet square at base and about 14 feet square at top, enclosing a central, perforated pillar of masonry $12 \cdot 2$ feet high. There are two mark-stones, one $0 \cdot 2$ foot below the floor level, and the other 2.75 feet below it in the foundation of the pillar. A vaulted passage especially constructed for the purpose gives access to the upper mark. The directions and distances of the circumjacent places are:-Reti Railway Station W.S.W., miles 3•8; Dhandi village N.N.W., miles 2•7; and Kalandar Sháh's tomb S.E. by S., miles 1•1.
XLVII. Got Mir Muhammad Hill Station, lat. $28^{\circ} 8^{\prime}$, long. $70^{\circ} 3^{\prime}$-observed at in 1881 -is situated on the northern end of a low sand ridge, perhaps better known as Dhandhi Tálibwáli, from the slight hollow or low ground so called to the N.N.E., and otherwise named Wáhi Uhde Dás from a masonry well of that name about 1 mile to N.W. and $1 \frac{1}{8}$ miles E.N.E. of Got Jumma village. The station is named after Got Mir Muhammad, a hamlet about a mile N.W. by W. and near the brick well of Uhde Dás. The sand ridge may be about 20 feet above the adjacent low ground. Formerly it was called after Músa Máchi who occupied both ends of the ridge and a hamlet to the N.E. The station is in the lands of Got Mír Muhammad village, tahsil Sádikabad, Baháwalpur State.

The masonry pillar, which is surrounded by an annular wall, is solid, 3 feet deep and $3 \frac{1}{\frac{1}{8}}$ feet in diameter. It contains three mark-stones, one at the foundation, another 1 foot above it, and the third at the surface of the pillar. The arimuth and distance of Walhár Railway Station are $168^{\circ} 38^{\prime}$ and miles 4.4 .
XLVIII. Dewari Tower Station, lat. $28^{\circ} 9^{\prime}$, long. $69^{\circ} 50^{\prime}$-observed at in 1881 -is built on the top of an old earthen watch-tower of Abdul Khair Dahar of Ubauro, which stands on an irregular mound long used for a graveyard, and named after one Mahmúd Bádala. It is in the lands of Dewari village, taluka Ubauro, district Shikárpur.

The masonry pillar, which is enclosed in a tower of sun-dried bricks set in mud cement, 18 feet square at base and 14 feet square at top, is solid, 16 feet high and $3 \frac{1}{3}$ feet in diameter at top. It carries a mark at its top and others below, the number and their distances are not forthcoming. The directions and distances of the circumjacent places are:-Dewari village S.E., $0 \cdot 6$ mile ; Kádu Rind (Juna) hamlet W.N.W., about 500 yards; Ubauro W. by N., $3 \frac{3}{4}$ miles; and Reti Railway Station S.E., $6 \frac{1}{8}$ miles.
XLIX. Kot Sabzal Tower Station, lat. $28^{\circ} 13^{\prime}$, long. $69^{\circ} 56^{\prime}$-observed at in 1881 -is built on the mound which once formed the south-western round tower or bastion of the fort or fortified town of this name, and immediately over the new bridge across the Sabzalwáh canal at the S.W. corner of the place. The station is about 28 feet high above the level of the adjacent flat ground. It is in the lands of Kot Sabzal village, tahsíl Sádikabad, Baháwalpur State.

The isolated masonry pillar which is enclosed in a tower of sun-dried bricks set in mud cement, 14 feet square, is solid, 8 feet high and $3 \frac{1}{f}$ feet in diameter at top, built on the top of the old tower which was cut down to afford a level platform. The pillar has a mark on its upper surface and others below it, the number and the relative distances apart of these are not forthcoming.
L. Kubba Tower Station, lat. $28^{\circ} 12^{\prime}$, long. $69^{\circ} 44^{\prime}$-observed at in 1881 -is built on a low mound about 30 yards N.E. of another such mound said to be the site of a ruined kubba (tomb or mausoleum) of Walla Kalál. The remains of a well are to be seen between the two mounds. The station is a few yards E. of the road, 3.2 miles N.W. of Ubauro. It is in the lands of Langha village, taluka Ubauro, district Shikárpur.

The perforated masonry pillar which is enclosed in a tower of sun-dried bricks set in mad cement, of the usual dimensions, is 21 feet high above the floor of the vaulted passage. It contains two marks engraved on bricks, one in the floor and the other in the foundation 2 feet below it. A vaulted passage especially constructed for the purpose gives access to the upper mark. The directions and distances of the circumjacent places are:-Basti Jiwan Sháh N.W., miles 3; and Ubauro S.E., miles 3.
LI. Ghundi Tower Station, lat. $28^{\circ} 15^{\prime}$, long. $69^{\circ} 50^{\prime}$-observed at in 1881 -is built on the south bank of the canal called (Abul Khair) Dahrwáh, about 28 feet above its bed, and 150 yards S.E. of a rough stone set up on its N. bank, said to mark the tenth mile-stone. It lies 1 mile S.W. by S. from the old Ghundi graveyard. It is in the lands of Ghundi village, taluka Ubauro, district Shikárpur.

The station consists of a tower of sun-dried bricks set in mud cement, 21 feet square at base, 15 feet square at top, enclosing a central, perforated pillar of masonry 21 feet high. The upper surface of the pillar is $18 \cdot 8$ feet above the mark imbedded in the floor of the vaulted passage, this mark is 3 inches below the floor level, a second mark-stone is in the foundation 1 foot below the upper mark. A vaulted passage especially constructed for the purpose gives access to the upper mark.
LIX.-(Of the Great Indus Series). Máchka Tower Station, lat. $28^{\circ} 20^{\prime}$, long. $69^{\circ} 42^{\prime}$-observed at in 1859, 1861 and 1881-is built on an island near the left bank of the Indus, or on a flat between the present main channel and the Kirár and Gudu branches, about 7 miles south of Kasmor. The flat is annually flooded during the inundation. The station is in the lands of Máchka village, tahsil Sádikabad, Baháwalpur State.

The station as originally constructed in 1859 and 1861 consists of a tower of sun-dried bricks set in mud cement, enclosing a central, perforated pillar of masonry $24 \cdot 6$ feet high above the mark-stone at the ground level. When again visited in

1881, for the purpose of closing the Eastern Sind Meridional Series, the tower although somewhat settled and split, was found in a very serviceable condition, and the mark-stone at the floor level appeared unaltered. The pillar had however become inclined to the S.S.E., so that it was necessary to enlarge the perforation on the N.N.E. side to a depth of about 2 or 3 feet from the top of the pillar to allow of the mark-stone being plumbed over. The isolation and stability of the pillar were tested and seemed sufficiently perfect, and no alteration in the construction of the station was made. The directions and distances of the circumjacent places are :-Máchka (the present site of) S.E. by E., miles $1 \frac{1}{2}$; Daulatpur N.E., miles $1 \frac{1}{2}$; and Kharor W.S.W., mile 1 .
LXII. (Of the Great Indus Series). Dáowala Tower Station, lat. $28^{\circ} 20^{\prime}$, long. $69^{\circ} 53^{\prime}$-observed at in 1860-61 and 1881-is situated on low flat marshy ground of the Dhora Simna. It lies about $1 \frac{3}{4}$ miles N.E. from Dáowála village, the same distance N.N.W. of Mubarak Bhára, a mile E. from the head of the Sabzalwáh canal. It is in Mauza Dáowála, tahsíl Sádikabad, Baháwalpur State.

The station as originally constructed in 1860-61 consists of a tower of sun-dried bricks and mud cement built on an artificial basement 8 feet high and 23 feet square, enclosing a central, perforated pillar of masonry 22.4 feet high and $3 \frac{1}{2}$ feet in diameter at top, having a mark-stone at its floor level. The station was visited by Captain Rogers in 1880 who identified and restored it ; but the records do not say in what condition it was found. When again visited in 1881, for the purpose of closing the Eastern Sind Meridional Series, the station was in the same state as left by Captain Rogers. The top of the pillar was found deflected a couple of inches to the north, but no alteration in the construction of the station was made. The directions and distances of the circumjacent places are:-Khambra S.W., miles $3 \frac{1}{\frac{1}{2}}$; and Kot Sabzal S.S.E., miles 9•3.
W. H. COLE,

In charge of Computing Office.

EASTERN SIND MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. OBSERVED ANGLES.

At LXXV (Rojhra)

November 1876; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on I (Fulrár)										$\boldsymbol{M}=$ Mean of Groups ${ }^{*}=$ Relative Weight $C=$ Concluded Anglo
```- I (Fulrár) and LXXVIII (Sandohar)```	$\begin{gathered} \prime \prime \\ h_{48} \cdot 48 \\ h_{49} \cdot 28 \\ h_{48} \cdot 90 \end{gathered}$	$\begin{gathered} n \\ h 48 \cdot 16 \\ h \\ h \\ 48 \cdot \cdot 28 \\ h \\ 48 \cdot 18 \end{gathered}$		$h_{50 \cdot 16}$ $h_{47} \cdot 60$ $h 46 \cdot 86$ h $47 \cdot 38$ $h^{47} \cdot 78$	47.58   h 49.68   h $48 \cdot 88$   h $49^{\circ} 22$	h 49.86   h $48 \cdot 06$   h $47 \cdot 16$   h $46 \cdot 92$	h $48 \cdot 50$   h $49 \cdot 32$   h $47 \cdot 14$   $h 48 \cdot 64$	$\begin{aligned} & h 48 \cdot 56 \\ & h 47 \cdot 88 \\ & h 47 \cdot 76 \end{aligned}$	$\begin{aligned} & h_{4} 47 \cdot 82 \\ & h_{48} \cdot 2 \\ & h_{49} 02 \end{aligned}$	$\begin{aligned} & \quad " \\ & h_{48} 48 \\ & h_{46} \cdot 38 \\ & h_{46} 46 \cdot 98 \\ & h_{47} \cdot 38 \end{aligned}$	$\begin{aligned} M & =48^{\prime \prime} \cdot 21 \\ w & =18 \cdot 02 \\ \frac{1}{w} & =0 \cdot 06 \\ C & =46^{\circ} 47^{\prime} 48^{\prime \prime} \cdot 19 \end{aligned}$
	48•89	48.21	48•16	47•96	$48 \cdot 84$	48-00	$48 \cdot 40$	$48 \cdot 07$	48-29	$47 \cdot 24$	
LXXVIII (Sandohar) and V (Bhádi)	    										$\begin{aligned} & M=37^{\prime \prime} \cdot 50 \\ & w=7 \cdot 96 \\ & \frac{1}{w}=0 \cdot 13 \\ & C=60^{\circ} 25^{\prime} 37^{\prime \prime} \cdot 49 \end{aligned}$
	39•13	37•98	36•10	36-13	37.06	$38 \cdot 53$	37•93	36.99	37-91	37•23	

Norz.-Stations LXXV (Bojhra) and LXXVIII (Sandohar) appertain to the Karschi Longitudinal Series of the North-West Quadrilateral.

## At LXXVIII (Sandohar)

November and December 1876; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.


Note.-Stations LXXV (Rojhra) and LXXVIII (Sandohar) appertain to the Karichi Longitudinal Series of the North-Weat Quadrilateral.

At LXXVIII (Sandohar)-(Continued).										
Angle between	Circle readings, telescope being set on LXXV (Rojhra)									$\mathcal{M}=$ Mean of Groupe   $\infty_{C}=$ Relative Weight   C $=$ Concluded Anglo
$\begin{gathered} \cdot \\ \nabla \text { (Bhádi) } \\ \text { and } \\ \text { LXXV (Rojhra) } \end{gathered}$	      h $56 \cdot 00$ l $55 \cdot 48$ h $58 \cdot 58$ l56.92 h $\mathbf{5 7}^{\prime} \cdot 64$ h $56 \cdot 72$   ${ }^{h} 57.50$   $h 55 \cdot 46$									$\begin{aligned} & M=56^{\prime \prime} \cdot 66 \\ & w=28 \cdot 17 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=68^{\circ} 39^{\prime} 56^{\prime \prime} \cdot 69 \end{aligned}$
	56.41	56-17 $56 \cdot 85$	$57 \cdot 35$	57-09	$56 \cdot 42$	$56 \cdot 55$	56.75	$56 \cdot 36$	56.97	
December 1876; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.										
Angle between										
```II (Chánga) and LXXVIII (Sandohar)```	$\begin{aligned} & h 53 \cdot 18 h \\ & h 52 \cdot 92 h \\ & h 54 \cdot 48 h \end{aligned}$	h $53 \cdot 48$ h $53 \cdot 36$   $h_{52 \cdot 36} h_{53 \cdot 12}$   $h_{53} \cdot 02 h_{53} \cdot 96$	h 53.80   $h_{53} \cdot 60$ h 53 • 58	$\begin{aligned} & h 53 \cdot 46 \\ & h_{53} \cdot 06 \\ & h_{52} \cdot 56 \end{aligned}$	h $53 \cdot 18$   $h_{52 \cdot 78}$   $l_{52 \cdot 82}$	$h 54 \cdot 46$   $h_{53} \cdot 60$ $h_{54} \cdot \infty 0$	$\begin{aligned} & h_{5} 55 \cdot 36 \\ & h_{53} 68 \\ & h_{54} \cdot 68 \end{aligned}$	$\begin{aligned} & h_{53 \cdot 32} \begin{array}{l} h_{52} \cdot 62 \\ h_{53} \cdot 66 \end{array} \end{aligned}$	$\begin{aligned} & \begin{array}{l} h 53 \cdot 26 \\ h_{53} \cdot 48 \\ h_{52} \cdot 66 \end{array} \end{aligned}$	$\begin{aligned} & M=53^{\prime \prime} \cdot 43 \\ & w=32 \cdot 30 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=39^{\circ} 13^{\prime} 53^{\prime \prime} \cdot 43 \end{aligned}$
	53.53	$52.95 \quad 53.48$	$53 \cdot 66$	53.03	52.93	54.02	54.41	53.20	53.13	
LXXVIII (Sandohar) and LXXV (Rojhra)										$\begin{aligned} & M=5^{\prime \prime} \cdot 09 \\ & w=3^{1} \cdot 50 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=88^{\circ} 14^{\prime} 51^{\prime \prime} \cdot 09 \end{aligned}$
	50•75	51.52 51.61	51•63	50.55	50.48	50•58	51-43	51.31	51-05	
At II (Chánga) W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.										
Angle between	Circle readings, telescope being set on III (Patatonk)									$\boldsymbol{M}=$ Mean of Groups ${ }^{*} 0=$ Relative Weight C = Concluded Angle
```III (Patatonk) and LXXVIII (Sandohar)```	h $40 \cdot 06$   h $36 \cdot 26$   K $37 \cdot 92$   h $39 \cdot 24$   h 38.62	h 39.40 h $38 \cdot 10$ h $37 \cdot 76$ h $36 \cdot 38$ h 38.50 h 37•52	$h_{3} 8.68$   $h 36 \cdot 84$   h $36 \cdot 18$   h 3 8. 14	h $36 \cdot 14$   $h 39 \cdot 08$   h $37 \cdot 64$   h $38 \cdot 76$	h $38 \cdot 40$   $h 38 \cdot 22$   h $39 \cdot 58$	$\begin{aligned} & h 38 \cdot 78 \\ & l 36 \cdot 96 \\ & l \\ & l \\ & 38 \cdot 28 \end{aligned}$	$\begin{aligned} & l 37 \cdot 14 \\ & l 38 \cdot 18 \\ & l \\ & l \end{aligned}$	$\begin{aligned} & h 37.42 \\ & h_{38} 98 \cdot 90 \\ & h_{38} 8 \cdot 02 \end{aligned}$	$\begin{aligned} & \quad \text { " } \\ & h 38 \cdot 52 \\ & h 38 \cdot 12 \\ & h 37 \cdot 40 \end{aligned}$	$\begin{aligned} M & =38^{\prime \prime} \cdot 03 \\ w & =23 \cdot 03 \\ \frac{1}{w} & =0.04 \\ C & =84^{\circ} 46^{\prime} 38^{\prime \prime} \cdot 03 \end{aligned}$
	$38 \cdot 42$	$38 \cdot 55 \quad 37 \cdot 33$	37*46	37-91	38•73	38-01	37•78	38.11	38.01	

Norz.-Stations LXXV (Rojhra) and LXXVIII (Sandohar) appertain to the Karáchi Longitudinal Series of the North-West Quadrilateral.

At II (Chánga)-(Oontinued).											
Angle between	Circle readings, telescope being set on III (Patatonk)										$\boldsymbol{M}=$ Mean of Groups   $v_{0}=$ Relative Weight   $C=$ Concluded Angle
LXXVIII (Sandohar) and I (Fulrár)	      $h_{13}{ }^{56}$										$\begin{aligned} & M=14^{\prime \prime} \cdot 07 \\ & w=39 \cdot 00 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=59^{\circ} 29^{\prime} 14^{\prime \prime} \cdot 07 \end{aligned}$
	13.49	13.99	14•19	13.45	14.09	14.49	14.03	14*38	14.61	13.96	
December 1876; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.											
Angle between	Circle readings, telescope being set on IV (Narithal)   $251^{\circ} 7^{\prime} \quad 71^{\circ} 7^{\prime} \quad 330^{\circ} 19^{\prime} \quad 150^{\circ} 19^{\prime} \quad 49^{\circ} 31^{\prime} \quad 229^{\circ} 31^{\prime} \quad 128^{\circ} 44^{\prime} \quad 308^{\circ} 44^{\prime} \quad 207^{\circ} 55^{\prime} \quad 27^{\circ} 55^{\prime}$										$M=$ Mean of Groupe   vo - Relative Weight   C = Concluded Angle
```IV (Narithal) and LXXVIII (Sandohar)```	$h_{55} \cdot \mathbf{3 6} h_{54} \cdot 66 h_{55} \cdot 62 h_{54} \cdot 30 h_{56} \cdot 8_{4} h_{55} \cdot 64 h_{56} \cdot 02 h_{55} \cdot 34 h_{56} \cdot 06 h_{57} \cdot 32$ $h_{56} \cdot 92 h_{56} \cdot 62 h_{56} \cdot 08 h_{55} \cdot 28 \quad h{ }_{56} \cdot 06 h_{55} \cdot 76 h_{56} \cdot 04 h_{55} \cdot 80 h_{53} \cdot 04 h_{57} \cdot 6_{4}$    h 56 -82 $\begin{aligned} & h_{54 \cdot 58} h_{57 \cdot 34} \\ & h_{57} \cdot 58 \\ & 5_{7} \cdot 66 \end{aligned}$										$\begin{aligned} M & =55^{\prime \prime} \cdot 98 \\ w & =14: 65 \\ \frac{1}{w} & =0 \cdot 07 \\ C & =73^{\circ} 40^{\prime} 56^{\prime \prime} \cdot \infty \end{aligned}$
	56.23	55.59	56•55	54.91	56•18	55.93	$55^{\circ} \mathbf{6 1}$	55\%41	$55 * 98$	57.37	
LXXVIII (Sandohar) and II (Chánga)	 										$\begin{aligned} & M=13^{\prime \prime} \cdot 27 \\ & w=19 \cdot 20 \\ & \frac{1}{w}=0.05 \\ & C=35^{\circ} 12^{\prime} 13^{\prime \prime} \cdot 27 \end{aligned}$
	12.13	12.5614 .13		13311379		$\begin{array}{llllllllll}1402 & 1309 & 1278 & 1367 & 1325\end{array}$					
December 1876;	bserved	by Capt	$\operatorname{tain} M$	At I W.	V (Na Rogers,	rithal) , R.E.,	with	Barrow'	'8 24-in	nch Th	odolite No. 2.
Angle between											
$\begin{aligned} & \text { VI (Hatodan) } \\ & \text { and } \\ & \text { VII (Rupihar) } \end{aligned}$											$\begin{aligned} M & =6^{\prime \prime} \cdot 61 \\ w & =8 \cdot \cdot 42 \\ \frac{1}{w} & =0 \cdot 12 \\ C & =49^{\circ} 24^{\prime} 6^{\prime \prime} \cdot 60 \end{aligned}$
	$6 \cdot 89$	$6 \cdot 71$	$6 \cdot 03$	6.66	$5 \cdot 41$	$7 \cdot 47$	7•53	$5 \cdot 33$	$7 \cdot 95$	$6 \cdot 08$	

Nors.-Station LXXVIII (Sandohar) appertains to the Karkchi Longitudinal Series of the North-Weat Quadrilateral.

At IV (Narithal)-(Continued).											
Angle between	Circle readings, telescope being set on VI (Hatodan)										$\boldsymbol{M}=\mathrm{Mean}$ of Groupe $\infty=$ Relative Weight. $C=$ Concluded Angle
$\begin{gathered} \text { VII (Rupihar) } \\ \text { and } \\ \text { V (Bhádi) } \end{gathered}$	 $h 56.66 h_{57.44} \begin{array}{ll}57.58\end{array} \quad h 56 \cdot 34$ h $55 \cdot 28$										$\begin{aligned} & M=57^{\prime \prime} \cdot 00 \\ & w=21 \cdot 6 \mathbf{1} \\ & \frac{\mathbf{I}}{w}=0 \cdot 05 \\ & C=54^{\circ} 30^{\prime} 56^{\prime \prime \prime} \cdot 98 \end{aligned}$
	56•19	57-22	$56 \cdot 65$	56-51	$57 \cdot 87$	56•60	56•73	57.61	$57 \cdot 32$. $57 \div 39$	
$\begin{gathered} \text { V (Bhádi) } \\ \text { and } \\ \text { LXXVIII (Sandohar) } \end{gathered}$	 $\begin{array}{r} h 27 \cdot 10 h 26 \cdot 88 \\ h 29 \cdot 14 \\ h 28 \cdot 20 \end{array}$										$\begin{aligned} M & =28^{\prime \prime} \cdot 29 \\ w & =16 \cdot 94 \\ \frac{1}{w} & =0 \cdot 06 \\ C & =63^{\circ} 27^{\prime} 28^{\prime \prime} \cdot 30 \end{aligned}$
	$27 \cdot 60$	$28 \cdot 08$	27•92	29114	27•29	$28 \cdot 57$	29.03	$28 \cdot 01$	28•33	28-88	
LXXVIII (Sandohar) and III (Patatonk)	 h27.56 h 27 • 88 h29•10 h 29.82										$\begin{aligned} M & =28^{\prime \prime} \cdot 01 \\ w & =18 \cdot 06 \\ \frac{\mathbf{I}}{w} & =0.06 \\ C & =67^{\circ} 53^{\prime} 28^{\prime \prime} \cdot 0 \mathbf{1} \end{aligned}$
	27.06	$27 \cdot 69$	$28 \cdot 30$	28.49	$28 \cdot 08$	27115	$28 \cdot 67$	28-31	27.41	$28 \cdot 89$	

At V (Bhádi)

December 1876; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

NOTE.-Station LXXV (Rojhra) and LXXVIII (Sandohar) appertain to the Karichi Longitudinal Sories of the North. Weat Quedrilateral.

> At V (Bhádi)-(Continued).

Angle between	Circle readings, telescope being set on LXXV (Rojhra)										$\boldsymbol{M}=$ Mean of Groupe © = Relativo Weight C $=$ Concluded Angle
LXXVIII (Sandohar) and IV (Narithal)	h $31 \cdot 16$ h 28.84 h 32 .02 h $30 \cdot 36$ h $3 \mathrm{I} \cdot 06$ h $30 \cdot 98$		$\begin{gathered} n \\ l 31 \cdot \infty l \\ l 29 \cdot 40 l \\ l 30 \cdot 58 l \end{gathered}$		h $30 \cdot 54$ h $30 \cdot 84$ h $30 \cdot 96$	$\begin{aligned} & h 30 \cdot 70 \\ & h 30 \cdot 82 \\ & h 30 \cdot 04 \end{aligned}$	h $30 \cdot 98$ h $3 \mathrm{I} \cdot 24$ h $30 \cdot 26$ d 29.36 d $3 \mathrm{I} \cdot \mathbf{3}^{6}$	h $30 \cdot 98$ h $30 \cdot 20$ h 30•94	$\begin{aligned} & l 31 \cdot 18 \\ & l 30 \cdot 76 \\ & l 30 \cdot 06 \end{aligned}$	$\begin{aligned} & l 30 \cdot 82 \\ & l 30 \cdot 92 \\ & l 31 \cdot 80 \end{aligned}$	$\begin{aligned} M & =30^{\prime \prime} \cdot 63 \\ w & =53 \cdot 82 \\ \frac{1}{w} & =0 \cdot 02 \end{aligned}$
	30•74	$30 \cdot 15$	30•33	30. 57	$30 \cdot 78$	$30 \cdot 52$. $30 \cdot 64$	30.71	$30 \cdot 67$	31-18	
$\begin{aligned} & \text { IV (Narithal) } \\ & \text { and } \\ & \text { VII (Rupihar) } \end{aligned}$	 h 22.74 h 23.68 h 22 . 88										$\begin{aligned} M & =22^{\prime \prime} \cdot 12 \\ w & =19 \cdot 3.5 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =51^{\circ} 49^{\prime} 22^{\prime \prime} \cdot 12 \end{aligned}$
	22-30	$22 \cdot 42$	22.22	$22 \cdot 75$	22-88	$22 \cdot 09$	21.59	21•95	$20 \cdot 87$	22•14	
and VIII (Kanakotri)											$\begin{aligned} & M=6^{\prime \prime} \cdot 19 \\ & w=17 \cdot 19 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=45^{\circ} 29^{\prime} 6^{\prime \prime} \cdot 20 \end{aligned}$
	5.96	5.78	$6 \cdot 49$	$5 \cdot 86$	$6 \cdot 56$	4.95	$6 \cdot 60$	$6 \cdot 63$	$6 \cdot 68$	$6 \cdot 34$	

At VI (Hatodan)

December 1876; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on IX (Mangtor)										$\boldsymbol{M}=$ Mean of Groupe ${ }^{*}=$ Relative Weight $C=$ Concluded Angle
	$215^{\circ} 22^{\prime}$	$35^{\circ} 22^{\prime}$	$294{ }^{\circ} 34^{\prime}$	$114^{\circ} 33^{\prime}$	$13^{\circ} 46^{\prime}$	$193^{\circ} 46^{\prime}$	$92^{\circ} 58^{\prime}$	$272^{\circ} 58^{\prime}$	$172^{\circ} 11^{\prime}$	$352^{\circ} 11^{\prime}$	
$\begin{aligned} & \text { IX (Mangtor) } \\ & \text { and } \\ & \text { VII (Rupihar) } \end{aligned}$	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=33^{\prime \prime} \cdot 82 \\ & w=11 \cdot 38 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=76^{\circ} 1^{\prime} 33^{N} \cdot 83 \end{aligned}$
	$h 35 \cdot 30$ $h_{32} \cdot 82$	h $32 \cdot 88$	h 33.08	$h 36 \cdot 10$ $h 33 \cdot 28$	${ }_{l}^{l} 32 \cdot 44$	$l 35 \cdot 36$	$36 \cdot 30$ $34 \cdot 22$	$l \begin{aligned} & l \\ & l \\ & l \\ & 30 \cdot 86 \\ & 5\end{aligned}$	h $32 \cdot 18$ $h 34 \cdot 08$	$h 33.26$ $h 34.62$	
		$h 33 \cdot 20$	h 34.34	$h 34.22$ $h 36.56$	$l 34 \cdot 08$	l l $33 \cdot 16$	$33 \cdot 62$ 34.28	l l l 31	$h 33.66$	$h 35 \cdot 46$ $h 34.60$	
	\% 33.50		h33.76	$\begin{aligned} & h 36 \cdot 56 \\ & h 35 \cdot 96 \end{aligned}$		'33.58		$\begin{array}{r} l 31 \cdot 00 \\ l 34 \cdot 98 \\ l 33.68 \end{array}$			
	$33 \cdot 87$	$33 \cdot 59$	$33 \cdot 35$	35 22	$33 \cdot 17$	$33 \cdot 93$	34*61	$32 \cdot 68$	33.31	34*48	

Norz.-Stations LXXV (Rojhra) and LXXVIII (Sandohar) appertain to the Karichi. Longitudinal Series of the North.Weat Quadrilateral.

At VII (Rupihar)-(Continued).

Angle between	Circle readings, telescope being set on VI (Hatodan) $0^{\circ} 1^{\prime} \quad 180^{\circ} 1^{\prime} \quad 79^{\circ} 12^{\prime} \quad 259^{\circ} 12^{\prime} \quad 158^{\circ} 24^{\prime} \quad 388^{\circ} 24^{\prime} \quad 237^{\circ} 37^{\prime} \quad 57^{\circ} 37^{\prime} \quad 316^{\circ} 48^{\prime} \quad 136^{\circ} 48^{\prime}$										$\boldsymbol{M}=$ Mean of Groupe ${ }^{20}=$ Relativo Weight C = Concluded Angle
$\begin{gathered} \text { VIII (Kanakotri) } \\ \text { and } \\ \text { V (Bhádi) } \end{gathered}$			$\begin{aligned} & h 55 \cdot 66 \\ & h 55 \cdot 66 \\ & h \\ & h 55 \cdot 44 \end{aligned}$				$\begin{gathered} " \\ h 57 \cdot 46 \\ l 56 \cdot 62 \\ l \\ l \\ 57 \cdot 30 \end{gathered}$	$\begin{array}{r} \because \\ l 56 \cdot 60 \\ l 56 \cdot 04 \\ h 57 \cdot 36 \\ h 56 \cdot 82 \end{array}$	$\begin{aligned} & h 56 \cdot 68 \\ & h 58 \cdot 02 \\ & h_{56} \end{aligned}$	$\begin{aligned} & h_{57 \cdot 02} \\ & h_{54 \cdot 68} \\ & h_{56 \cdot} \\ & h_{57} \cdot 28 \end{aligned}$	$\begin{aligned} & M=56^{\prime \prime} \cdot 45 \\ & w=18 \cdot 60 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=68^{\circ} 5^{\prime} \cdot 56^{\prime \prime} \cdot 45 \end{aligned}$
	55°	55.27	55'59	56•78	56•76	56•86	5713	56•70	57'19	56•35	
$\begin{gathered} \text { V (Bhádi) } \\ \text { and } \\ \text { IV (Narithal) } \end{gathered}$	$h_{3} 8 \cdot 22 h_{40} \cdot 58 h_{41} \cdot 60 h_{41} \cdot 68 h_{4 I} \cdot 82 h_{41} \cdot 80 h_{42} \cdot 02 l_{40} \cdot 88 h_{41} \cdot 90 h_{42} \cdot 08$ $h^{h} 43 \cdot 10$ h_{41} •56 $h_{41}{ }^{42}$ $l 40 \cdot 76$ h 44 -02 h $40 \cdot 82$										$\begin{aligned} & M=41^{\prime \prime} \cdot 78 \\ & w=25 \cdot 95 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=73^{\circ} 39^{\prime} 41^{\prime \prime} \cdot 75 \end{aligned}$
	41.4	41*43	$42 \cdot 48$	$41 \cdot 63$	41 71	41 50	41•78	4175	$41 \cdot 85$	42.24	
$\begin{aligned} & \text { IV (Narithal) } \\ & \text { and } \\ & \text { VI (Hatodan) } \end{aligned}$	 h 19.84 l22.52 $\begin{array}{rrr} l 20.54 l_{19.76} \begin{aligned} & h 19.90 \\ & h 18.86 \end{aligned} \\ & \end{array}$										$\begin{aligned} M & =19^{\prime \prime} \cdot 82 \\ w & =13 \cdot 5^{8} \\ \frac{1}{w} & =0 \cdot 07 \\ C & =61^{\circ} 59^{\prime} 19^{\prime \prime} \cdot 84 \end{aligned}$
	21.1	20'13	19.02	19.03	20•31	19.47	19•30	$20 \cdot 42$	19.56	19•81	

At VIII (Kanakotri)

December 1876; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on \mathbf{V} (Bhádi) 	$\begin{aligned} & M=\text { Mean of Groope } \\ & \text { wo }=\text { Realative Weight } \\ & C=\text { Concluded Angle } \end{aligned}$
$\begin{gathered} \text { V (Bhádi) } \\ \text { aud } \\ \text { VII (Rupihar) } \end{gathered}$	 	$\begin{aligned} & M=5^{\prime \prime} \cdot 00 \\ & w=16 \cdot 01 \\ & \frac{1}{w}=0 \cdot 06 \end{aligned}$
	$\begin{array}{lllllllllll}58.60 & 58.44 & 58.49 & 56.74 & 56.98 & 57.86 & 58.29 & 58 \cdot 13 & 58.67 & 57.74\end{array}$	$=65^{\circ} 33^{\prime} 58^{\prime \prime} \cdot \infty$

At VIII (Kanakotri)-(Continued).

At IX (Mangtor)

January 1877; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

At IX (Mangtor)-(Continued).		
Angle between	Circle readings, telescope being set on XI (Narhar) $0^{\circ} 1^{\prime} \quad 180^{\circ} 1^{\prime} \quad 79^{\circ} 18^{\prime} \quad 259^{\circ} 12^{\prime} \quad 158^{\circ} 24^{\prime} \quad 388^{\circ} 24^{\prime} \quad 237^{\circ} 37^{\prime} \quad 57^{\circ} 37^{\prime} \quad 316^{\circ} 49^{\prime} \quad 186^{\circ} 49^{\prime}$	$M=$ Moan of Groups $w_{c}=$ Rolative Weight C $=$ Concluded Angle
$\begin{aligned} & \text { VII (Rupihar) } \\ & \text { and } \\ & \text { VI (Hatodan) } \end{aligned}$	 $l 48 \cdot 46$ h 49 . 76 l $50 \cdot 14$	$\begin{aligned} M & =49^{\prime \prime} \cdot 57 \\ w & =43 \cdot 47 \\ \frac{1}{w} & =0 \cdot 02 \\ C & =55^{\circ} 23^{\prime} 49^{\prime \prime} \cdot 56 \end{aligned}$
	49.42 49.23 50.45 49.32 49.72 49.47 49.63 49.51 $49 \cdot 25$ 49.65	
January 1877; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.		
Angle between	Circle readings, telescope being set on VIII (Kanakotri) $0^{\circ} 1^{\prime} \quad 180^{\circ} 1^{\prime} \quad 79^{\circ} 13^{\prime} \quad 259^{\circ} 13^{\prime} \quad 158^{\circ} 24^{\prime} \quad 898^{\circ} 24^{\prime} \quad 237^{\circ} 36^{\prime} \quad 57^{\circ} 36^{\prime} \quad 316^{\circ} 49^{\prime} \quad 136^{\circ} 49^{\prime}$	$\boldsymbol{M}=$ Mcan of Groups ∞ = Relative Weight C = Concluded Anglo
```VIII (Kanakotri) and VII (Rupihar)```	      d 22.56	$\begin{aligned} M & =22^{\prime \prime} \cdot 96 \\ w & =34 \cdot 76 \\ \frac{1}{w} & =0 \cdot 03 \\ C & =59^{\circ} 28^{\prime} 22^{\prime \prime} \cdot 95 \end{aligned}$
	$\begin{array}{llllllllll}23.90 & 22.77 & 23.35 & 22.94 & 22.65 & 22.35 & 22.59 & 22.67 & 23.19 & 23.14\end{array}$	
VII (Rupihar)andIX (Mangtor)	      h 20.54 d21•11 l21-28   $l 22.34$ 721.72   d 22.87	$\begin{aligned} & M=21^{\prime \prime} \cdot 43 \\ & w=21 \cdot 22 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=64^{\circ} 39^{\prime} 21^{\prime \prime} \cdot 44 \end{aligned}$
	$\begin{array}{llllllllll}20.27 & 21.31 & 22.26 & 21.19 & 21.23 & 21.39 & 21.65 & 21.42 & 22.31 & 21.31\end{array}$	
$\begin{aligned} & \text { IX (Mangtor) } \\ & \text { and } \\ & \text { XI (Narhar) } \end{aligned}$	      ${ }^{h}{ }^{40}{ }^{\circ} \mathrm{O} 4$ d $40 \cdot 78 l 40 \cdot 26$   h $40 \cdot 18$   d $40 \cdot 37$	$\begin{aligned} M & =40^{\prime \prime} \cdot 17 \\ w & =28 \cdot 41 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =41^{\circ} 12^{\prime} 40^{\prime \prime} \cdot 19 \end{aligned}$
	$\begin{array}{llllllllll}40.62 & 39.27 & 40 \cdot 25 & 40 \cdot 99 & 40 \cdot 14 & 40 \cdot 33 & 40 \cdot 18 & 40 \cdot 08 & 39 \cdot 98 & 39 \cdot 83\end{array}$	

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{At X (Bhitala)-(Continued).} \\
\hline \multirow[b]{2}{*}{Angle between} \& \multicolumn{10}{|c|}{Circle readings, telescope being set on VIII (Kanakotri)} \& \multirow[t]{2}{*}{\begin{tabular}{l}
\(\mathcal{M}=\) Mean of Groupa \\
\(w_{0}=\) Relative Weight \\
\(\boldsymbol{c}=\) Concluded Anglo
\end{tabular}} \\
\hline \& \(0^{\circ} 1^{\prime}\) \& \(180^{\circ} 1^{\prime}\) \& \(79^{\circ} 13^{\prime}\) \& \(259{ }^{13}{ }^{\prime}\) \& \(158{ }^{\circ} 24^{\prime}\) \& \(338^{\circ} 24^{\prime}\) \& \(237{ }^{\circ} 6^{\prime}\) \& 67 \({ }^{\circ} 6^{\prime}\) \& \(316^{\circ} 49^{\prime}\) \& \(136^{\circ} 49^{\prime}\) \& \\
\hline \multirow{5}{*}{\[
\begin{aligned}
\& \text { XI (Narhar) } \\
\& \text { and } \\
\& \text { XII (Thakur) }
\end{aligned}
\]} \& " \& " \& \("\) \& \("\) \& " \& " \& " \& " \& " \& " \& \multirow[t]{5}{*}{\[
\begin{aligned}
M \& =30^{\prime \prime} \cdot 08 \\
w \& =46 \cdot 85 \\
\frac{1}{w} \& =0 \cdot 02 \\
C \& =41^{\circ} 19^{\prime} 30^{\prime \prime} \cdot 08
\end{aligned}
\]} \\
\hline \& h31-22 h 29.56 \& h \(30 \cdot 70\)
\(h 31-18\) \& \(l\) \& h 29.26 \& l \(29 \cdot 72\) \& h \(30 \cdot 40 \mathrm{Cl}\) \& h \(28 \cdot 66\) \& \(30 \cdot 40\)
\(30 \cdot 20\) \& \(l 29.82\)
\(l 30.52\) \& 29.56
29.68 \& \\
\hline \& \(h 29.56\)
\(h 30.86\)
\(h 30.25\) \& h31'18
\(h 29\) \& 29.68
30.60 \& \(l\)
\(l\)
20.52

7
30.64 \& ${ }^{3} \begin{aligned} & 30 \cdot 12 \\ & 30 \cdot 26\end{aligned}$ \&  \& h 30.68
299.90 \& 30-20 \& $l$
$l$
$30 \cdot 52$ \& 29.68
29.74 \& <br>
\hline \& d $30 \cdot 25$ \& \& \& $130 \cdot 10$ \& \& $h$ \& h 29.26 \& \& \& \& <br>
\hline \& $30 \cdot 47$ \& $30 \cdot 39$ \& 29•76 \& 29.88 \& 30.03 \& $30 \cdot 65$ \& 29.63 \& $30 \cdot 22$ \& 3014 \& 29.66 \& <br>
\hline
\end{tabular}

## At XI (Narhar)

January 1877; observed by Captain M. W. Rogers, R.E., with Barvow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XIII (Jeysulmere)										$M=$ Mean of Groups   $w_{0}=$ Relative Weight   $\boldsymbol{C}=$ Concluded $\Delta$ nglo
XIII (Jeysulmere) and XIV (Malar)		$\begin{array}{cc} \prime \prime \\ h_{4} 46 \cdot 68 & h \\ h_{48} \cdot 66 & l \\ h_{47} \cdot 06 & l \end{array}$	$\prime \prime$ $46 \cdot 24$ $l 6$ $l 6 \cdot 94$ $46 \cdot 52$			$\begin{gathered} \prime \prime \\ h 46 \cdot 42 h \\ h 47 \cdot 10 \mathrm{~h} \\ h 46 \cdot 40 \mathrm{~h} \end{gathered}$	$\begin{gathered} n \\ h_{45 \cdot 76} \\ h_{44} \cdot 30 \\ h_{47} \cdot 10 \\ h_{46} \cdot 56 \end{gathered}$		$\begin{aligned} & h_{44} \cdot 82 \\ & h_{48} \cdot 16 \\ & h_{46} \cdot 68 \\ & h_{47} \cdot 84 \\ & h_{46} \cdot 64 \end{aligned}$		$\begin{aligned} & M=47^{\prime \prime} \cdot 0.5 \\ & w=12 \cdot 80 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=46^{\circ} 38^{\prime} 47^{\prime \prime} \cdot 04 \end{aligned}$
	48.29	$47 \times 47$	$46 \cdot 57$	47•10	48-24	46•64	45 -93	47-12	46•83	$46 \cdot 33$	
$\begin{aligned} & \text { XIV (Malar) } \\ & \text { and } \\ & \text { XII (Thakur) } \end{aligned}$	      h61•06										$\begin{aligned} M & =60^{\prime \prime} \cdot 9 \mathbf{1} \\ w & =26 \cdot 53 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =60^{\circ} 41^{\prime} 0^{\prime \prime} \cdot 90 \end{aligned}$
	61.48	60•99	6I•16	59.85	60.83	61.02	$61 \cdot 38$	60.34	$61 \cdot 19$	60.81	
```XII (Thakur) and X (Bhitala)```	    										$\begin{aligned} & M=22^{\prime \prime} \cdot 25 \\ & w=46 \cdot 40 \\ & \frac{1}{w}=0 \cdot 02 \\ & C=36^{\circ} 15^{\prime} 22^{\prime \prime} \cdot 25 \end{aligned}$
	$22 \cdot 17$. 21×95	$22 \cdot 74$	$22 \cdot 65$	21*94	2219	$22 \cdot 67$	21.67	$22 \cdot 05$	22.45	
$\begin{gathered} \text { X (Bhitala) } \\ \text { and } \\ \text { IX (Mangtor) } \end{gathered}$	 										$\begin{aligned} & M=29^{\prime \prime} \cdot 37 \\ & w=28 \cdot 60 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=45^{\circ} 59^{\prime} 29^{\prime \prime} \cdot 37 \end{aligned}$
	29.28	28.23	29.03	29.76	$29 \cdot 32$	$29 \cdot 75$	29.77	29*73	$29 \cdot 83$	$28 \cdot 97$	

At XII (Thakur)

January 1877; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between		Circle readings, telescope being set on X (Bhitala)								$269^{\circ} 48^{\prime}$	$M=$ Mean of Groupe $w_{0}=$ Rolative Weight C = Concluded Angle
$\begin{aligned} & \text { X (Bhitala) } \\ & \text { and } \\ & \text { IX (Mangtor) } \end{aligned}$	h17•32 h 16.50 h 16.32	$\begin{gathered} \prime \prime \\ h 18.62 \\ h 15 \cdot 88 \\ h 17.12 \\ h 17.30 \end{gathered}$	$\begin{aligned} & l 19: 96 \\ & l 16.68 \\ & l 18 \cdot 04 \\ & l 18 \cdot 82 \\ & l 18.02 \\ & h 18 \cdot 38 \\ & h 17.96 \\ & h \\ & h \\ & l 8.18 \end{aligned}$	h 18 .02 $h_{17} \cdot 8$ $h 15 \cdot 86$ h $17 \cdot 3^{8}$	$\begin{array}{cc} \prime \prime \\ h & 15 \cdot 92 \\ l & 16.26 \\ l & 17 \end{array}$	$\begin{gathered} \prime \prime \prime \\ h_{17} .00 \\ h 16.60 \\ h 17.50 \end{gathered}$	$\begin{array}{cc} \prime \prime \prime \\ l & 18 \cdot 04 \\ l & 16 \cdot 0 \\ l & 17 \cdot 20 \\ l & 18 \cdot 46 \end{array}$	$\begin{array}{lc} & \prime \prime \prime \\ l & 18.36 \\ l & 15.72 \\ l & 16.82 \\ l & 15.90 \end{array}$	$\begin{array}{cc} \prime \prime \\ l & 16 \cdot 34 \\ l & 16 \cdot 32 \\ l & 15 \cdot 48 \end{array}$		$\begin{aligned} M & =16^{\prime \prime} \cdot 96 \\ w & =20 \cdot 37 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =54^{\circ} 21^{1} 17^{\prime \prime} \cdot 01 \end{aligned}$
	16.71	$17 \cdot 23$	17.88	17.28	$16 \cdot 65$	17*03	17*42	$16 \cdot 70$	$16 \cdot 05$	16.61	
$\begin{aligned} & \text { IX (Mangtor) } \\ & \text { and } \\ & \text { XI (Narhar) } \end{aligned}$	 $h_{51} \cdot 64 h_{54} \cdot 08 l 49 \cdot 92 l 52 \cdot 42$ l51•76 h_{52}.52 h 49.54 h 49 - 14										$\begin{aligned} & M=52^{\prime \prime} \cdot 05 \\ & w=11 \cdot 74 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=48^{\circ} 3^{\prime} 52^{\prime \prime} \cdot 04 \end{aligned}$
	52.48	52.95	51:12	52.44	52.61	$52 \cdot 56$	51*53	51.77	52.03	51*00	
$\begin{aligned} & \text { XI (Narhar) } \\ & \text { and } \\ & \text { XIV (Malar) } \end{aligned}$	 h29.60 h 26 - $60 \quad l 29.66 l 29.74$ h $27 \cdot 64$ h $30 \cdot 14$ h $29 \cdot 14$ l26.70 h 29 - 78										$\begin{aligned} M & =28^{\prime \prime} \cdot 30 \\ w & =10 \cdot 16 \\ \frac{1}{w} & =0 \cdot 10 \\ C & =67^{\circ} 31^{\prime} 28^{\prime \prime} \cdot 32 \end{aligned}$
	28.17	28.98	28.95	29.53	28.63	27-19	$27 \cdot 87$	$26 \cdot 80$	28.15	28.71	
$\begin{aligned} & \text { XIV (Malar) } \\ & \text { and } \\ & \text { XV (Badhor) } \end{aligned}$	$\begin{aligned} & h 27 \cdot 86 \\ & h_{27} 27 \cdot 06 \\ & h_{25} \cdot 72 \\ & h_{23} 23 \cdot 76 \\ & h 26 \cdot 48 \\ & h 27 \cdot 14 \end{aligned}$		l 28-90 $l 29 \cdot 80$ $l 26 \cdot 64$ $l 28 \cdot 58$ K $25 \cdot 84$ h $26 \cdot 06$ h $25^{\circ} 08$	h $28 \cdot 24$ $l 26 \cdot 66$ $l 26 \cdot 66$ l27•88	h $25^{\circ} 04$ h $25 \cdot 28$ h $26 \cdot 30$	$\begin{aligned} & h 25 \cdot 84 \\ & h 24 \cdot 78 \\ & h 24 \cdot 74 \end{aligned}$	$\begin{aligned} & l 25.72 \\ & l 26.60 \\ & l 24.52 \\ & l 26.56 \end{aligned}$	$\begin{aligned} & l 25 \cdot 50 \\ & l 28 \cdot 34 \\ & l 27 \cdot 60 \\ & l 27 \cdot 80 \end{aligned}$	$\begin{aligned} & l 25 \cdot 10 \\ & l 26.34 \\ & l 25.66 \end{aligned}$	$\begin{aligned} & l 27 \cdot 46 \\ & l 26 \cdot 70 \\ & l 26 \cdot 32 \end{aligned}$	$\begin{aligned} & M=26^{\prime \prime} \cdot 64 \\ & w=9 \cdot 48 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=57^{\circ} 33^{\prime} 26^{\prime \prime} \cdot 65 \end{aligned}$
	26•34	27*09	27:27	$27 \cdot 36$	25.54	$25 \cdot 12$	$25 \cdot 85$	27-31	25•70	$26 \cdot 83$	

At XIII (Jeysulmere)

January 1877 ; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XVI (Ramsar)										$M=$ Mean of Groupe ${ }^{\infty}=$ Relative Weight C = Coucluded Augle
	$239^{17} 1$	$52^{\circ} 17^{\prime}$	$811^{\circ} 29^{\prime}$	$131^{\circ} 28^{\prime}$	$30^{\circ} 41^{\prime}$	$210^{\circ} 40^{\circ}$	$109^{\circ} 5$	289 58^{\prime}	$189^{\circ} 5^{\prime}$	$9^{\circ} 5^{\prime}$	
$\begin{aligned} & \text { XVI (Ramsar) } \\ & \text { and } \\ & \text { XIV (Malar) } \end{aligned}$		"	"	"	"	*	"	"	*	"	$\begin{aligned} M & =26^{\prime \prime} \cdot 57 \\ w & =13 \cdot 62 \\ \frac{1}{w} & =0 \cdot 07 \\ C & =61^{\circ} 11^{\prime} 26^{\prime \prime} \cdot 56 \end{aligned}$
	 h 26• 50 h $26 \cdot 50 h 26 \cdot 96 h 28 \cdot 16 h 26 \cdot 88 h 26 \cdot 64 h 25 \cdot 94 h 25 \cdot 88 h 25 \cdot 74 h 26 \cdot 68$ h $26 \cdot 76$ h $26 \cdot 20$ $h 25.42 h 27.48$ h $26 \cdot 62$										
	25*51	$26 \cdot 71$	27•19	27.43	$26 \cdot 55$	26•19	$26 \cdot 76$	26.61	$25 \cdot 26$	27*50	

At XIII (Jeysulmere)-(Continued).			
Angle between	Circle readings, telescope being set on XVI (Ramsar) $\begin{array}{lllllllll} & 232^{\circ} 17^{\prime} & 52^{\circ} 17^{\prime} & 311^{\circ} 29^{\prime} & 131^{\circ} & 28^{\prime} & 30^{\circ} 41^{\prime} & 210^{\circ} 40^{\prime} & 109^{\circ} 5 z^{\prime} \\ 289^{\circ} & 52^{\prime} & 1899^{\circ} 5^{\prime} & 9^{\circ} 5^{\prime}\end{array}$	$M=\begin{aligned} & \text { Mean of Groups } \\ & w \\ & \boldsymbol{C} \\ & \text { Rellative Weight }\end{aligned}$ $=$ Concluded Anglo	
$\begin{aligned} & \text { XIV (Malar) } \\ & \text { and } \\ & \text { XI (Narhar) } \end{aligned}$	 	$\begin{aligned} & M=20^{\prime \prime} \cdot 74 \\ & w=25 \cdot 13 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=66^{\circ} 32^{\prime} 20^{\prime \prime} \cdot 74 \end{aligned}$	
	$\begin{array}{lllllllllll}20 \cdot 94 & 21.39 & 21.04 & 21.02 & 20 \cdot 67 & 20 \cdot 38 & 19 \cdot 43 & 21 \cdot 23 & 20 \cdot 51 & 20 \cdot 80\end{array}$		
January 1877; observed by Captain M. W. Rogers, R.E., with Barrov's 24-inch Theodolite No. 2.			
Angle between	Circle readings, telescope being set on XVI (Ramsar)		
$\begin{aligned} & \text { XVI (Ramsar) } \\ & \quad \text { and } \\ & \text { XVII (Sinaba) } \end{aligned}$		$\begin{aligned} & M=31^{\prime \prime} \cdot 55 \\ & w=16 \cdot 77 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=5^{\circ} 8^{\prime} 31^{\prime \prime \prime} \cdot 55 \end{aligned}$	
	$\begin{array}{llllllllll}31.73 & 32 \cdot 91 & 30 \cdot 63 & 30 \cdot 94 & 31 \cdot 42 & 31.67 & 31.54 & 31.33 & 31.83 & 31.45\end{array}$		
$\begin{aligned} & \text { XVII (Sinaba) } \\ & \quad \text { and } \\ & \text { XV (Badhor) } \end{aligned}$	$h_{50} \cdot 88 \quad l 46 \cdot 80 \quad l 51 \cdot 50 h_{48} \cdot 82 h_{52} \cdot 00 \quad l 50 \cdot 76 h_{50} \cdot 50 h_{50} \cdot 58 h_{51} \cdot 54 h_{50} \cdot 08$ 	$\begin{aligned} & M=50^{\prime \prime} \cdot 22 \\ & w=13 \cdot 97 . \\ & \frac{1}{w}=0 \cdot 07 \\ & C=64^{\circ} 1^{\prime} 50^{\prime \prime} \cdot 19 \end{aligned}$	
	$\begin{array}{llllllllll}50.13 & 48.48 & 50.51 & 50.77 & 50.04 & 50.65 & 50.33 & 50.62 & 50.66 & 50.03\end{array}$		
$\begin{aligned} & \text { XV (Badhor) } \\ & \text { and } \\ & \text { XII (Thakur) } \end{aligned}$	 	$\begin{aligned} & M=34^{\prime \prime} \cdot 35 \\ & w=4^{\circ} \cdot 22 \\ & \frac{1}{w}=0 \cdot 02 \\ & C=62^{\circ} 44^{\prime} \cdot 34^{\prime \prime} \cdot 36 \end{aligned}$	
	$\begin{array}{lllllllllll}34 \cdot 58 & 34 \cdot 09 & 34 \cdot 47 & 34 \cdot 77 & 33 \cdot 93 & 34 \cdot 58 & 34 \cdot 66 & 34 \cdot 23 & 34 \cdot 23 & 33.95\end{array}$		
$\begin{gathered} \text { XII (Thakur) } \\ \text { and } \\ \text { XI (Narhar) } \end{gathered}$	 	$\begin{aligned} & M=32^{\prime \prime} \cdot 13 \\ & w=24 \cdot 73 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=51^{\circ} 47^{\prime} 32^{\prime \prime \prime} \cdot 12 \end{aligned}$	

At XIV (Malar)-(Continued).											
Angle between	Circle readings, telescope being set on XVI (Ramsar)										$M^{M}=$ Mean of Groupe ${ }^{20}$ - Relative Weight C = Concluded Angle
$\begin{gathered} \text { XI (Narhar) } \\ \text { and } \\ \text { XIII (Jeysulmere) } \end{gathered}$	h $\mathbf{5 2}^{\text {. } 16}$ h $54 \cdot 36$ h $52 \cdot 68$ h51'90	$53^{\circ} 40 \mathrm{~h}$ $52 \cdot 42$ 53•98		52.38 55.30 51•90 h 51 . 48	h53.74l $h_{53} \cdot 20 l$ $53 \cdot 38$	53.00 $52 \cdot 38$ $53^{\circ} 46$		51•12 52.38 50. 54	h $5 \mathrm{I} \cdot 90$ $h_{52} \cdot 84$ $152 \cdot 80$	h $52 \cdot 0$ $h 53^{\circ} 42$ $h_{52} \cdot 82$	$\begin{aligned} M & =52^{\prime \prime} \cdot 68 \\ w & =18 \cdot 32 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =66^{\circ} 4^{\prime} 5^{\prime \prime \prime} \cdot 68 \end{aligned}$
	52.78	53.27	52.28	52:76	$53 \cdot 44$	52-95	52.72	51*35	52.51	52.75	
```XIII (Jeysulmere) and XVI (Ramsar)```	    										$\begin{aligned} & M=3^{8^{\prime \prime} \cdot 16} \\ & w=27 \cdot 80 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=58^{\circ} 28^{\prime} 38^{\omega} \cdot 16 \end{aligned}$
	37-19	38•98	$38 \cdot 72$	38.21	$37 \cdot 47$	38.08	$37 \cdot 81$	38.3I	$38 \cdot 27$	$38 \cdot 53$	
XVI (Ramsar)   and   R. M.	      $h_{44}$-82 $l 42$ ( 88										$\begin{aligned} & M=42^{\prime \prime} \cdot 22 \\ & w=18 \cdot 48 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=29^{\circ} 14^{\prime} 42^{\prime \prime} \cdot 23 \end{aligned}$
	$43 \cdot 78$	42•30	42.04	41-88	$42 \cdot 67$	41•57	41.92	41.75	42•16	42:12	

## At XV (Badhor)

February 1877 ; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.


Nots.-R.M. denotes Referring Mark.

## At XVI (Ramsar)

February 1877 ; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	$\begin{array}{cc}  & \text { Circle } \\ c^{\circ} 0^{\prime} & 180^{\circ} 0^{\prime} \end{array}$	reading   $79^{\circ} 12^{\prime}$	s, telesc   $259^{\circ} 12^{\prime}$	ope being   $158^{\circ} 24^{\prime}$	set on $338^{\circ} 24^{\prime}$	$\begin{aligned} & \text { XVIII (1 } \\ & 237^{\circ} 37^{\prime} \end{aligned}$	Potanaw $57^{\circ} 36^{\prime}$	$\begin{aligned} & \text { wári) } \\ & \mathbf{3 1 6} \mathbf{6}^{\circ} 49 \end{aligned}$	$136^{\circ} 48^{\prime}$	$M=$ Mean of Groups 2   ${ }^{2}=$ Relative Weight   $C=$ Concluded Anglo
XVIII (Potanawári) and XIX (Joganali)	   $h 60 \cdot 86 h 60 \cdot 88 l 59 \cdot 28 l 60 \cdot 12 h 60 \cdot 32 h 6 I \cdot 58 h 61 \cdot 22 h 6 I \cdot 54 l 60 \cdot 32 h 59 \cdot 36$ h $60 \cdot 92$									$\begin{aligned} & M=60^{\prime \prime} \cdot 32 \\ & w=30 \cdot 60 \\ & \frac{\mathbf{I}}{w}=0 \cdot 03 \\ & C=45^{\circ} 32^{\prime} 0^{\prime \prime} \cdot 32 \end{aligned}$
	60•35 60*29	60•00	$59 \cdot 67$	59*95	61.05	6i•07	$60 \cdot 45$	60. 26	60.09	
$\begin{aligned} & \text { XIX (Joganali) } \\ & \text { and } \\ & \text { XVII (Sinaba) } \end{aligned}$	      $l 25.40$   h 24 - 34 h $25 \cdot 14$									$\begin{aligned} & M=25^{\prime \prime \cdot} \cdot 08 \\ & w=16 \cdot 85 \\ & \frac{1}{w}=0.06 \\ & C=77^{\circ} 11^{\prime} 25^{\prime \prime} \cdot 08 \end{aligned}$
	$26 \cdot 59 \quad 25.94$	$25^{11}$	24.93	$25 \cdot 13$	$25 \cdot 19$	$24 \cdot 34$	24.81	24-19	24.61	
$\begin{aligned} & \text { XVII (Sinaba) } \\ & \text { and } \\ & \text { XIV (Malar) } \end{aligned}$	      h 27 •82 h29•16									$\begin{aligned} & M=27^{\prime \prime} \cdot 72 \\ & w=41 \cdot 10 \\ & \frac{1}{w}=0 \cdot 02 \\ & C=66^{\circ} 30^{\prime} 27^{\prime \prime} \cdot 72 \end{aligned}$
	27-32 $27 \cdot 29$	$27 \cdot 41$	28.20	28.05	28-03	27•71	28.07	27.57	27•52	
XIV (Malar)   and   XIII (Jeysulmere)	    									$\begin{aligned} & M=55^{\prime \prime} \cdot 97 \\ & w=35 \cdot 70 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=60^{\circ} 19^{\prime} 55^{\prime \prime} \cdot 97 \end{aligned}$
	$55 \cdot 31 \quad 56 \cdot 23$	56*or	56.53	56*43	55*97	55•15	55.86	56•17	56.03	

## At XVII (Sinaba)

February 1877; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XV (Badhor)										$\boldsymbol{M}=$ Mean of Groups   w = Relative Weight   C = Concluded Angle
	$0^{\circ} 0^{\prime}$	$180^{\circ} 0^{\prime}$	$79^{\circ} 12^{\prime}$	$259^{\circ} 12^{\prime}$	$158^{\circ} 24^{\prime}$	$338^{\circ} 24^{\prime}$	$237^{\circ} 36^{\prime}$	570 ${ }^{\text {6 }}{ }^{\prime}$	$316^{\circ} 49^{\prime}$	$136^{\circ} 49^{\prime}$	
$\begin{aligned} & \text { XV (Badhor) } \\ & \text { and } \\ & \text { XIV (Malar) } \end{aligned}$	"	"	"	"	"	"	$"$	"	"	"	$\begin{aligned} & M=14^{\prime \prime} \cdot 19 \\ & w=35 \cdot 98 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=60^{\circ} 8^{\prime} 14^{\prime \prime} \cdot 19 \end{aligned}$
	14*81	14.68	14.23	13.51	13.95	13.86	13.94	14.28	14.05	14.61	


At XVII (Sinaba)-(Continued).											
Angle between	Circle readinga, telescope being set on XV (Badhor)										$\boldsymbol{M}=$ Mean of Groupe   © = Relative Weight   C = Concluded Angle
$\begin{aligned} & \text { XIV (Malar) } \\ & \text { and } \\ & \text { XVI (Ramaar) } \end{aligned}$	    										$\begin{aligned} & M=61^{\prime \prime} \cdot 82 \\ & w=17 \cdot 30 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=57^{\circ} 21^{\prime} \quad 10 \cdot 82 \end{aligned}$
	$62 \cdot 69$	61.52	61-39	61•76	62.60	61.69	61.77	62.15	62.26	60.41	
$\begin{aligned} & \text { XVI (Ramsar) } \\ & \text { and } \\ & \text { XIX (Joganali) } \end{aligned}$	      h 21.00 h 20'18 h 20'24   h 19.66										$\begin{aligned} & M=20^{\prime \prime} \cdot 24 \\ & w=28 \cdot 32 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=55^{\circ} 32^{\prime} 20^{\prime \prime} \cdot 25 \end{aligned}$
	21-03	20.27	$20 \cdot 55$	$19 \cdot 82$	19.87	20.12	20•90	19\%90	20.04	19.89	
$\begin{aligned} & \text { XIX (Joganali) } \\ & \text { and } \\ & \text { XX (Kardo) } \end{aligned}$	      $\begin{aligned} & h 60 \cdot 56 \\ & h 63 \cdot 34 \\ & h 60 \cdot 86 \end{aligned}$										$\begin{aligned} & M=61^{N \cdot 13} \\ & w=20 \cdot 50 \\ & \frac{1}{20}=0 \cdot 05 \\ & C=41^{\circ} 55^{\prime} 1^{N \cdot 16} \end{aligned}$
	$\begin{array}{llllllllllll}60 \cdot 91 & 62 \cdot 37 & 60 \cdot 78 & 61 \cdot 07 & 61 \cdot 12 & 61 \cdot 50 & 60 \cdot 98 & 61 \cdot 11 & 60 \cdot 24 & 61 \cdot 23\end{array}$										
At XVIII (Potanawári)   February 1877 ; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.	At XVIII (Potanawári)   bserved by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.										
Angle between	Circle readings, telescope being set on XXI (Sanahu)										$\mathbf{M}=\mathbf{M e a n}$ of Groppe   ${ }^{*} \mathbf{C}=$ Relative Weight
$\begin{aligned} & \text { XXI (Sanahu) } \\ & \text { and } \\ & \text { XIX (Joganali) } \end{aligned}$	          										$\begin{aligned} & M=26^{\prime \prime} \cdot 57 \\ & w=6 \cdot 49 \\ & \frac{1}{w}=0 \cdot 15 \\ & C=54^{\circ} 43^{\prime} 26^{\prime \prime} \cdot 53 \end{aligned}$
	$27 \cdot 73$	$25 \cdot 12$	$25 \cdot 38$	$25 \cdot 20$	$26 \cdot 37$	$26 \cdot 58$	$28 \cdot 17$	$26 \cdot 85$	27.73	$26 \cdot 61$	
$\begin{aligned} & \text { XIX (Joganali) } \\ & \text { and } \\ & \text { XVI (Ramsar) } \end{aligned}$											$\begin{aligned} M & =57^{\prime \prime} \cdot 13 \\ w & =23 \cdot 82 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =72^{\circ} \quad 4^{\prime} 57^{\circ} \cdot 12 \end{aligned}$
	56.54	57*42	57.09	57-45	57-91	57*44	56•64	57•19	$57^{\circ} 00$	$56 \cdot 59$	

## At XIX (Joganali)

February 1877; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.


## At XX (Kardo)

February 1877; observed by Captain M. W. Rogers, R.E., with Barrovo's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XVII (Sinaba)										$\mathbf{M}=$ Mean of Groupe   $\infty$ = Relative Weight   $C=$ Concluded Angle
XVII (Sinaba) and XIX (Joganali)	$\begin{aligned} & h 35 \cdot 48 \\ & k 36 \cdot 46 \\ & h 35 \cdot 48 \end{aligned}$	h $35 \cdot 86$ $h 35^{\circ} 90$ h $37 \cdot 34$	h $35 \cdot 46$ h $36 \cdot 52$ h $36 \cdot 20$	h $34 \cdot 26$   h $35 \cdot 82$   $h 36 \cdot 02$   ${ }_{4}{ }^{2} 38 \cdot 62$   k $37 \cdot 58$   * 35 • 28	$\begin{aligned} & h 34 \cdot 48 \\ & h 37 \cdot 12 \\ & h 36 \cdot 66 \\ & h 36 \cdot 30 \end{aligned}$	$\begin{aligned} & h 35 \cdot 64 \\ & h 36.66 \\ & h 35 \cdot 58 \end{aligned}$	k $37 \cdot 10$   $h_{3} 6 \cdot 88$   h $34 \cdot 24$   h $35 \cdot{ }^{2}$	$\begin{gathered} \bullet \\ h 35 \cdot 72 \\ h 36 \cdot 86 \\ k 35 \cdot 30 \end{gathered}$	$\begin{gathered} \bullet \\ \boldsymbol{k} 37 \cdot 22 \\ l 37 \cdot 58 \\ l 37 \cdot 02 \end{gathered}$	$\begin{array}{r} 4 \\ l 36 \cdot 36 \\ l 37 \cdot 00 \\ l 35 \cdot 42 \end{array}$	$\begin{aligned} & M=3^{6^{N} \cdot 21} \\ & w=24 \cdot 45 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=86^{\circ} 28^{\prime} 36^{\prime \prime} \cdot 21 \end{aligned}$
	35-81	36•37	36-06	36-26	$36 \cdot 14$	35*96	35•99	$35 \cdot 96$	$37 \cdot 27$	$36 \cdot 26$	
$\begin{aligned} & \text { XIX (Joganali) } \\ & \text { and } \\ & \text { XXII (Arrabhit) } \end{aligned}$	      $l 45.78$ $l 45 \cdot 42$										$\begin{aligned} M & =45^{\prime \prime} \cdot 29 \\ w & =21 \cdot 10 \\ \frac{\mathbf{I}}{w} & =0 \cdot 05 \\ \boldsymbol{C} & =56^{\circ} 5^{\prime}{ }^{\prime} 45^{\prime \prime} \cdot 29 \end{aligned}$
	45*61	46•00	44.97	44-34	44•70	$45 \cdot 85$	$45 \cdot 67$	44.97	$45 \cdot 83$	44*95	

At XXI (Sanahu)
February and March 1877; observed by Captain M. W. Rogers, R.E., with Barrov's 24-inch Theodolite No. 2.

Angle between	$143^{\circ} 6^{\prime}$	Circle readi $323^{\circ} 6^{\prime} \quad 222^{\circ} 20^{\prime}$	gs, teles $42^{\circ} 20^{\prime}$	cope bei   $\mathbf{3 0 1}^{\circ} 31^{\prime}$	ing set on $121^{\circ} 31^{\prime}$	a XXIII $20^{\circ} 43^{\prime}$	(Harnáo)   $200^{\circ} 43^{\prime}$	o) $99^{\circ} 55^{\prime}$	$279^{\circ} 55^{\circ}$	$\boldsymbol{M}=\mathbf{M e a n}$ of Groupe   ${ }^{20}=$ Relative Weight   $C=$ Concluded Angle
XXIII (Harnáo) and XXIV (Dhanono)	th3. 26   h 39.40   $h_{41}$-02   h 39 .06   h 37.94   h $37 \times 98$	$h_{3} 8 \cdot 82 \boldsymbol{2}$ 40•38 $h_{41} \cdot 26 \quad l 40 \cdot 82$ h $38 \cdot 42 \quad$ l $40 \cdot 14$ $h 40 \cdot \infty$	$\begin{gathered} \bullet \\ 43 \cdot 76 \\ 40.40 \\ 41 \cdot 66 \\ 39 \cdot 64 \\ 40.74 \\ 490.74 \end{gathered}$	$h_{42 \cdot 16}$   h $40 \cdot 54$   h $39^{\circ} 04$   h $40 \cdot 36$   h $39 \cdot 42$	$\begin{gathered} \cdot \\ h_{41} \cdot 30 h \\ h_{39} \cdot 64 \mathrm{~h} \\ h_{41} \cdot 40 \mathrm{~h} \end{gathered}$	$\begin{gathered} \cdot \\ h_{41} \cdot 46 \\ h_{40} \cdot 70 \\ h 39 \cdot 70 \end{gathered}$	$140 \cdot 08$ h 39.66 h 40 ㅇ́	$\begin{aligned} & h 38 \cdot 40 \\ & \text { h } 39 \cdot 48 \\ & h 39 \cdot 60 \end{aligned}$	$\begin{aligned} & h 39 \cdot 54 \\ & h 39 \cdot 28 \\ & h 39 \cdot 70 \end{aligned}$	$\begin{aligned} M & =39^{\prime \prime} \cdot 99 \\ w & =11 \cdot 47 \\ \frac{\mathbf{I}}{w} & =0 \cdot 09 \\ \boldsymbol{C} & =53^{\circ} 5^{\prime} 39^{\prime \prime} \cdot 98 \end{aligned}$
	38.61	$39.63 \quad 40 \cdot 45$	40'92	40*30	40•78	40•62	39.93	$39^{1} 16$	39.51	
XXIV (Dhanono) and XXII (Arrabhit)	        h $39 \cdot 60$   h $41 \cdot 72$   h $39 \cdot 84$   h 39.56   h 39.54									$\begin{aligned} & M=39^{\prime \prime} \cdot 95 \\ & w=22 \cdot 28 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=45^{\circ} 32^{\prime} 39^{\prime \prime} \cdot 93 \end{aligned}$
	39.69	$40 \cdot 47 \quad 39.44$	40'11	40•22	$39^{\circ 22}$	40•26	40*03	40'23	$39 \cdot 83$	




## At XXIV (Dhanono)

March 1877; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between											
XXII (Arrabhit) and XXI (Sanahu)	      h $29^{\circ} 74$ h $27 \cdot 86$										$\begin{aligned} & M=28^{\prime \prime} \cdot 67 \\ & w=30 \cdot 42 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=37^{\circ} 39^{\prime} 28^{\prime \prime} \cdot 64 \end{aligned}$
	28.20	$28 \cdot 68$	29.43	28•70	28*47	29.11	$28 \cdot 24$	28•77	28.04	29*01	
$\begin{aligned} & \text { XXI (Sanahu) } \\ & \text { and } \\ & \text { XXIII (Harnáo) } \end{aligned}$	      $h 59.00$ $h 58.90$										$\begin{aligned} & M=5^{\prime \prime \prime} \cdot 61 \\ & w=26 \cdot 17 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=41^{\circ} 47^{\prime} 58^{\prime \prime} \cdot 59 \end{aligned}$
	$59^{11}$	59*09	$58 \cdot 89$	$58 \cdot 35$	$59 \cdot 04$	58.51	58.44	58.51	58.52	57.60	
XXIII (Harnáo) and XXVI (Ráviláhu)	    										$\begin{aligned} & M=7^{\prime \prime} \cdot 10 \\ & w=41 \cdot 70 \\ & \frac{1}{w}=0 \cdot 02 \\ & C=50^{\circ} 27^{\prime} \quad 7^{\prime \prime} \cdot 10 \end{aligned}$
	$6 \cdot 77$	$7 \cdot 55$	7•75	7*07	$6 \cdot 61$	$6 \cdot 57$	7•39	7-17	$7 \cdot 57$	$6 \cdot 57$	
$\begin{gathered} \text { XXVI (Ráviláhu) } \\ \text { and } \\ \text { XXIX (Máringra) } \end{gathered}$	$\begin{array}{ll}h & 7 \cdot 06 \\ h & 7 \\ h & .98 \\ h & 9 \\ h & 62 \\ h & .54 \\ h & 4.42 \\ h & 5.92 \\ h & 6.92\end{array}$	$\begin{array}{ll}h & 7.76 \\ h & 6.60 \\ h & 6.54 \\ h & 5.68\end{array}$	$\begin{array}{lll} h & 7 \cdot 02 \\ l & 6 \cdot 22 \\ l & 5 \cdot 30 & h \end{array}$	$l$ $h$ $h$ $5 \cdot 76$ $h$ $6 \cdot 36$	$\begin{array}{ll}h & 7 \cdot 02 \\ h & 5 \cdot 76 \\ h \\ 7 & 7.32\end{array}$	$h 6 \cdot 14$   $h$   $h$   6.66   6.48	$h$ $h \cdot 32$ $h$ $h$	$h$ $7 \cdot 88$   $h$ 7   $h$    7    7 80	$\begin{array}{ll}h & 7 \cdot 06 \\ h & 7.68 \\ h \\ 7 & 7.62\end{array}$	$\begin{array}{cc}h & 5 \cdot 56 \\ h & 7 \\ h & 16 \\ h & 6 \cdot 10\end{array}$	$\begin{aligned} M & =6^{\prime \prime} \cdot 73 \\ w & =16 \cdot 20 \\ \frac{1}{w} & =0 \cdot 06 \\ C & =50^{\circ} 52^{\prime} 6^{\prime \prime} \cdot 74 \end{aligned}$
	7.24	$6 \cdot 40$	6.18	$6 \cdot 29$	6.70	$6 \cdot 09$	$6 \cdot 94$	771	745	$6 \cdot 27$	

At XXV (Bándri)

* March 1877; and $\dagger$ January 1880; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XXVII (Máhu)										$\boldsymbol{M}=$ Mean of Groups   ${ }^{20}=$ Relative Weight   C $=$ Concluded Angle
	${ }^{239}{ }^{\circ} 41^{\prime}$	$59^{\circ} 41^{\prime}$	$31853^{\prime}$	$138{ }^{\circ} 52^{\prime}$	$88^{\circ} 5^{\prime}$	$218^{\circ} 5^{\prime}$	$117^{1} 17^{\prime}$	$297{ }^{17} 1$	$190^{\circ} 29^{\prime}$	$16^{\circ} 29^{\prime}$	
$\begin{gathered} + \\ \text { XXVII (Máhu) } \\ \text { and } \\ \text { XXVIII (Girája) } \end{gathered}$	"	"	"	-	"	"	"	"	"	"	$\begin{aligned} & M=32^{\prime \prime} \cdot 5^{1} \\ & w=30 \cdot 30 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=70^{\circ} 10^{\prime} 32^{\prime \prime} \cdot 5^{2} \end{aligned}$
	h $33 \cdot 84$ $h 32 \cdot 84$	h $34 \cdot 02$	h $32 \cdot 84$ $h 32 \cdot 80$		$l$ $l$ $70 \cdot 70$ $34 \cdot 16$	${ }_{l}^{l} 3 \mathrm{SI} \cdot 98$	h $31 \cdot 48$ $h 32 \cdot 36$	h $32 \cdot 22$ $h 32 \cdot 86$	h $33 \cdot 02$ $h 33 \cdot 14$	$\begin{aligned} & \begin{array}{l} h_{32} 32 \cdot 10 \\ h 32 \cdot 08 \end{array} \end{aligned}$	
	$h^{\prime} 3$ 1-78	h $33 \cdot 16$	$h 33 \cdot 0$	h 31.98 9	$131 \cdot 78$	$l 32 \cdot 10$	h $31 \cdot 48$	$h 32 \cdot 06$	$h 32 \cdot 44$	h 32-94	
	$h_{31}$-60	h32 78		$h 32 \cdot 66$	$\begin{aligned} & l 32 \cdot 76 \\ & l \\ & 33 \cdot 50 \end{aligned}$						
	32.52	$33 \cdot 28$	32-88	32.45	32.58	$32 \cdot 03$	31.77	32•38	32-87	32•37	



At XXVI (Ráviláhu)-( Continued).											
Angle between	Circle readings, telescope being set on XXV (Bándri)										$\boldsymbol{M}=$ Mean of Groups   ${ }^{20}=$ Relative Weight   C = Concluded Anglo
$\begin{aligned} & \text { XXIX (Máringra) } \\ & \text { and } \\ & \text { XXIV (Dhanono) } \end{aligned}$	      h 17.70 h 19.58										$\begin{aligned} & M=19^{\prime \prime} \cdot 46 \\ & w=14 \cdot 42 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=81^{\circ} 47^{\prime} 19^{\prime \prime} \cdot 46 \end{aligned}$
	$19 \times 53$	$19 \times 58$	19.74	18.89	18.09	19*99	20*61	$18 \cdot 55$	19.60	20.05	
XXIV (Dhanono)   and XXIII (Harn\{o)	      h 8.00										$\begin{aligned} & M=7^{\prime \prime} \cdot 44 \\ & w=59 \cdot 68 \\ & \frac{1}{w}=0 \cdot 02 \\ & C=76^{\circ} 27^{\prime} 7^{\prime \prime} \cdot 44 \end{aligned}$
	$7 \cdot 65$	$7 \cdot 07$	7-23	7•27	7•87	7-11	$7 \cdot 87$	7*09	$7 \cdot 44$	7.83	
XXIII (Harnáo)   and XXV (Bándri)	        h $52 \cdot 38$   151 -80   h 5 1•44										
	50.65	51*71	51.83	51*68	52.05	52.21	52.64	52•12	51•89	51*75	
At XXVII (Máhu)											
February 1880; observed by Captain M. W. Rogers, R.E., with Barrov's 24-inch Theodolite No. 2.											
Angle between	Circle readings, telescope being set on XXX (Singra)										$M=$ Mean of Groups   ${ }_{\boldsymbol{*}}^{\infty}=\mathbf{C}=$ Relativo Weight   $\boldsymbol{C}=$ Concladed $\Delta \mathrm{nglo}$
XXX (Singra) and XXVIII (Giraja)											$\begin{aligned} & M=6^{\prime \prime} \cdot 30 \\ & w=18 \cdot 13 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=5^{\circ} 10^{\prime} 6^{\prime \prime} \cdot 30 \end{aligned}$
	7•10	6.25	$6 \cdot 39$	5\%91	$6 \cdot 50$	7-03	$6 \cdot 77$	$5 \cdot 40$	$6 \cdot \infty$	5.63	
XXVIII (Giraja) and XXV (Bándri)	        h $39 \cdot 76$      $h 40 \cdot 44$   ${ }^{6} 40 \cdot 44$   d 38.25 h 38.30   h $39 \cdot 84$   h ${ }^{3}$ 8-82										$\begin{aligned} & M=39^{\prime \prime} \cdot 23 \\ & w=9 \cdot 38 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=56^{\circ} 10^{\prime} 39^{\prime \prime} \cdot 23 \end{aligned}$
	40•09	39'97	38.07	38•68	38.52	39•56	38•02	40*42	39'19	39*76	

## At XXVIII (Giraja)

February 1880; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 8.


## At XXIX (Máringra)

February 1880; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XXIV (Dhanono)										$M=$ Mean of Groupe   ${ }^{20}=$ Relativo Weight   C = Concluded Angle
	$0^{\circ} 1^{\prime}$	$180^{\circ} 0^{\prime}$	$79^{\circ} 13^{\prime}$	$259^{\circ} 13^{\prime}$	$158^{\circ} 25^{\prime}$	338 ${ }^{\circ} 4^{\prime}$	2370 $36^{\prime}$	$57^{\circ} 96^{\prime}$	$816^{\circ} 49^{\circ}$	$136^{\circ} 48^{\prime}$	
$\begin{aligned} & \text { XXIV (Dhanono) } \\ & \text { and } \\ & \text { XXVI (Ráviláhu) } \end{aligned}$	"	"	"	"	"	"		*	"	"	$\begin{aligned} & M=34^{\prime \prime} \cdot 95 \\ & w=12 \cdot 20 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=47^{\circ} 20^{\prime} 34^{\prime \prime} \cdot 95 \end{aligned}$
	$h 36 \cdot 58$ $h 36 \cdot 32$	h $33 \cdot 64$	$l$ $73 \cdot 38$ $734 \cdot 80$	$l$	$l$ $l$ $36 \cdot 08$ 34.88 $l$	$l 34.28$	$l 34.76$ 736 7	34.86 35	$l$ $l$ $3 \cdot 76$	$l$ $l$ 33.76	
	${ }^{\prime} 35{ }^{\prime}{ }^{2}$	h $34 \cdot 76$	$l 33 \cdot 44$	$l 37 \cdot 16$	$l 35.56 l$	$l 34 \cdot 30$	$l 34 \cdot 72$	34*96	$l 35 \cdot 22$	734.56	
	36.21	34.23	$33 \cdot 87$	36•19	35.51	34.41	35•26	35.07	34.71	$34 * 0$	
XXVI (Ráviláhu) and XXVIII (Giraja)											$\begin{aligned} & M=36^{\prime \prime} \cdot 26 \\ & w=13 \cdot 86 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=52^{\circ} 4^{\prime} 3^{\prime \prime \prime} \cdot 26 \end{aligned}$
	37-32	37 ${ }^{1} 1$	36.41	35*90	$35 \cdot 8 \mathbf{1}$	36-02	36-50	35.15	36.71	$35 \cdot 38$	
XXVIII (Giraja) and XXXI (Asu)	    										$\begin{aligned} & M=35^{\prime \prime} \cdot 95 \\ & w=28 \cdot 50 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=70^{\circ} 11^{\prime} 35^{\prime \prime} \cdot 95 \end{aligned}$
	35*91	$36 \cdot 67$	$35^{\prime 71}$	36•52	$35 \cdot 43$	35*56	35*92	35*39	35*99	$36 \cdot 40$	

## At XXX (Singra)

February 1880; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XXXII (Bitri)										$\boldsymbol{M}=$ Mean of Groups   ${ }^{20}$ - Relative Weight   $C=$ Concluded Angle
	$0^{\circ} 0^{\prime}$	$180^{\circ} 0^{\prime}$	$79^{\circ} 13^{\prime}$	$259^{\circ} 13^{\prime}$	$158^{\circ} 22^{\prime}$	$338^{\circ} 25^{\prime}$	$237{ }^{\circ} \mathbf{3 6}$	$57{ }^{\circ} 35^{\circ}$	$316^{\circ} 49^{\circ}$	$136^{\circ} 49^{\prime}$	
$\begin{gathered} \text { XXXII (Bitri) } \\ \text { and } \\ \text { XXXIII (Parethal) } \end{gathered}$	"	*	"	"	"	"	"	"	"	*	$\begin{aligned} M & =12^{\prime \prime} \cdot 22 \\ w & =9 \cdot 67 \\ \frac{1}{w} & =0 \cdot 10 \\ C & =49^{\circ} 35^{\prime} 12^{\prime \prime} \cdot 23 \end{aligned}$
	$h 12.50$	h12.54	h 12.66	h 13.32 l	112.74	$l 11.66$	$l 13.34$	$h 11 \cdot 56$	$\mathrm{h}_{10} 1{ }^{32}$	h11.42	
	$h 12.34$ $h 14.02$	h 12.52 $h 15 \cdot 76$	$h 13.78$ $h_{12} \cdot 86$	h1248 $h \mathrm{II} 96$		${ }_{l}^{l 11954}$	$\begin{aligned} & l 12.78 \\ & l 111.38 \end{aligned}$	$h 10 \cdot 68$	$\begin{aligned} & h 12.44 \\ & h 12.46 \end{aligned}$	$\begin{aligned} & h_{11} \cdot 82 \\ & h \\ & h \cdot 1 \end{aligned}$	
	$h_{13}{ }^{\text {c }} 64$	h 13.28					$l 10 \cdot 92$		h $12 \cdot 76$	$h_{12}{ }^{\text {a }} 38$	
	${ }^{\text {h } 15.68 ~}$	¢ 1 1 96									
	13.64	13*21	13.10	12.59	II'93	11:21	12.11	II'II	II'99	1130	
XXXIII (Parethal)   and XXXI (Asu)	      h $37 \cdot 60$ h $35 \cdot 18$ h $37 \cdot 22$ l 39 - 40 h $38 \cdot 18$   h $37 \cdot 34$ h $36 \cdot 46$ h $37 \cdot 38$   h $38 \cdot 22$ h $38 \cdot 12$										$\begin{aligned} & M=37^{N} \cdot 80 \\ & w=12 \cdot 00 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=67^{\circ} 44^{\prime} 37^{\prime \prime} \cdot 77 \end{aligned}$
	37•68	36•92	37*36	3717	37•96	38•96	$37 \cdot 16$	37•83	39*09	37•92	


At XXX (Singra)-(Continued).		
Angle between	Circle readings, telescope being set on XXXII (Bitri)  	
$\begin{gathered} \text { XXXI (Asu) } \\ \text { and } \\ \text { XXVIII (Girája) } \end{gathered}$	$h_{51} \cdot 26 h_{51} \cdot 80 h_{51} \cdot 30 h_{52} \cdot 78 l_{51} \cdot 70 l_{51} \cdot 14 l_{51} \cdot 68 h_{51} \cdot 20 h_{50} \cdot 90 h_{52} \cdot 62$    h 52 . 50   $l 52 \cdot 36 \quad 52 \cdot 38$	$\begin{aligned} & M=51^{\prime \prime} \cdot 67 \\ & w=19 \cdot 5^{6} \\ & \frac{1}{w}=0.05 \\ & C=68^{\circ} \quad 2^{\prime} 51^{\prime \prime} \cdot 68 \end{aligned}$
$\begin{aligned} & \text { XXVIII (Giraja) } \\ & \quad \text { and } \\ & \text { XXVII (Máha) } \end{aligned}$	 	$\begin{aligned} & M=33^{\prime \prime} \cdot 34 \\ & w=15 \cdot 82 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=60^{\circ} 32^{\prime} 33^{\prime \prime} \cdot 34 \end{aligned}$
	$\begin{array}{llllllllll}33 \cdot 11 & 34 \cdot 44 & 33 \cdot 23 & 33 \cdot 99 & 33.01 & 32 \cdot 73 & 33 \cdot 63 & 33.95 & 33 \cdot 31 & 32 \cdot 03\end{array}$	
February 1880; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.		
Angle between	Circle readings, telescope being set on XXIX (Máringra)	$\begin{aligned} & \boldsymbol{N}=\text { Mean of Groups } \\ & { }_{c}=\text { Relntire Weight } \\ & C=\text { Coniluded Angle } \end{aligned}$
$\begin{aligned} & \text { XXIX (Máringra) } \\ & \text { and } \\ & \text { XXVIII (Girája) } \end{aligned}$	              $h_{44} .64$   $h_{45}{ }^{58}$	$\begin{aligned} & M=45^{\prime \prime} \cdot 05 \\ & w=8 \cdot 86 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=53^{\circ} 6^{\prime} \cdot 45^{\prime \prime} \cdot 02 \end{aligned}$
	$\begin{array}{llllllllllll}43 & 85 & 44 \cdot 50 & 44 \cdot 08 & 43 \cdot 71 & 46 \cdot 11 & 45 \cdot 54 & 45 \cdot 73 & 45 \cdot 64 & 46 \cdot 11 & 45 \cdot 24\end{array}$	
$\begin{gathered} \text { XXVIII (Giraja) } \\ \text { and } \\ \text { XXX (Singra) } \end{gathered}$	        $\begin{array}{ll}h 36.92 l & l 0.92\end{array} \quad \begin{array}{ll}h 39 \cdot 82 \\ & h 38 \cdot 78\end{array}$   d 39.69	$\begin{aligned} & M=3^{\prime \prime} \cdot 77 \\ & w=22 \cdot 16 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=5^{\circ} 34^{\prime} 38^{\prime \prime} \cdot 80 \end{aligned}$
	$\begin{array}{llllllllll}38 \cdot 32 & 39 \cdot 89 & 38 \cdot 42 & 39 \cdot 47 & 38 \cdot 63 & 38 \cdot 37 & 38 \cdot 18 & 38 \cdot 78 & 38 \cdot 71 & 38 \cdot 93\end{array}$	
$\begin{gathered} \text { XXX (Singra) } \\ \text { and } \\ \text { XXXIII (Parethal) } \end{gathered}$		$\begin{aligned} & M=20^{\prime \prime} \cdot 32 \\ & w=29 \cdot 6 \mathrm{I} \\ & \frac{1}{w}=0 \cdot 03 \\ & C=53^{\circ} 10^{\prime} 20^{\prime \prime} \cdot 32 \end{aligned}$
	$\begin{array}{llllllllll}20.72 & 20.04 & 19.65 & 19.75 & 20.72 & 20.69 & 20.41 & 19.77 & 20.96 & 20.48\end{array}$	



Note.-R. M. denotes Referring Mark.

## At XXXIII (Parethal)

March 1880; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2.


March 1880; observed by Captain M. W. Rogers, R.E., with Barrow's 24 -inch Theodolite No. 2.		
Angle between	Circle readings, telescope being set on XXXI (Asu)   $\begin{array}{llllllllll}216^{\circ} 19 & 30^{\circ} 19^{\prime} & 295^{\circ} 31^{\prime} & 115^{\circ} 31^{\prime} & 14^{\circ} 45^{\prime} & 194^{\circ} 42^{\prime} & 93^{\circ} 65^{\prime} & 279^{\circ} 55^{\prime} & 179^{\circ} 8^{\prime} & 869^{\circ} 7^{\prime}\end{array}$	
$\begin{gathered} \text { XXXI (Asu) } \\ \text { and } \\ \text { XXXIII (Parethal) } \end{gathered}$	$h_{54} \cdot 64 h_{51} \cdot 16 h_{51} \cdot 02 h_{52} \cdot 06 l_{50} \cdot 88 h_{50} \cdot 00 h_{51} \cdot 66 h_{49} \cdot 06 h_{52} \cdot 26 h_{53} \cdot 32$    $h_{51} \cdot 62 h_{52}$.08   h 53.20   ${ }_{l} 5 \mathrm{5n}$. 10	$\begin{aligned} & M=51^{\prime \prime} \cdot 86 \\ & w=8 \cdot 68 \\ & \frac{1}{w}=0 \cdot 12 \\ & C=52^{\circ} 14^{\prime} \cdot 5^{\prime \prime} \cdot 86 \end{aligned}$
	$\begin{array}{llllllllll}53 \cdot 44 & 52 \cdot 40 & 51 \cdot 37 & 52 \cdot 98 & 50 \cdot 74 & 50 \cdot 77 & 51 & 38 & 51 \cdot 02 & 52 \cdot 37 \\ 52 \cdot 13\end{array}$	
$\begin{aligned} & \text { XXXIII (Parethal) } \\ & \text { and } \\ & \text { XXXVI (Kháro) } \end{aligned}$	      $h_{46} \cdot 80 h_{46} \cdot 14$ $h_{46} \cdot 90$ h $47 \cdot 90$	$\begin{aligned} & M=46^{\prime \prime} \cdot 91 \\ & w=14 \cdot 84 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=52^{\circ} 32^{\prime} 46^{\prime \prime} \cdot 90 \end{aligned}$
	$\begin{array}{lllllllllll}46 \cdot 36 & 46 \cdot 93 & 47 \cdot 99 & 46 \cdot 61 & 46 \cdot 33 & 46 \cdot 56 & 46 \cdot 76 & 48 \cdot 11 & 45 \cdot 93 & 47 \cdot 51\end{array}$	
$\begin{gathered} \text { XXXVI (Kháro) } \\ \text { and } \\ \text { XXXVII (Morgich) } \end{gathered}$	      $h 59.64 h 60.64$   h $59 \cdot 28$   ${ }^{h}{ }^{5} 58.86$   h $60 \cdot{ }^{3}$   $h 60 \cdot 40$	$\begin{aligned} & M=59^{\prime \prime} \cdot 85 \\ & w=28 \cdot 02 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=3^{\circ} 53^{\prime} 59^{\prime \prime} \cdot 85 \end{aligned}$
	$\begin{array}{llllllllllll}59 \cdot 90 & 59 & 85 & 60 \cdot 08 & 59 \cdot 54 & 59 & 73 & 59 \cdot 57 & 59 & 05 & 60 \cdot 51 & 60 \cdot 12\end{array}$	
At XXXV (Chauki)   * March 1880; observed by Captain M. W. Rogers, R.E., with Barrovo's 24-inch Theodolite No. 2. $\dagger$ December 1880; observed by Lieut.-Colonel B. R. Branfill, with Troughton and Simm's 24-inch Theodolite No. 1.		
Angle between	Circle readings, telescope being set on XXXIX (Thar Muhari)  	
$\begin{gathered} \dagger \\ \text { XXXIX (Thar Muhari) } \\ \text { and } \\ \text { XU (Kiraríwaro) } \end{gathered}$	    	$\begin{aligned} & M=3^{\prime \prime \prime} \cdot 91 \\ & w=17 \cdot 90 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=43^{\circ} 45^{\prime} 3^{\prime \prime \prime} \cdot 91 \end{aligned}$
	$\begin{array}{llllllllllll}36 \cdot 61 & 38 \cdot 17 & 35 \cdot 84 & 36 \cdot 63 & 35 \cdot 97 & 36 \cdot 66 & 36 \cdot 78 & 37 \cdot 53 & 37 \cdot 47 & 37 \cdot 39\end{array}$	


At XXXV (Chauki)-(Continued).											
Angle between	Circle readings, telescope being set on XL (Kiraríwáro)										$M=$ Mean of Groups   $w_{0}=$ Relative Weight   C = Concluded Angle
XL (Kiraríwáro) and XXXVIII (Trisingh)	h $46 \cdot 26$ h 44.46 h $44{ }^{\circ} 40$	$\begin{gathered} " \\ 45 \cdot 80 \\ h 46 \cdot 32 \\ 445 \cdot 32 \end{gathered}$	$\begin{aligned} & 44 \cdot 54 \\ & 45 \cdot 66 \mathrm{~h} \\ & 44 \cdot 26 \mathrm{~h} \end{aligned}$		$\begin{gathered} " \\ h 43.54 \\ h 45.30 \\ h 44.44 \end{gathered}$	$\begin{gathered} \quad " \\ h 45^{\circ} 12 \\ h 45^{\circ} \mathrm{O2} \\ h \\ 43^{\circ} \cdot 84 \end{gathered}$	$\begin{gathered} \prime \prime \prime \\ l \\ l \\ 46 \cdot 00 \\ l 46 \cdot 18 \\ 4 \\ 46 \cdot 28 \end{gathered}$	$\begin{array}{cc} n \\ l & 45.58 \\ l & l \\ l 45.60 & l \\ l & 44.96 \\ \hline \end{array}$			$\begin{aligned} & M=45^{\prime \prime} \cdot 08 \\ & w=23 \cdot 80 \\ & \frac{1}{w}=0.04 \\ & C=67^{\circ} 48^{\prime} 45^{\prime \prime} \cdot 08 \end{aligned}$
	$45^{\circ} 04$	45.81	$44 \cdot 82$	$44 \cdot 64$	44.43	44.66	46•15	$45 \cdot 38$	$45^{\circ} \mathrm{O1}$	$44 \cdot 82$	
XXXVIII (Trisingh) and XXXVI (Kháro)	      h 54 - 18										$\begin{aligned} & M=54^{\prime \prime} \cdot 84 \\ & w=38 \cdot 82 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=44^{\circ} 31^{\prime} 54^{\prime \prime} \cdot 83 \end{aligned}$
	55.15	54.15	55*13	$54 \cdot 56$	$55 \cdot 24$	$55 \cdot 33$	$54 * 48$	54*35	54*75	55*27	
XXXVI (Kháro)   and   XXXII (Bitri)	    										$\begin{aligned} & M=40^{\prime \prime} \cdot 31 \\ & w=29 \cdot 40 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=69^{\circ} 15^{\prime} 40^{\prime \prime} \cdot 31 \end{aligned}$
	41•29	40*02	40'75	$40 \cdot 85$	$39 \cdot 85$	40•81	39*92	$39 \cdot 87$	39*79	39*99	

## At XXXVI (Kháro)

March 1880; observed by Captain M. W. Rogers, R.E., with Barrov's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XXXIII (Parethal)										$M=M e a n$ of Groupe   ${ }^{20}$ = Relative Woight   C = Concluded Angle
XXXIII (Parethal) and XXXII (Bitri)	      h 19.50   d $20 \cdot 17$   h $20 \cdot 50$   d $20.03 \quad h 20 \cdot 80$										$\begin{aligned} & M=20^{\prime \prime} \cdot 75 \\ & w=32 \cdot 36 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=40^{\circ} 38^{\prime} 20^{\prime \prime} \cdot 75 \end{aligned}$
	21.08	19'90	20•99	$20 \cdot 55$	2079	$20 \cdot 69$	20•88	20'52	21-36	20•70	
$\begin{aligned} & \text { XXXII (Bitri) } \\ & \text { and } \\ & \text { XXXV (Chauki) } \end{aligned}$	           $\begin{array}{ll}\text { h23.72 } & l 24.20\end{array}$   h 24.02   d25.47										$\begin{aligned} & M=24^{\prime \prime} \cdot 35 \\ & w=16 \cdot 22 \\ & \frac{\mathbf{I}}{w}=0 \cdot 06 \\ & C=57^{\circ} 35^{\prime} 24^{\prime \prime \prime} \cdot 3^{8} \end{aligned}$
	$25 \cdot 43$	24*75	24.25	24.69	23.85	$25^{\circ} 02$	24.24	24.40	23.39	23.49	



At XXXVII (Morgich)-(Continued).		
Angle between	Circle readings, telescope being set on XXXIV (Kolu)   $\begin{array}{llllllllllllllll}0^{\circ} 0^{\prime} & 180^{\circ} 0^{\prime} & 79^{\circ} 12^{\circ} & 259^{\circ} 12^{\prime} & 158^{\circ} 25^{\prime} & 338^{\circ} 25^{\prime} & 237^{\circ} 37^{\prime} & 57^{\circ} & 36^{\prime} & 316^{\circ} 49^{\prime} & 136^{\circ} 48^{\prime}\end{array}$	$\begin{aligned} & M K=\text { Moan of Groupe } \\ & w=\text { Rolotive Woigh } \\ & C=\text { Conciuded Angle } \end{aligned}$
$\begin{aligned} & \text { XXXVI (Kháro) } \\ & \text { and } \\ & \text { XXXVIII (Trisingh) } \end{aligned}$		$\begin{aligned} & M=5^{\prime \prime \prime} \cdot 96 \\ & w=21 \cdot 90 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=59^{\circ} 5^{\prime} \cdot 58^{\prime \prime} \cdot 97 \end{aligned}$
	$\begin{array}{llllllllll}60 \cdot 26 & 59.31 & 58.86 & 58.39 & 58 \cdot 35 & 59.13 & 58 \cdot 82 & 58.05 & 59.04 & 59.35\end{array}$	
At XXXVIII (Trisingh)   *March 1880; observed by Captain M. W. Rogers, R.E., with Barrow's 24-inch Theodolite No. 2. $\dagger$ December 1880; observed by Lieut.-Colonel B. R. Branfill, with Troughton and Simms' 24-inch Theodolite No. 1.		
Angle between	Circle readings, telescope being set on XXXVII (Morgich)   $813^{\circ} 13^{\prime} \quad 133^{\circ} 13^{\prime} \quad 32^{\circ} 26^{\prime} \quad 212^{\circ} 25^{\prime} \quad 111^{\circ} 38^{\prime} \quad 291^{\circ} 38^{\prime} \quad 190^{\circ} 50^{\prime} \quad 10^{\circ} 49^{\prime} \quad 270^{\circ} 2^{\prime} \quad 90$	$\begin{aligned} & M=\text { Mean of Groupe } \\ & \text { wo Rolative Weight } \\ & C=\text { Concluded } A \text { nglo } \end{aligned}$
XXXVII (Morgich) and XXXVI (Kháro)	      h 57.44 h $56 \cdot 94$   h 57 -80	$\begin{aligned} & M=57^{\prime \prime} \cdot 45 \\ & w=18 \cdot 87 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=46^{\circ} 46^{\prime} \cdot 57^{\prime \prime} \cdot 44 \end{aligned}$
	$\begin{array}{llllllllll}57.62 & 56 \cdot 81 & 56.60 & 57.71 & 57.67 & 56 \cdot 73 & 57.24 & 58.04 & 57.91 & 58 \cdot 18\end{array}$	
$\begin{gathered} * \\ \text { XXXVI (Kharo) } \\ \operatorname{XXXV} \text { (Chauki) } \end{gathered}$		$\begin{aligned} & M=7^{\prime \prime} \cdot 28 \\ & w=28 \cdot 87 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=54^{\circ} 33^{\prime} \quad 7^{\prime \prime} \cdot 28 \end{aligned}$
	$\begin{array}{llllllllll}7.04 & 7.97 & 6.61 & 7.50 & 6.88 & 7.71 & 6.91 & 7.29 & 7.97 & 6.91\end{array}$	
$\begin{gathered} \text { XXXV (Chauki) } \\ \text { and } \\ \text { XL (Kiraríwáro) } \end{gathered}$		
	$\begin{array}{llllllllll}26 \cdot 13 & 26 \cdot 27 & 25 \cdot 54 & 25 \cdot 36 & 26 \cdot 62 & 26 \cdot 36 & 26 \cdot 26 & 25.88 & 26.83 & 26.35\end{array}$	
$\begin{gathered} \mathbf{X X X V}^{\dagger} \text { (Chauki) } \\ \text { and } \\ \text { XL (Kiraríwáro) } \end{gathered}$	Circle readings, telescope being set on XXXV (Chauki)  	$\begin{aligned} & w=35 \cdot 73 \\ & \frac{1}{w}=0 \cdot 03 \\ & c=51^{\circ} 2^{\prime} 26^{\prime \prime \prime} \cdot 21 \end{aligned}$
	      $l 26.79$	
	$\begin{array}{llllllllll}26.29 & 26.37 & 26.99 & 27.85 & 24.96 & 25.38 & 27.46 & 26 \cdot 23 & 25.79 & 27.12\end{array}$	






Notr.-R. M. denotes Referring Mark.



At XLVI (Vín)-(Continued).											
Angle between	Circle readings, telescope being set on XLV (Longwáli)										$M=$ Mean of $G$ Groups   ${ }_{C}^{w}=$ Relative Weight   $\boldsymbol{C}=$ Concladed Angle
$\begin{gathered} \text { XLIX (Kot Sabzal) } \\ \text { and } \\ \text { XLVII (Got Mír Muhammad) } \end{gathered}$	   $h_{51} \cdot 35 l_{52} \cdot 61 h_{54} \cdot 04 l_{53} \cdot 64 h_{51} \cdot 88 h_{55} \cdot 93 h_{52} \cdot 64 d 49 \cdot 99 h_{52} \cdot 15 h_{54} \cdot 61$   d52.15										$\begin{aligned} & M=52^{\prime \prime} \cdot 73 \\ & w=5 \cdot 03 \\ & \frac{1}{w}=0 \cdot 20 \\ & C=80^{\circ} 34^{\prime} 52^{\prime \prime} \cdot 73 \end{aligned}$
	52.64	52.59	52.40	54•73	51*95	54.50	52•98	50:24	52•36	52*95	
XLVII (Got Mír Muhammad) and XLV (Longwáli)	        d51.53										$\begin{aligned} & M=50^{\prime \prime} \cdot 83 \\ & w=8 \cdot 40 \\ & \frac{1}{w}=0 \cdot 12 \\ & C=66^{\circ} 44^{\prime} 50^{\prime \prime} \cdot 83 \end{aligned}$
	50•34	50'51	51•74	51•53	51-14	48•97	$50 \cdot 34$	51*70	51-02	51-03	
At XLVII (Got Mír Muhammad)   January 1881; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.											
Angle between	Circle readings, telescope being set on XLV (Longwáli)										$M=$ Mean of Groups   $\stackrel{w}{c}=$ Relative Weight   C $=$ Coneluded $\operatorname{Anglo}$
$\begin{gathered} \text { XLV (Longwáli) } \\ \text { and } \\ \text { XLVI (Vin) } \end{gathered}$	    										$\begin{aligned} & M=16^{\prime \prime} \cdot 15 \\ & w=9 \cdot 20 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=62^{\circ} 29^{\prime} 16^{\prime \prime} \cdot 15 \end{aligned}$
	15.08	$15 \cdot 76$	17.21	17.37	$15 \cdot 22$	16.41	16.61	17•26	14.88	15.68	
$\begin{gathered} \text { XLVI (Vín) } \\ \text { and } \\ \text { XLIX (Kot Sabzal) } \end{gathered}$	    										$\begin{aligned} & M=49^{\prime \prime} \cdot 45 \\ & w=5 \cdot 00 \\ & \frac{I}{w}=0 \cdot 20 \\ & C=55^{\circ} 49^{\prime} 49^{\prime \prime} \cdot 45 \end{aligned}$
	49•12	51:37	$48 \cdot 46$	48•17	$48 \cdot 24$	50•19	48•39	$49 \cdot 86$	49*45	51.21	
At XLVIII (Dewari)   January 1881; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.											
Angle between	Circle readings, telescope being set on $L$ (Kubba)										$\boldsymbol{M}=$ Mean of Groupe   ${ }^{\text {w }} \mathbf{C}=\begin{gathered}\text { Relative Weight } \\ \text { Concluded } \Delta \text { ngle }\end{gathered}$
$\begin{aligned} & \mathrm{L} \text { (Kubba) } \\ & \text { and } \\ & \mathrm{LI} \text { (Ghundi) } \end{aligned}$	      d 35.86   d 34.48 h $36 \cdot 91$										$\begin{aligned} & M=3^{\prime \prime} \cdot 5^{6} \\ & w=8 \cdot 62 \\ & \frac{1}{w}=0 \cdot 12 \\ & C=63^{\circ} 42^{\prime} 33^{\prime \prime} \cdot 55 \end{aligned}$
	36.11	37-16	$36 \cdot 89$	37•94	36•50	$36 \cdot 85$	$36 \cdot 71$	34*30	36•09	37.05	



At XLIX (Kot Sabzal)-(Continued).												
Angle between	Circle readings, telescope being set on XLVII (Got Mír Muhammad)										$M=$ Mean of Groupe   ${ }^{2} 0$ = Relative Weight   C = Concluded Angle	
XLVIII (Dewari) and LI (Ghundi)	    										$\begin{aligned} & M=53^{\prime \prime} \cdot 55 \\ & w=6 \cdot 94 \\ & \frac{\mathbf{I}}{w}=0 \cdot 14 \\ & C=55^{\circ} 24^{\prime} 53^{\prime \prime} \cdot 55 \end{aligned}$	
	53.11	52.63	54*90	$54 \cdot 56$	52.69	54.44	54.28	51.67	53•98	53.28		
$\begin{aligned} & \text { LI (Ghundi) } \\ & \text { and } \\ & \text { CXII (Dáowála) } \end{aligned}$	    										$\begin{array}{\|l\|} \hline M=27^{\prime \prime} \cdot 01 \\ w=11 \cdot 60 \\ \frac{1}{w}=0 \cdot 09 \\ C=45^{\circ} 42^{\prime} 27^{\prime \prime} \cdot 01 \end{array}$	
	$\begin{array}{llllllllll}26.80 & 25.47 & 28.34 & 26.09 & 27.89 & 26.96 & 27.23 & 26.85 & 26.77 & 27.68\end{array}$											
At L (Kubba)   January and February 1881; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.												
Angle between	Circle readings, telescope being set on LIX (Máchka)										$M=$ Mean of Groupe   ${ }^{20}=$ Relative Weight   C = Concluded Angle	
$\begin{aligned} & \text { LIX (Máchka) } \\ & \text { and } \\ & \text { LI (Ghundi) } \end{aligned}$	      $l 16 \cdot 34$										$\begin{aligned} & M=14^{\prime \prime} \cdot 3^{8} \\ & w=14 \cdot 66 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=71^{\circ} 50^{\prime} 14^{\prime \prime} \cdot 39 \end{aligned}$	
	14*40	15.20	15.19	14•17	14.85	14.60	$13 \cdot 35$	14.41	14.05	13.60		
$\begin{gathered} \text { LI (Ghundi) } \\ \text { and } \\ \text { XLVIII (Dewari) } \end{gathered}$	      $h_{44 \cdot 71} h_{44}$ 60										$\begin{aligned} M & =44^{\prime \prime} \cdot 34 \\ w & =4 \cdot 88 \\ \frac{1}{w} & =0 \cdot 20 \\ C & =57^{\circ} 5^{\prime} 44^{\prime \prime} \cdot 3^{2} \end{aligned}$	
	44.86	$45 \cdot 15$	$42 \cdot 40$	$43 \cdot 75$	43.51	$45 \cdot 46$	$46 \cdot 17$	$44 * 47$	42.62	44*99		
At LI (Ghundi)												
February 1881; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.												
Angle between	Circle readings, telescope being set on XLVIII (Dewari)										$M=$ Mean of Groups   20 = Relative Weight   C = Concluded Angle	
XLVIII (Dew and L (Kubba)	      h 38 . 28 d 38 -90   $l 37 \cdot 75$										$\begin{aligned} & \boldsymbol{M}=39^{n \cdot 58} \\ & w=13 \cdot 53 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=59^{\circ} 11^{\prime} 39^{\prime \prime} \cdot 57 \end{aligned}$	
	$40 \cdot 67$	$39^{1} 16$	$39 \cdot 84$	$38 \cdot 56$	40:29	$39^{\circ} 58$	38•96	38.62	40'28	39*79		

Note.-Stations LIX and LXII appertain to the Great Indus Series.

At LI (Ghundi)-(Continued).												
Angle between	Circle readings, telescope being set on XLVIII (Dewari)										$M=$ Mean of Groups   ${ }^{2} 0$ = Relative Weight   O = Concluded Angle	
$\begin{gathered} \mathrm{L} \text { (Kubba) } \\ \text { and } \\ \mathbf{L I X} \text { (Máchka) } \end{gathered}$											$\begin{aligned} M & =43^{\prime \prime} \cdot 63 \\ w & =8 \cdot 88 \\ \frac{1}{w} & =0 \cdot 11 \\ C & =64^{\circ} 3^{8 \prime} 43^{\prime \prime} \cdot 63 \end{aligned}$	
	$42 \cdot 87$	43*30	$43 \cdot 79$	44.43	42.43	42.45	43•72	44*96	43*94	$44 * 40$		
$\begin{aligned} & \text { LIX (Máchka) } \\ & \text { and } \\ & \text { LXII (Dáowála) } \end{aligned}$	    										$\begin{aligned} & M=60^{\prime \prime} \cdot 61 \\ & w=6 \cdot 85 \\ & \frac{1}{w}=0 \cdot 15 \\ & C=85^{\circ} 5^{\prime} \quad 0^{\prime \prime} \cdot 62 \end{aligned}$	
	$60 \cdot 14$	60.24	6r.69	59*45	60.27	62.52	60.23	60.71	60.28	$60 \cdot 59$		
$\begin{aligned} & \text { LXII (Dáowála) } \\ & \text { and } \\ & \text { XLIX (Kot Sabzal) } \end{aligned}$	    										$\begin{aligned} & M=44^{\prime \prime} \cdot 71 \\ & w=7 \cdot 80 \\ & \frac{1}{w}=0 \cdot 13 \\ & C=86^{\circ} 5^{\prime} 44^{\prime \prime} \cdot 71 \end{aligned}$	
	46-06	44*97	42*91	44-81	$45 \cdot 88$	$43 \cdot 37$	45•73	$43 \cdot 72$	$45 * 25$	44*38		
XLIX (Kot Sabzal) and XLVIII (Dewari)	      d52.27d52.27   $l 53 \cdot 37$   $l 50$-02										$\begin{aligned} & M=51^{\prime \prime \prime} \cdot 49 \\ & w=12 \cdot 72 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=64^{\circ} 5^{\prime} 5^{\prime \prime \prime} \cdot 49 \end{aligned}$	
	51*49	51.91	52•16	51.52	51:55	50•90	52.26	51•89	49*90	51.27		
At LIX (Máchka)   February 1881; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24 -inch Theodolite No. 1.												
Angle between	Circle readings telescope being set on LXII (Dáowála)   $\begin{array}{llllllllll}79^{\circ} & 21^{\prime} & 259^{\circ} & 21^{\prime} & 158^{\circ} & 33^{\prime} & 338^{\circ} 33^{\prime} & 237^{\circ} & 45^{\prime} & 57^{\circ} 45^{\prime} \\ 316^{\circ} & 58^{\prime} & 136^{\circ} 58^{\prime} & 36^{\circ} 10^{\prime} & 216^{\circ} 10^{\prime}\end{array}$										$M=$ Mean of Groups   $v_{0}=$ Relative Weight   C = Concluded Angle	
LXII (Dáowála) and LI (Ghundi)	      d56.28										$\begin{aligned} & M=55^{N \cdot 28} \\ & w=7 \cdot 96 \\ & \frac{\mathbf{I}}{w}=0 \cdot 13 \\ & C=35^{\circ} 49^{\prime} 55^{\prime \prime \cdot} \cdot 28 \end{aligned}$	
	57'15	55.81	54.17	$55 \cdot 80$	55•16	54*78	$55 \cdot 89$	$55^{\circ} 41$	54.58	54*01		
$\begin{aligned} & \text { LI (Ghundi) } \\ & \text { and } \\ & \mathbf{L} \text { (Kubba) } \end{aligned}$	      d $62 \cdot 31$ d64.3I										$\begin{aligned} & M=62^{\prime \prime} \cdot 25 \\ & w=4 \cdot 64 \\ & \frac{1}{w}=0 \cdot 22 \\ & C=43^{\circ} 3^{\prime} I^{\prime \prime} \cdot 25 \end{aligned}$	
	$62 \cdot 10$	60.77	$63 \cdot 22$	61.38	62.88	59.60	62.51	62.45	$63 \cdot 78$	$63 \cdot 79$		

Notr.-Stations LIX and LXII appertain to the Great Indus Series.

## At LXII (Dáowala)

February 1881; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on XLIX (Kot Sabzal)										$M=$ Mean of Groupe   ${ }^{\infty} 0$ = Relativo Weight   C $=$ Concluded Anglo
	$0^{\circ} 1^{\prime}$	$180^{\circ} 0^{\prime}$	$79^{\circ} 13^{\prime}$	$259{ }^{\circ} 13^{\prime}$	$158^{\circ} 25^{\prime}$	$338^{\circ} 25^{\prime}$	237 ${ }^{\circ}{ }^{\prime}$	57 ${ }^{\circ} 7^{\prime}$	$816^{\circ} 49^{\prime}$	$136^{\circ} 49^{\prime}$	
XLIX (Kot Sabzal) and   LI (Ghundi)	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=4^{\prime \prime} \cdot 63 \\ & w=11 \cdot 90 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=48^{\circ} 11^{\prime} 48^{\prime \prime} \cdot 63 \end{aligned}$
	$h 88 \cdot 49$ $l$ 60	$h 48 \cdot 80$ $h 49$ 49	h $47 \cdot 58$		$h 47 \cdot 21$ $h 47$ $h^{\circ} 64$	$h 49 \cdot 65$ $h$ h		$h 48 \cdot 53$ $h 49$ 4	h 49.08	$h 47 \cdot 72$ $h 48.30$	
	$h_{49}{ }^{\text {II }}$ h	h $50 \cdot 53$	/ 49 ' 72	h 49.38 l	$l 47 \cdot 28$	h 49.58	$h 48.00$	$h_{47} \cdot 79$	$h 48 \cdot 26$	h $46 \cdot 96$	
	49.28	$49^{\circ} 67$	48•12	$49 \cdot 06$	$47 \cdot 38$	$49 \cdot 85$	47*90	48•56	48•78	$47 \cdot 66$	
$\begin{aligned} & \text { LI (Ghundi) } \\ & \text { and } \\ & \text { LIX (Máchka) } \end{aligned}$	$\begin{array}{ll}h & 5.94 \\ l \\ 4 & 4.28\end{array}$	$h 13.27$ $h$ 3.00	h 5. 5 5	$h \quad 5 \cdot 06$ $h$ 5	$\begin{array}{ll}h & 3 \\ h & 50 \\ 5\end{array}$	h $5 \cdot 65$   $h$   4	$\begin{array}{ll}\text { h } \\ h & 4 \\ 5 \cdot 42\end{array}$	${ }^{h} 4.80$	h 4.06 $h 2.41$	$\begin{array}{ll}h & 5.03 \\ h \\ 4.57\end{array}$	$\begin{aligned} & M=4^{\prime \prime} \cdot 50 \\ & w=15 \cdot 70 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=5^{\circ} 12^{\prime} \quad 4^{\prime \prime} \cdot 50 \end{aligned}$
	h ${ }^{5}$. 64	$h_{4}{ }^{3} 3^{2}$	h 4 -61	$\begin{array}{lll} h & 5.40 \\ h & 3.80 \\ h & 3.77 \end{array}$	$64.57$	$\begin{aligned} & n .96 \\ & h \quad 3.96 \end{aligned}$	h $5 \cdot 63$	$h 4.00$	h $3 \cdot 58$	h $3 \cdot 59$	
	$5 \cdot 29$	$3 \cdot 53$	$5 \cdot 38$	4•53	$4 \cdot 55$	4.60	$5 \cdot 26$	4*10	$3 \cdot 35$	$4{ }^{\circ} 40$	
LI (Ghundi)   and   R. M.	    										$\begin{aligned} & M=22^{\prime \prime} \cdot 73 \\ & w=21 \cdot 30 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=0^{\circ} 5^{\prime} 22^{\prime \prime} \cdot 73 \end{aligned}$
	22.40	$22 \cdot 65$	24•13	21•90	$22 \cdot 68$	$22 \cdot 66$	$22 \cdot 20$	$22 \cdot 95$	$22 \cdot 72$	$23^{\circ} 00$	

Notrs.-Stations LIX (Máchka) and LXII (Dáowála) appertain to the Great Indus Series.

Fsbruary, 1885.
R. M. denotes Referring Mark.
W. H. COLE,

In charge of Oomputing Office.

## EASTERN SIND MERIDIONAL SERIES.

Sums of Squares of Apparent Errors of Single Observations, and of Apparent Errors of Single Zeros.

Station of Observation.	Observed Angle.	Number of Observations.	Sum of Squares of Errors of single Observations	Number of Zeros.	Sum of Squares of Errors of single Zeros.	Rbmaris.
LXXV	I \& LXXVIII	40	50'79	10	1.97	
"	LXXVIII \& V	38	$39 \cdot 61$	10	$8 \cdot 66$	
LXXVIII	LXXV \& I	38	$34 \cdot 80$	10	$3 \cdot 23$	
"	I \& II	33	20.52	10	$3 \cdot 73$	
"	II \& III	37	$26 \cdot 75$	10	8.41	
"	III \& IV	38	$23 \cdot 64$	10	$2 \cdot 97$	
"	IV \& V	37	30. 27	10	$2 \cdot 21$	
"	V \& LXXV	38	$29 \cdot 61$	10	I. 26	
I	II \& LXXVIII	30	5.68	10	$2 \cdot 15$	
"	LXXVIII \& LXXV	31	8.98	10	1.95	
II	III \& LXXVIII	34	25.68	10	1.80	-inch No. 2
"	LXXVIII \& I	31	$9 \cdot 84$	10	$1 \cdot 32$	, 2.
III	IV \& LXXVIII	35	25.63	10	$4^{\cdot 10}$	
"	LXXVIII \& II	30	8.95	10	3.80	
IV	VI \& VII	41	60.08	10	7.18	
"	VII \& V	36	$20 \cdot 56$	10	$2 \cdot 61$	
"	V\& LXXVIII	34	$22 \cdot 64$	10	3.44	
"	LXXVIII \& III	34	15.84	10	$3 \cdot 71$	
V	LXXV \& LXXVIII	35	24.40	10	2.57	
"	LXXVIII \& IV	35	13.28	10	$0 \cdot 67$	
"	IV \& VII	38	25.26	10	$2 \cdot 98$	
"	VII \& VIII	40	$42 \cdot 68$	10	$2 \cdot 72$	

Nore.-Stations LXXV and LXXVIII appertain to the Karáchi Longitudinal Series.

Station of Observation.	Obserred Angle.	Number of Observations.	Sum of Squares of Errors of single Observations.	Number of Zeros.	Sum of Squares of Errors of single Zeros.	Remabis.
VI	IX \& VII	40	$43 \cdot 83$	10	5.28	
"	VII \& IV	36	18.70	10	$2 \cdot 52$	
VII	VI \& IX	37	31•37	10	1.78	
"	IX \& X	36	21.42	10	3.03	
"	X \& VIII	34	$25 \cdot 67$	10	3.25	
"	VIII \& V	34	11.52	10	3.88	
"	V \& IV	36	33.03	10	1.06	
"	IV \& VI	36	$32 \cdot 68$	10	4.24	
VIII	V \& VII	33	$17 \cdot 84$	10	4.06	
"	VII \& X	36	$28 \cdot 36$	10	4.24	
IX	XI \& XII	35	24.69	10	5.79	
"	XII \& X	39	$26 \cdot 48$	10	$2 \cdot 82$	
"	X \& VII	38	29.51	10	$2 \cdot 15$	
"	VII \& VI	33	10. 14	10	$1 \cdot 13$	
$\mathbf{X}$	VIII \& VII	31	$7 \cdot 38$	10	1.85	
"	VII \& IX	36	$16 \cdot 33$	10	2.98	
"	IX \& XI	35	$16 \cdot 19$	10	1-89	
"	XI \& XII	33	10.00	10	1-11	
XI	XIII \& XIV	34	19.38	10	5•36	
"	XIV \& XII	31	12.51	10	$2 \cdot 16$	
"	XII \& X	32	8.38	10	1. 20	Barrow's 24-inch No. 2.
"	X\& IX	30	$7 \cdot 70$	10	$2 \cdot 38$	
XII	X \& IX	39	31.07	10	$2 \cdot 41$	
"	IX \& XI	38	54.56	10	4.02	
"	XI \& XIV	39	$38 \cdot 93$	10	$6 \cdot 37$	
"	XIV \& XV	40	$44 \cdot 20$	10	$6 \cdot 72$	
XIII	XVI \& XIV	35	20.91	10	$5 \cdot 02$	
"	XIV \& XI	31	8.40	10	$2 \cdot 77$	
XIV	XVI \& XVII	39	33.75	10	3.27	
"	XVII \& XV	41	41.74	10	4.03	
"	XV \& XII	31	11.65	10	0.82	
"	XII \& XI	35	19.42	10	2.17	
"	XI \& XIII	32	21.06	10	$2 \cdot 98$	
"	XIII \& XVI	30	$5 \cdot 65$	10	2.70	
"	XVI \& R. M.	32	14.58	10	$3 \cdot 53$	
XV	XII \& XIV	31	$6 \cdot 34$	10	$2 \cdot 32$	
"	XIV \& XVII	33	15.94	10	$1 \cdot 48$	
XVI	XVIII \& XIX	31	II 97	10	1.82	
"	XIX \& XVII	33	$8 \cdot 08$	10	4.68	
"	XVII \& XIV	32	11.95	10	$1 \cdot 06$	
"	XIV \& XIII	30	7•57	10	$1 \cdot 75$	

Notr.-R. M. denotes Referring Mark.

Station of Obeerration.	Obserred Angle.	Number of Observations.	Sum of Squares of Error of single Observations.	Number of Zeros.	Sum of Squares of Error of single Zeros.	Rminate.
XVII	XV \& XIV	31	10.14	10	1.52	
"	XIV \& XVI	31	$12 \cdot 65$	10	$3 \cdot 95$	
"	XVI \& XIX	34	$16 \cdot 72$	10	$1 \cdot 77$	
"	XIX \& XX	33	18.99	10	$2 \cdot 67$	
XVIII	XXI \& XIX	44	60.50	10	10.78	
"	XIX \& XVI	35	25.93	10	$1 \cdot 79$	
XIX	XXI \& XXII	33	20.90	10	$0 \cdot 81$	
"	XXII \& XX	34	18.49	10	1.54	
"	XX \& XVII	38	$44^{\cdot 29}$	10	$3 \cdot 35$	
"	XVII \& XVI	35	16.36	10	$0 \cdot 91$	
"	XVI \& XVIII	33	14.41	10	4.13	
"	XVIII \& XXI	34	24.54	10	5.13	
XX	XVII \& XIX	35	27.81	10	$1 \cdot 50$	
"	XIX \& XXII	32	15.11	10	2.91	
XXI	XXIII \& XXIV	39	41.74	10	$5 \cdot 14$	
"	XXIV \& XXII	35	33.28	10	$1 \cdot 43$	
"	XXII \& XIX	34	16.02	10	1-04	
"	XIX \& XVIII	33	$8 \cdot 04$	10	1-53	
XXII	$\mathbf{X X}$ \& XIX	32	13.62	10	$1 \cdot 10$	
"	XIX \& XXI	39	$43 \cdot 43$	10	1.21	
"	XXI \& XXIII	32	12.02	10	3.27	Barrow's 24-inch No. 2.
"	XXIII \& XXIV	34	$25 \cdot 89$	10	$2 \cdot 27$	
XXIII	XXV \& XXVI	34	15.11	10	7.51	
"	XXVI \& XXIV	34	$20 \cdot 54$	10	6.65	
"	XXIV \& XXII	33	$16 \cdot 47$	10	1.96	
"	XXII \& XXI	30	5.09	10	$0 \cdot 23$	
XXIV	XXII \& XXI	33	14.00	10	$1 \cdot 73$	
"	XXI \& XXIII	34	$19^{12} 12$	10	1-89	
"	XXIII \& XXVI	30	$3 \cdot 87$	10	1.83	
"	XXVI \& XXIX	35	32.55	10	3.00	
XXV	XXVII \& XXVIII	35	16.81	10	1-68	
"	XXVIII \& XXVI	35	21.09	10	4.11	
"	XXVI \& XXIII	35	24.11	10	$2 \cdot 20$	
XXVI	XXV \& XXVIII	36	$26 \cdot 12$	10	8.19	
"	XXVIII \& XXIX	35	27.43	10	$2 \cdot 29$	
"	XXIX \& XXIV	32	11.64	10	5.09	
"	XXIV \& XXIII	31	5.03	10	$0 \cdot 99$	
"	XXIII \& XXV	33	19.37	10	$2 \cdot 36$	
XXVII	XXX \& XXVIII	37	$28 \cdot 33$	10	$2 \cdot 94$	
"	XXVIII \& XXV	43	54.43	10	6.71	
XXVIII	XXIX \& XXVI	31	$7 \cdot 62$	10	1.26	


Station of Observation.	Observed Angle.	Number of Obeervations.	Sum of Squares of Errors of single Observations.	Number of Zeros.	Sum of Squares of Errors of single Zeros.	Ruximits.
XXVIII	XXVI \& XXV	32	16.32	10	4.75	
"	XXV \& XXVII	34	$22 \cdot 68$	10	5.15	
"	XXVII \& XXX	39	$39 \cdot 60$	10	3.02	
"	XXX \& XXXI	41	30.77	10	4.12	
"	XXXI \& XXIX	37	29.40	10	$4 \cdot 84$	
XXIX	XXIV \& XXVI	30	$8 \cdot 46$	10	$6 \cdot 49$	
"	XXVI \& XXVIII	32	14.42	10	5.11	
"	XXVIII \& XXXI	32	14.68	10	1-83	
$\mathbf{X X X}$	XXXII \& XXXIII	38	32.79	10	$7 \cdot 15$	
"	XXXIII \& XXXI	40	$43 \cdot 32$	10	$4 \cdot 83$	
"	XXXI \& XXVIII	33	$9 \cdot 38$	10	$3 \cdot 79$	
"	XXVIII \& XXVII	32	14.59	10	$4 \cdot 34$	
XXXI	XXIX \& XXVIII	42	42.18	10	7-81	
"	XXVIII \& XXX	36	19.67	10	2.62	
"	XXX \& XXXIII	34	12.29	10	2.06	Barrow's 24-inch No. 2.
"	XXXIII \& XXXIV	40	$40 \cdot 60$	10	$6 \cdot 64$	
"	XXXIV \& R. M.	33	21.73	10	$2 \cdot 93$	
XXXII	XXXV \& XXXVI	32	14.24	10	$3 \cdot 51$	
"	XXXVI \& XXXIII	34	19.91	10	$2 \cdot 26$	
"	XXXIII \& XXX	39	$43 \cdot 93$	10	$2 \cdot 26$	
XXXIII	XXXVI \& XXXIV	36	24.44	10	6.98	
"	XXXIV \& XXXI	36	29.66	10	$1 \cdot 32$	
"	XXXI \& XXX	37	$22 \cdot 16$	10	1-58	
"	XXX \& XXXII	38	$49 \cdot 36$	10	1. 56	
"	XXXII \& XXXVI	41	$46 \cdot 43$	10	$8 \cdot 08$	
XXXIV	XXXI \& XXXIII	36	31.57	10	$7 \cdot 99$	
"	XXXIII \& XXXVI	34	15.36	10	4.80	
"	XXXVI \& XXXVII	36	24.29	10	1.48	J
XXXV	XXXIX \& XL	30	$2 \cdot 76$	10	4.78	TroughtonandSimms'24-inch No. 1.
"	XL \& XXXVIII	30	$10 \cdot 63$	10	$2 \cdot 69$	
"	XXXVIII \& XXXVI	31	$6 \cdot 16$	10	$1 \cdot 70$	
"	XXXVI \& XXXII	30	3.40	10	$2 \cdot 69$	
XXXVI	XXXIII \& XXXII	35	18.49	10	$1 \cdot 37$	
"	XXXII \& XXXV	37	23.09	10	$3 \cdot 83$	
"	XXXV \& XXXVIII	36	24.85	10	$3 \cdot 84$	
"	XXXVIII \& XXXVII	38	$35 \cdot 67$	10	$3 \cdot 56$	
"	XXXVII \& XXXIV	34	$22 \cdot 35$	10	$1 \cdot 02$	
"	XXXIV \& XXXIII	33	12.75	10	$0 \cdot 79$	
XXXVII	XXXIV \& XXXVI	35	$28 \cdot 33$	10	4.67	
"	XXXVI \& XXXVIII	32	$6 \cdot 59$	10	$3 \cdot 55$	
XXXVIII	XXXVII \& XXXVI	34	21.35	10	$2 \cdot 93$	

Notr.-R. M. denotes Referring Mark.

Station of Observation.	Obrerred Angle.	Number of Observations.	Sum of Squares of Errors of single Observations.	Number of Zeros.	Sum of Squares of Firrors of singlo Zoros.	Remaris.
XXXVIII	XXXVI \& XXXV	31	9.50	10	$2 \cdot 14$	$\}$ Barrow's 24-inch No. 2.
"	XXXV \& XL	36	21.47	10	1•86	
"	XXXV \& XL	31	$15 \cdot 85$	10	$7 \cdot 58$	
"	XL \& XLIII	30	12.58	10	4.81	
XXXIX	XLI \& XL	30	$8 \cdot 73$	10	$3 \cdot 15$	
"	XL \& XXXV	30	$5 \cdot 22$	10	3.45	
XL	XLII \& XLIII	30	12.10	10	$3 \cdot 18$	
"	XLIII \& XXXVIII	30	15.20	10	3.62	
"	XXXVIII \& XXXV	30	13.99	10	4.50	
"	XXXV \& XXXIX	30	$14 \cdot 13$	10	$7 \cdot 22$	
"	XXXIX \& XLI	30	$8 \cdot 77$	10	$3 \cdot 33$	
"	XLI \& XLII	30	$5 \cdot 85$	10	$9 \cdot 46$	
XLI	XLII \& XL	30	$8 \cdot 54$	10	1.23	
"	XL \& XXXIX	30	12.36	10	4.41	
XLII	XLIV \& XLV	30	11.61	10	$5 \cdot 90$	
"	XLV \& XLIII	30	13.50	10	$6 \cdot 74$	
"	XLIII \& XL	31	14.64	10	$5 \cdot 24$	
"	XL \& XLI	30	$19 \cdot 12$	10	6.99	
XLIII	XXXVIII \& XL	30	$5 \cdot 47$	10	$2 \cdot 83$	
"	XL \& XLII	30	8.94	10	$2 \cdot 37$	
"	XLII \& XLIV	31	$6 \cdot 67$	10	1.62	
"	XLIV \& XLV	30	$7 \cdot 54$	10	2.86	Troughton and Simms' 24-inch
XLIV	XLVIII \& R. M.	31	15.11	10	6.64	No. 1.
"	XLVIII \& XLVI	32	$22 \cdot 26$	10	$3 \cdot 33$	
"	XLVI \& XLV	30	12.56	10	$7 \cdot 53$	
"	XLV \& XLIII	31	15.01	10	$5 \cdot 43$	
"	XLIII \& XLII	31	19.31	10	6.50	
XLV	XLIII \& XLII	31	11.02	10	9.95	
"	XLII \& XLIV	31	$10 \cdot 32$	10	$10 \cdot 97$	
"	XLIV \& XLVI	31	7-01	10	$2 \cdot 02$	
"	XLVI \& XLVII	30	$9 \cdot 40$	10	431	
XLVI	XLV \& XLIV	32	41-09	10	$7 \cdot 92$	
"	XLIV \& XLVIII	33	34*19	10	$7 \cdot 68$	
"	XLVIII \& XLIX	32	12.49	10	$2 \cdot 04$	
"	XLIX \& XLVII	31	35.89	10	14.33	
"	XLVII \& XLV	31	$45 \cdot 27$	10	$6 \cdot 30$	
XLVII	XLV \& XLVI	30	16.72	10	$8 \cdot 10$	
"	XLVI \& XLIX	30	52.23	10	$12 \cdot 82$	
XLVIII	L \& LI	33	24.82	10	8.24	
"	LI \& XLIX	34	$42 \cdot 72$	10	8.55	
"	XLIX \& XLVI	35	32.56	10	11.17	

Note.-R. M. denotes Referring Mark.

Station of Obserration.	Obeerred Angle.	Number of Observations.	Sum of Squares of Errors of single Observations.	Number of Zeros.	Sum of Squares of Errors of single Zeros.	Remaris.
XLVIII	XLVI \& XLIV	35	75-18	10	11.72	7
XLIX	XLVII \& XLVI	30	9*93	10	6.19	
"	XLVI \& XLVIII	31	$13 \cdot 77$	10	16.45	
"	XLVIII \& LI	31	34.09	10	9.72	
"	Lİ\& LXII	30	$12 \cdot 89$	10	$6 \cdot 39$	
L	LIX \& LI	31	28.05	10	3.42	
"	LI \& XLVIII	32	51.27	10	13.73	
LI	XLVIII \& L	33	21.88	10	4.81	
"	L \& LIX	31	$35 \cdot 61$	10	$6 \cdot 66$	$\}$ Troughton and Simma' 24 -inch
"	LIX \& LXII	35	$80 \cdot 86$	10	$6 \cdot 91$	
"	LXII \& XLIX	30	$8 \cdot 04$	10	$10 \cdot 73$	
"	XLIX \& XLVIII	34	33.77	10	4.30	
LIX	LXII \& LI	31	33.66	10	$8 \cdot 03$	
"	LI \& L	32	36.51	10	16.15	
LXII	XLIX \& LI	30	10.72	10	$6 \cdot 48$	
"	LI \& LIX	31	13.47	10	4.41	
"	LI \& R. M.	30	10. 57	10	$3 \cdot 17$	J

Notis.-Stations LIX and LXII appertain to the Great Indus Series.
R. M. denotes Referring Mark.

From the preceding data of the sums of squares of apparent errors, in the mesarement of each angle, we may ascertain the e.ms. (error of mean square) of observation of a single measure of an angle, and the c.m.s. of graduation and observation, of the mean of the measures on a single zero, for each group of angles, measured with the same instrument, by the same observer, and under similar circumstances.

The instruments emploged were Barrow's 24-inch Theodolite No. 2 and Troughton and Simms' 24-inch No. 1, both having 5 microscopes to read the azimuthal circle; observations were taken on 5 pairs of zeros (face right and face left) giving circle readings at $7^{\circ} 12^{\prime}$ apart.

The e.m.s. of observation of a single measure of an angle

$$
=\sqrt{\frac{\text { Sum of squares of apparent errors of observations. }}{\text { No. of observations }- \text { No. of angle } \times \text { No. of changes of zero }} .}
$$

$\left.\begin{array}{l}\text { The e.m.s. of graduation and observation of the mean of the } \\ \text { measures on a single zero }\end{array}\right\}=\sqrt{\frac{\text { Sum of squares of apparent errors of zero. }}{\text { No. of angles } \times \text { (No. of changes of zero-1). }}}$

Group	Instrument and Observer			Number of				c. m. s. of observation of a aingle measure	e. m. s. of graduation and observation of a single zero
					$\begin{aligned} & \frac{8}{2} \\ & \frac{0}{4} \end{aligned}$				
1	$\left\{\begin{array}{c} \text { Barrow's 24-inch Theodolite } \\ \left.\begin{array}{c} \text { No. 2; Capt. M. W. Rogers, } \end{array}\right\} \\ \text { R.E. } \end{array}\right.$	Hilla	${ }^{\circ} 712$	8.48	148	5082	1460	$\left\{\frac{3294.84}{5082-1460}\right\}^{\frac{1}{3}}= \pm 0^{4.954}$	$\left\{\frac{475.83}{1460-146}\right\}^{\prime}= \pm 00.602$
II	$\left.\left\lvert\, \begin{array}{c} \text { Troughton and Simms' 24.inch } \\ \text { Theoodolite No. } 1 \text { in Lieut. Col. } \end{array}\right.\right\}$	"	712	8.02	27	816	270	$\left\{\frac{330 \cdot 27}{816-270}\right\}^{\xi}= \pm 0 \cdot 778$	$\left\{\frac{143 \cdot 44}{270-27}\right\}^{\frac{1}{2}}= \pm 0 \cdot 768$
III		Plains		3•18	30	953	300	$\left\{\frac{863 \cdot 55}{953-300}\right\}^{\}}= \pm 1 \cdot 150$	$\left\{\frac{234 \cdot 93}{300-30}\right\}^{\}}= \pm 0 \cdot 938$

February, 1885.
W. H. COLE,

In charge of Computing Office.

## EASTERN SIND MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES.

Figure No. 1.


* In the tables of the equations between the factors the co-efficients of the terms below the diagonal are omitted for convenience, the co-eficient of the pts term in the $q$ th line being always the same as the co-eflicient of the $q$ th term in the pth line.

Figure No. 2.


Figure No. 3.


Fiyure No. 4.


Figure No. 5.


Figure No. 6.


Figure No. 7.


Figure No. 7-(Continued).

Equations between the Factors														
$\left\|\begin{array}{c} \text { No. of } \\ \text { e } \end{array}\right\|$	Value of e	Co-efficients of												
		$\lambda_{1} \quad \lambda_{2}$	$\lambda_{3}$	$\lambda_{4}$	$\lambda_{5}$	$\lambda_{6}$	$\lambda_{7}$	$\lambda_{8}$	$\lambda_{9}$	$\lambda_{10}$	$\lambda_{11}$		$\lambda_{18}$	$\lambda_{18}$
1	+0.025	+0.13 $\quad .$.	...	...	...	...	...	...	...	+0.02	...	-	1-10	...
2	$+0.176$	+0.21	...	...	...	...	...	...	...	+0.07	...	+	$0 \cdot 50$	...
3	-0.333		$+0.14$	...	...	...	...	...	...	+0.05	+0.02		$0 \cdot 92$	0.62
4	-0.110			+0.24	...	...	...	...	...	+0.11	+0.07		$0 \cdot 31$	0.09
5	- 0.494				+0.19	...	...	...	...	+0.04	...	$+$	$0 \cdot 30$	...
6	-0.814					$+0.23$	...	...	...	...	+0.08		...	1•33
7	- 0.407						+0.17	...	...	...	+0.07		...	0.30
8	+ 0.205				*			$+0.18$	..	...	+0.06		...	0.30
9	-0.527								+0.22	...	+0.08		.	1.30
10	$+0.33$									+0.29	..		.	0.49
11	-0.30										+0.38		$0 \cdot 57$	
12	$-154$												53.47	37-36
13	$+49^{\cdot 8}$													141•04
Values of the Factors			Angular errors in seconds											
$\begin{aligned} & \lambda_{1}=-0.3648 \\ & \lambda_{8}=+0.0145 \\ & \lambda_{3}=-5.5220 \\ & \lambda_{4}=-2.0043 \\ & \lambda_{6}=-3.1188 \\ & \lambda_{8}=-6.5650 \\ & \lambda_{7}=-2.4152 \\ & \lambda_{8}=-0.1583 \\ & \lambda_{0}=-0.6148 \\ & \lambda_{10}=+2.6031 \\ & \lambda_{11}=+1.8237 \\ & \lambda_{12}=-0.0185 \\ & \lambda_{13}=+0.4136 \end{aligned}$														

Figure No. 8.


Figure No. 8-(Continued).

Equations between the Factors													
$\left\|\begin{array}{c} \text { No. of } \\ \mathrm{e} \end{array}\right\|$	Value of e	Co-efficients of											
		$\lambda_{1} \quad \lambda_{2}$	$\lambda_{3}$	$\lambda_{4}$	$\lambda_{5}$	$\lambda_{6}$	$\lambda_{7}$	$\lambda_{8}$	$\lambda_{9}$	$\lambda_{10}$	$\lambda_{11}$	$\lambda_{19}$	$\lambda_{13}$
1	+0.042	+0.15	$\ldots$	$\ldots$	$\ldots$	...	$\ldots$	...	...	+0.0	...	- 0.2	...
2	+0.473	+0.26	...	...	$\ldots$	...	$\ldots$	...	...	+0.0	...	- 0.16	...
8	- 0.267		+0.19	...	$\ldots$	...	...	...	...	+0.10	+0.02	- 0.80	+ $0 \cdot 52$
4	- 0.668			+0.19	...	...	...	...	...	+0.12	+0.03	-0.15	- 0.36
5	+ 0.400				+0.21	...	...	...	...	+0.05	...	+ 1.38	...
6	- 0.158					- 0.15	...	...	...	...	+0.03	...	- 0.96
7	-0.491						+0.17	...	...	...	+0.07	...	+ 0.40
8	+ 0.245				*			+0.12	...	..	+0.06	...	+ 0.21
9	+0.297								+0.14	...	+0.06	...	+ 0.51
10	-0. 55									+0.35	...	...	- 0.36
11	+ 0.99										+0.27	$-0.43$	...
12	+55.6											+183.3	- 26.92
13	+53.4												+119.76
Values of the Factors			Angular errors in seconds										
$\begin{aligned} & \lambda_{1}=+0.6370 \\ & \lambda_{8}=+1.9006 \\ & \lambda_{3}=-2.7861 \\ & \lambda_{4}=-4.0787 \\ & \lambda_{6}=-1.0161 \\ & \lambda_{6}=+1.0841 \\ & \lambda_{7}=-7.7377 \\ & \lambda_{8}=-3.1876 \\ & \lambda_{0}=-3.637 \mathbf{1} \\ & \lambda_{10}=+1.0910 \\ & \lambda_{11}=+8.3736 \\ & \lambda_{18}=+0.4049 \\ & \lambda_{13}=+0.5957 \end{aligned}$					$\begin{aligned} & x_{1}= \\ & x_{9}= \\ & x_{3}= \\ & x_{4}= \\ & x_{5}= \\ & x_{6}= \\ & x_{7}= \\ & x_{8}= \\ & x_{9}= \end{aligned}$	0.069   0.241   0.214   0.120   0.701   $1 \cdot 054$   $0 \cdot 527$   0.019   0.241					$\begin{aligned} & \mathbf{x}_{10}= \\ & \mathbf{x}_{20}= \\ & \mathbf{x}_{21}= \\ & \mathbf{x}_{23}= \\ & \mathbf{x}_{23}= \\ & \mathbf{x}_{24}= \\ & \mathbf{x}_{25}= \\ & \mathbf{x}_{26}= \\ & \mathbf{x}_{27}= \end{aligned}$	$\begin{aligned} & +\cdot 045 \\ & -\cdot 744 \\ & +\cdot \cdot 208 \\ & +\cdot 311 \\ & -\cdot{ }^{364} \\ & +\cdot 298 \\ & +\cdot 284 \\ & -\cdot \cdot 252 \\ & +\quad \cdot 265 \end{aligned}$	

Figure No. 9.


Figure No. 10.


Figure No. 11.


Figure No. 12.


May, 1885.
W. H. COLE, In charge of Computing Office.

EASTERN SIND MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. TRIANGLES.


Notrs.-1. The values of the side are given in the same line with the opposite angle.
2. Stations LXXV (Rojhra) and LXXVIII (Sandohar) appertain to the Karechi Longitudinal Series.


Nors.—Station LXXVIII (Sandohar) appertains to the Karachi Longitudinal Series.





[^10]| No. of triangle |  | Number and Name of Station |  | Corrections to Observed Angle |  |  |  | Corrected Plane Angle | Distance |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circuit | NonCircuit |  |  | Figure | Circuit | NonCircuit | Total |  | Log. Feet | Feet | Miles |
|  |  |  | " | " | " | " | " | - " |  |  |  |
|  |  | XLVIII (Dewari) | -087 | - $\cdot 100$ |  | - 991 | -1.091 | $63 \quad 4235 \cdot 372$ | 4.5686746,6 | 37040 31 | $7 \cdot 015$ |
|  | 66 | LI (Ghundi) | $\cdot 087$ | - . 035 |  | + $\cdot 042$ | + 007 | 59 II 39.490 | 4.55004112,9 | 35484.71 | $6 \cdot 721$ |
|  |  | L (Kubba) |  | $-\quad .044$ |  | + 949 | + 905 | 57 5 $45 \cdot 138$ | 4.5401 566,3 | 34686•19 | $6 \cdot 569$ |
|  |  |  | $\cdot 261$ |  |  |  | - 179 | $180 \quad 0 \quad 0.000$ |  |  |  |
|  |  | L (Kubba) | -135 | - $\cdot 010$ |  | - 1.046 | - I 056 | $715013 \cdot 199$ | 4.7085244,3 | 51112.18 | 9.680 |
|  | 67 | LI (Ghundi) | -135 | +.013 |  | - 260 | - $\cdot 247$ | $\begin{array}{lllll}64 & 38 & 43 \cdot 248\end{array}$ | 4.6867335,4 | 48610.88 | 9.207 |
|  |  | LIX (Máchka) | -135 | + 132 |  | +1.306 | +1.438 | $4331 \quad 3.553$ | 4.5686746,6 | 37040 31 | 7-015 |
|  |  |  | $\cdot 405$ |  |  |  | + 135 | 180 0 0.000 |  |  |  |

Notz.-Station LIX (Máchks) appertains to the Great Indus Series.
W. H. COLE,

May, 1885.
In charge of Computing Office.

## EASTERN SIND MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.


Station A				Side AB			Station B
Circuit No.	Number and Name of Station	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. feet	Azimuth at B	Number and Name of Station
1	LXXV (Rojhra)	- , "	- 1	- ' "		- 1	
		$245726 \cdot 28$	$701645 \cdot 08$	115 $5537{ }^{\circ} 09$	4.9613162,0	291496.99	LXXVIII (Sandohar)
	" "	"	"	$65748 \cdot 01$	4•8106688,9	245319.54	I (Fulrár)
	LXXVIII "(Sandohar)	$\cdots$	"	1722114.80	5•0405528,1	35220728	$V$ (Bhádi)
		$\begin{array}{llll}25 & 3 & 3 \cdot 89\end{array}$	$70122 \cdot 18$	33646 28.09	4.8242059.7	1564828.69	1 (Fulrár)
	" 3		"	$58 \quad 320.77$	4*6899756, 1	2380976	II (Chánga)
	" "	"	"	$118430 \cdot 52$	4.9273847,5	$2975845 \cdot 76$	III (Patatonk)
	"	"	"	$15630 \quad 715$	4-9426977,8	$3362725 \cdot 28$	IV (Narithal)
	" ${ }^{\prime}$	"	"	$223910 \cdot 15$	5.0107656,2	431434.80	V (Bhádi)
	I (Fulrár)	$245256 \cdot 48$	7067190	117343416	4:8838957,4	2972923.31	II (Chánga)
	II (Chánga)	$245^{8} 47{ }^{\circ}$ -	$695350 \cdot 47$	$1531330 \cdot 96$	4.8668065,1	$3331058 \cdot 06$	III (Patatonk)
2	III (Patatonk)	25 937.71	$694749 \cdot 63$	$2241749^{\circ} 01$	47540043,7	442052.99	IV (Narithal)
	IV (Narithal)	251619.94	$6955 \quad 1 \cdot 47$	$2725956 \cdot 87$	5.0220268,9	$\begin{array}{llll}93 & 8 & 5 \cdot 34\end{array}$	$V$ (Bhádi)
	$"$	"	"	$169450 \cdot 68$	4.9122944,5	$349338 \cdot 26$	VI (Hatodan)
		"	"	2182858.80	4.9354085,1	38 30    18	VII (Rupihar)
		251524.18	$7014 \quad 5 \cdot 95$	1445727.70	4*9507019,2	$3245328 \cdot 17$	" "
"	VI (Hatodan)	$252934 \cdot 72$	$695212 \cdot 52$	$1902635^{\circ} 21$	4.9614543,9	102752.82	VIII (Kanakotri)
				280274.59	4*8468162,4	$1003228 \cdot 96$	VII (Rupihar)
	"II (Rupihar)	$2527 \text { " } 27 \cdot 90$		2042529.73	4*8063335,8	242734.63	IX (Mangtor)
			$70 \quad 446 \cdot 65$	$2555631 \times 94$	4.8445842,7	$76150 \cdot 45$	VIII (Kanakotri)
	" "	"	"	14976.61	4.9183152,4	$329346 \cdot 11$	IX (Mangtor)

Nore.-Stations LXXV (Rojhra) and LXXVIII (Sandohar) appertain to the Karachi Longitudinal Series.


Station A				Side AB			Station B
$\begin{gathered} \text { Circuit } \\ \text { No. } \end{gathered}$	Number and Name of Station	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Foet	Azimuth at B	Number and Name of Station
11	XXV (Bándri)	- , "	,	1		1	
		$265444 \cdot 36$	695227.24	$161735 \% 95$	4.8315765,0	$341545 \cdot 68$	XXVII (Máhu)
		$265229 \cdot 21$		231188.37	$4.8450561,7$	512242.40	XXVIII (Girája)
	XXVI (Ráviláhu)		$70 \quad 448 \cdot 15$	$1675016 \cdot 99$	$4.7685622,2$	3474915.00	
			"	232492940	4.8212126,4	525353.72	XXIX (Máringra)
	XXVII (Máhu)	$27 \quad 520 \cdot 19$	$694824 \cdot 36$	28455 5.81	4-8990445,9	$105131 \cdot 16$	XXVIII (Girája)
	XXVIII (G̈rája)	"	"	$2334459 \times 93$	4.9272107,8	$535044 \cdot 81$	XXX (Singra)
		$27 \quad 157 \times 40$	$70 \quad 231.40$	28453 2.80	4-8288055,6	1045829.94	XXIX (Máringra)
	" "		"	173 18.52.94	4-8506972,9	35318 Ir 24	XXX (Singra)
	XXIX (Máringra)		"	228412313	$4 \cdot 8965140,6$	484621.76	XXXI (Asu)
		$2659 \quad 5 \cdot 37$	$701431 \cdot 76$	175106.29	$4.8425614,0$	355936.74	" "
12	XXX (Singra)	271334.87	$70 \quad 059.95$	2851519.59	4.8445434,0	10521 1.01	" "
		"	"	1675530.06	4.7562481,6	3475429.32	XXXII (Bitri)
		"	"	2173041.54	4.8144244,5	37343.60	XXXIII (Parethal)
	XXXI (Asu)	$271032 \cdot 14$	$701326 \cdot 85$	1583121.04	4.8774718,9	338290.68	"
"	" "	"	"	201 3733.14	4.9775848,7	214031.28	XXXIV (Kolu)
	XXXII (Bitri)	$272247 \times 33$	$695847 \cdot 55$	274274737	4.7144157,0	$943210 \cdot 83$	XXXIII (Parethal)
	$\begin{array}{ll} " & " \\ " & " \end{array}$	"	"	16744773	4.8546230,9	$347 \quad 325.70$	XXXV (Chauki)
		"	"	2201343.98	4.8990669,7	40186.28	XXXVI (Kháro)
13	XXXIII (Parethal)	27227.08	$70 \quad 820 \cdot 54$	253502.55	$4.8141024,0$	735522.21	XXXIV (Kolu)
"	"		"	$1793947 \cdot 19$	4-8098816,6	3593945.24	XXXVI (Kháro)
	XXXIV (Kolu)	2725 6.31	701955.29	126289.05	4-8933571,5	$3062246 \cdot 50$	" ${ }^{\text {\# }}$
		$273417 \cdot 96$	$695549 \cdot 75$	$16522 \quad 9.38$	$4.8031682,7$	3452046.98	XXXVII (Morgich)
	XXXV (Chauki)			$2774745^{\circ} 00$	4.8313570, 1	$975330 \cdot 41$	XXXVI (Kháro)
	$\text { " } \quad "$	"	$\begin{gathered} 695549 \cdot 75 \\ " \end{gathered}$	2331550.43	4.9149085,4	$532130 \cdot 50$	XXXVIII (Trisingh)
			-	1214128.75	4.9233583,3	301 3520.72	XXXIX (Thar Muhári)
14	XXXVI (Kháro)	273246.30	$70 \quad 816 \cdot 32$	16527541	4-8632235,3	34525 30.63	XL (Kiraríwáro)
				$252932 \cdot 65$	4.6919358,5	721333.54	XXXVII (Morgich)
"	XX"XVII (Morgich)	273515.29	$7016{ }_{56} \times 85$	1784829.00	$4.7662962,0$	3584822.74	XXXVIII (Trisingh)
				$132 \begin{array}{lll}13 & 3 \\ 10\end{array}$	4.8107520,6	312125.37	
15	XXXVIII (Trising $)$	274224.35	$70 \quad 8 \quad 2 \cdot 81$	10423 56.59	4.9390613,9	$2841640 \cdot 43$	XL (Kiraríwáro)
"	$\begin{aligned} & \text { XXXIX (Thar Muhári) } \\ & \text { XL" (Kiraríwáro) } \\ & " \quad " \end{aligned}$	$2741 \text { " } 33^{\circ} 40$	" "	$\begin{array}{lllll}156 & 9 & 11.87\end{array}$	4*9074047,9	$336 \quad 621.98$	XLIII (Núrpír)
				243146647	4.7730187,1	$631840 \cdot 72$	XL (Kiraríwáro)
			$695225 \cdot 64$	1964629.12	4.7894476,9	1648 1.40	XLI (Mári)
				1323614.84	4.6787272,4	3123312.24	" $\quad$ "
		$\begin{gathered} 274557 \times 48 \\ " \end{gathered}$		1732346.40	4.7210583,2	3532314.91	XLII (Yáru)
	XLI (Mári)	"	"	224265908	4•8656989,4	443126.66	XLIII (Núrpír)
		2751 17.24	694554.26	$2352916 \cdot 30$	4.5473431,5	55314779	XLII (Yáru)
	XLII (Yáru)	275434.99	$695118 \cdot 20$	269511154	4.7593005,6	8956 Ir 33	XLIII (Núrpír)
	" "	"	"	191238.07	$4.6644730,1$	112355.80	XLIV (Vijnot)
		"	"	$2304656 \cdot 01$	4.8751873,0	50520.31	XLV (Longwáli)



Note.-Stations LIX (Máchka) and LXII (Dáowála) sppertain to the Great Indus Series.
June, 1885.
W. H. COLE,
In charge of Computing Office.

EASTERN SIND MERIDIONAL SERIES．

PRINCIPAL TRIANGULATION．HEIGHTS ABOVE MEAN SEA LEVEL．

The following table gives，first，the usual data of the observed vertical angles and the heights of the signal and instrument， \＆c．，in pairs of horizontal lines，the first line of which gives the data for the lst or the fixed station，and the second line the data for the 2nd or the deduced station．This is followed by the arc contained between the two stations，and then by the terrestrial refraction，and the height of the 2nd station above or below the 1st，as computed from the vertical angles in the usual manner． This difference of height applied to the given height above mean sea level of the fixed station，gives that of the deduced station． Usually there are two or three independent values of the height of the deduced station；the details are so arranged as to show these consecutively and their mean in the columns of＂Trigonometrical Results．＂The mean results thus obtained are however liable to receive corrections for the errors generated in the trigonometrical operations，which are shown up by the spirit leveling operations，whenever a junction between the two has been effected．The spirit leveled determinations，when available， are always accepted as final，and the trigonometrical heights of stations，lying between other stations fixed by the leveling operations，are adjusted－usually by simple proportion－to accord with the latter．

The heights of Eastern Sind Meridional Series have been adjusted between the values of Rojhra H．S．and Sandohar H．S． of the Karáchi Longitudinal Series，and those of Máchka T．S．and Dáowala T．S．of the Great Indus Series as finally determined in connection with the general reduction of the North－West Quadrilateral．The fixed heights are as follows ：－
$\left.\begin{array}{lll}\text { LXXV } & \begin{array}{l}\text {（Rojhra）} \\ \text { LXXVIII }\end{array} & \ldots .518 \\ \text {（Sandohar）} & \ldots .408\end{array}\right\}$ feet above Mean Sea Level at Karachi from Karachi Longitudinal Series．

The trigonometrical heights always refer to the upper mark－stone，or to the upper surface of the pillar on which the theodolite stood．When the pillar of the station is perforated，the height given in the last column，is that between the upper surface of pillar and ground level mark－stone in floor of passage；otherwise it is the approximate height of the structure above the ground at the base of the station．

Astronomical Date		Number and Name of Station	Obserred Vertical Angle		Height in feet		$\begin{aligned} & \text { 若 } \\ & \text { g } \\ & \text { 劬 } \\ & \text { O } \end{aligned}$	Terrestrial Refraction			Height in feet of 2nd Station above Mean Sea Level			
1876	Mean of   Times   of obser－   vation				3	若		范	$\left\|\begin{array}{l} 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$		$\begin{gathered} \text { Trigonor } \\ \text { Res } \end{gathered}$	netrical alts		
					\％	宮		몽	苞荷		By each deduc－ tion	Mean	Result	
	h．$m$ ．		－ 1				＂							feet
Nov． 26	224	LXXV（Rojhra）	D 0710.9	12	$2 \cdot 5$	5＊3	638							
Dec．4，5	225	I（Fulrár）	D 0242.8	16	$2 \cdot 7$	5＊3	638	32	－050	－41．9	$476 \cdot 1$			
$\text { " } \quad 1$	216	LXXVIII（Sandohar）	D 0 1 30.9	12	$2 \cdot 6$	$5 \cdot 3$		41				4754	475	O＋
＂ 5	220	I（Fulrár）	D 0823.0	12	$2 \cdot 8$	$5 \cdot 3$	659	41	－062	$+66 \cdot 7$	474.7			
Nov． 80	218	LXXVIII（Sandohar）	D o 742.9	12	$2 \cdot 6$	5＊3	484		－ 068	$-57 \cdot 2$	$350 \cdot 8$			
Dec． 7	222	II（Chánga）	E 0 O20＇1	12	$2 \cdot 7$	$5 \cdot 3$	484	33	－068	$-57^{2}$	3508	351．2	351	ot

Nor1．－Stations LXXV（Rojhra）and LXXVIII（Sandohar）appertain to the Karéohi Longitudinal Series．
$\dagger$ The pillar is sunk having ite uppor surface fluah with the ground．

Astronomical Date		Number and Name of Station	Observed Vertical Angle		Height in foet			$\begin{array}{\|l\|} \hline \text { Terrestrial } \\ \text { Refraction } \\ \hline \end{array}$			Height in feet of 2nd Station above Mean Sea Level			
1876	Mean of Times of obser－ vation				$\tilde{g}_{0}$	免		若			$\left.\right\|_{\text {Reer }} ^{\text {Trigonon }}$	metrical ults		
						营		$\underset{\sim}{⿷ 匚}$	－		$\begin{gathered} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{gathered}$	Mean	Result	
			＂				＂							foet
Dec．$\quad 4$	2． 4.	I（Fulrár）	D O 1111504	12	$2 \cdot 6$	$5 \cdot 3$	756	43		－123．8	351．6			
7	243	II（Chánga）	D ○ ○ 8．4	12	$2 \cdot 6$	$5 \cdot 3$	756	43	－57	－123 8				
Nov． 30	234	LXXVIII（Sandohar）	Do 945.6	12	$2 \cdot 8$	$5 \cdot 3$	836	53	－063	$-87 \times 9$	320＇ 1			
Dec． 10	234	III（Patatonk）	D ○ 237.4	12	$2 \cdot 7$	$5 \cdot 3$	836	53	－63	－879		$320 \cdot 4$	320	ot
7	231	II（Chánga）	D ○ $654{ }^{\circ} \mathrm{O}$	12	$2 \cdot 8$	$5 \cdot 3$		42	$\cdot 058$	$-30 \cdot 4$	320•8			
＂ 10	231	III（Patatonk）	D $044^{\circ} \mathrm{O}$	12	$2 \cdot 6$	$5 \cdot 3$	727	42		$-30 \cdot 4$				
	254	LXXVIII（Sandohar）	D o 9 44．2	12	2.6	$5 \cdot 3$ $5 \cdot 3$	866	50	－058	$-82 \cdot 8$	325＊2			
Dec． 12	235	IV（Narithal）	Do 313.9	12	2.7	$5 \cdot 3$		50						
＂ 10	242	III（Patatonk）	D ○ 358.7	12	2.6	$5 \cdot 3$	561	30	$\cdot 053$	＋6．2	$326 \cdot 6$	$326 \cdot 4$	326	O＋
＂12， 13	243	IV（Narithal）	D 0443.4	16	2.6	$5 \cdot 3$	561	30	－ 05	＋				
＂ 21	212	V（Bhádi）	D 012114	12	$2 \cdot 6$	5．3	1040	62	－060	－136．6	3273			
＂ 13	211	IV（Narithal）	Do 315.5	12	$2 \cdot 6$	5＊3				－136	32			
Nor． 22	235	LXXV（Rojhra）	D ○ 923.9	12	2.6	5．3	1084	76	$\cdot 070$	－ 49.5	$468 \cdot 5$			
Dec． 20	235	V （Bhádi）	D ○ 617.5	12	2.7	$5 \cdot 3$	1084	76						
Nov．$\quad 30$	313	LXXVIII（Sandohar）	D ○ 5 51．6	12	$2 \cdot 6$	5•3	1013	58	$\cdot 057$	$+51 \cdot 2$	459.2	463.4	463	ot
Dec． 20	313	$V$（Bhádi）	D 0916.1	12	$3 \cdot 3$	$5 \cdot 3$	1013	58	－ 5	$+5$	459	4634		of
＂ 13	211	IV（Narithal）	D ○ 315.5	12	2.6	$5 \cdot 3$	1040	62	－060	＋136．6	$462 \cdot 5$			
＂ 21	212	$\nabla$（Bhádi）	D○12 11．4	12	$2 \cdot 6$	$5 \cdot 3$	1040			＋136				
＂ 13	252	IV（Narithal）	D ○ $610 \cdot 3$	12			851	50		＋ 5.6				
＂26， 27	252	VII（Rupihar）	D ○ 636.9	12	2.6	$5 \cdot 3$	851	50	O59	＋ 56	3320	$330 \cdot 8$	330	ot
＂20，21	233	V（Bhádi）	D ○ 11 43．1	16	$2 \cdot 7$	$5 \cdot 3$	882		． 060	－133．8	$329 \cdot 6$			
＂26， 27	236	VII（Rupihar）	D ○ 1 $24^{\circ} 7$	12	$2 \cdot 7$	$5 \cdot 3$	882	53	－060	$-133 \cdot 8$	329.6			
＂ 12	37	IV（Narithal）	D 0711.9	12	2.6	$5 \cdot 3$								
＂ 30	242	VI（Hatodan）	D 05006	12	$2 \cdot 6$	$5 \cdot 3$	807	45	$\cdot 056$	－ 26.0	3004	$299 \cdot 7$	299	ot
＂26， 27	222	VII（Rupihar）	D ○ 643.4	12	2.6	5．3						2997	29	
＂ 30	223	VI（Hatodan）	D○ 335	12	$2 \cdot 7$	$5 \cdot 3$	694	46	－066	$-3{ }^{\prime} 9$	298.9			
＂ 20	255	V（Bhádi）	D 07174	12	$2 \cdot 6$	$5 \cdot 3$	904	57	－063		454.3			
＂ 24	254	VIII（Kanakotri）	Do 619.8	12	$2 \cdot 7$	$5 \cdot 3$	904	57						
＂26，27	253	VII（Rupihar）	E ○ 056.5	12	$2 \cdot 6$	$5 \cdot 3$						4547	454	O＋
＂ 24	253	VIII（Kanakotri）	D O II 15.8	12	$2 \cdot 7$	$5 \cdot 3$	691	44	－064	＋124．2	$455^{\circ} \mathrm{O}$			
Dec．${ }^{1876-77}$ 30， 31	245	VI（Hatodan）	D o $510 \cdot 3$	12	$2 \cdot 7$	$5 \cdot 3$								
Jan．4，5	245	IX（Mangtor）	D 0421.4	12	$2 \cdot 6$	$5 \cdot 3$	633	40	－063	－7\％	292.0			
Dec．26， 27	217	VII（Rupihar）	D ○ 749.4	12	$2 \cdot 7$	$5 \cdot 3$	818		－060		289．5			
Jan．3，4	217	IX（Mangtor）	D 0423.7	12	$2 \cdot 7$	$5 \cdot 3$	818	49	． 060	－413	2895	$290 \cdot 8$	290	of

Note．－Stations LXXV（Rojhra）and LXXVIII（Sandohar）appertain to the Karachi Longitudinal Series．
$\dagger$ The pillar is sunk having ite upper surface flush with the ground．

Astronomical Date		Number and Name of Station	Observed Vertical Angle	suoyprasaqo jo деqumn	Height in feet			Terrestrial Refraction			Height in feet of 2nd Station above Mean Sea Level			
1877	Mean of   Times of obser－ vation				硒	$\begin{aligned} & \text { 䓂 } \\ & \text { 首 } \end{aligned}$		蔦			$\begin{gathered} \text { Trigonor } \\ \text { Res } \end{gathered}$	metrical   ults		
					\％	尚		回			By each deduc－ tion	Mean	Result	
														foet
							＂							
Jan．7，8， 9	$236$	$\mathbf{X} \text { (Bhitala) }$	$\text { Do } 851 \cdot 5$	12			769							
$, \quad 5$	236	IX（Mangtor）	D 0231.7	12	$2 \cdot 7$	$5 \cdot 3$	769	50	－065	－71．5	291．0			
1876-77	246													
Dec．26， 27	246	VII（Rupihar）	D o 42 II 3	12	2.6	5•3	762	42	－055	＋31．9	$362 \cdot 7$			
Jan．8，9	247	$\mathbf{X}$（Bhitala）	Do 7113	16	$2 \cdot 8$	$5 \cdot 3$	762	42	055	$+319$	3627			
Dec． 24	240	VIII（Kanakotri）	D $0946 \cdot 7$	12	2.6	5•3	602	35	$\cdot 058$	－92＊3	$362 \cdot 4$	$362 \cdot 5$	362	ot
${\text { Jan．}{ }_{1877} 7,9}^{\text {7，}}$	240	$\mathbf{X}$（Bhitala）	E $0037^{\circ} \mathbf{2}$	12	$2 \cdot 6$	5•3	602	35	－05	$-923$	3624	3625	362	of
Jan． 5	236	IX（Mangtor）	D 0 231．7	12	$2 \cdot 7$	5•3	769		－065	＋71．5	$362 \cdot 3$			
＂7，8，9	236	$\mathbf{X}$（Bhitala）	Do $851 \cdot 5$	12	$2 \cdot 6$	5•3	769	50	． 065	$+715$	3623			
＂4，5	236	IX（Mangtor）	D o 618.3	12	$2 \cdot 7$	5＊3			$\cdot 048$	$-18.3$	$272 \cdot 5$			
＂17，18	236	XI（Narhar）	D $0433^{\circ}$	12	$2 \cdot 6$	$5 \cdot 3$	704	34	－48	－183	2725			
＂8，9	231	X（Bhitala）	D ○ $1053 \cdot 8$	16	$2 \cdot 7$ 2.6	5•3	1068	54	－051	$-88 \cdot 7$	$273 \cdot 8$	$272 \cdot 8$	272	O†
＂17， 18	235	XI（Narhar）	D 0515.9	12	$2 \cdot 6$	5•3	1068	54	O51	－887	273		272	
＂12， 13	244	XII（Thakur）	$\begin{array}{llll}\text { D } & 9 & 0.5\end{array}$	12	$2 \cdot 7$ 2.8	$5 \cdot 3$	722	42	－058	$-75 \cdot 8$	272．1			
＂ 17	241	XI（Narhar）	D 0152.1	12	$2 \cdot 8$	$5 \cdot 3$	722	42	O58	－ 758	2721			
＂4，5	31	IX（Mangtor）	D $0452^{2} \mathbf{2}$	16	$2 \cdot 7$	$5 \cdot 3$			$\cdot 062$		348＊2			
＂12，13	32	XII（Thakur）	D 09119	16	$2 \cdot 6$	5•3	938	58	－062	$+574$	$348 \cdot 2$			
＂8，8，	233	$\mathbf{X}$（Bhitala）	D o 538.6	12	$2 \cdot 7$	5•3	647	41	$\cdot 063$	－14．8	$347 * 7$	348•3	348	ot
＂12，13	233	XII（Thakur）	D $045 \quad 5 \cdot 8$	12	$2 \cdot 6$	5•3	647	41	－063	－ 148	3477	348	348	O＋
＂ 17	241	XI（Narhar）	D 0152.1	12	$2 \cdot 8$	5•3			－058	$+75 \cdot 8$	348•9			
＂12， 13	244	XII（Thakur）	Do 9005	12	$2 \cdot 7$	5•3	722	42	O58	＋ 758	3489			
＂17， 18	255	XI（Narhar）	D 0434.6	12	$2 \cdot 6$	5＇3					$328 \cdot 2$			
$" \quad 26,28$	255	XIV（Malar）	D 0980.3	12	$2 \cdot 6$	$5 \cdot 3$	849	25	－029	$+554$	328			
＂12， 13	244	XII（Thakur）	D 0 6 51．9	12	$2 \cdot 6$							$328 \cdot 8$	328	O＋
$"$＂26，27	244	XIV（Malar）	D 0515.1	12	$2 \cdot 6$	$5 \cdot 3$ $5 \cdot 3$	801	44	$\cdot 055$	－190	329＊3			
„ 17，18， 19	239	XI（Narhar）	D $045^{51} 1$	16	$2 \cdot 8$	5＊3								
＂ 22	239	XIII（Jeysulmere）	D 0811.3	16	$2 \cdot 6$	$5 \cdot 3$	851	38	045	4	313．2			
，26，27， 28	225	XIV（Malar）	D 0550.4	16	$2 \cdot 7$	$5 \cdot 3$						313．4	313	ot
＂ 22	224	XIII（Jeysulmere）	D 0419.9	12	$2 \cdot 6$	5．3	673	40	－059	－15 ${ }^{\circ}$	313．7			
＂13，15	223	XII（Thakur）	D o 0 37． 1	16	$2 \cdot 6$	5•3								
Feb． 4	237	XV（Badhor）	D 0124.5	12	$2 \cdot 6$	$5 \cdot 3$	821	37	－045	＋138．4	$486 \cdot 7$			
Jan．26，27， 30	240	XIV（Malar）	E 0115	16	$2 \cdot 6$	5•3						4855	485	$0+$
Feb． 8	240	XV（Badhor）	D $01236 \cdot 2$	16	$2 \cdot 8$	$5 \cdot 3$	775	48	－062	＋155．6	$484 * 4$			
Jan． 22	234	XIII（Jeysulmere）	D $0429^{\circ} 5$	12	$2 \cdot 7$	$5 \cdot 3$	660							
Feb．10， 11	234	XVI（Ramsar）	D $0541 \cdot 1$	12	$2 \cdot 6$	5＊3	660	33	－ 0	＋115	3249			

† The pillar is sunk having its upper surface flush with the ground．

$\dagger$ The pillar is sunk having its upper surface flush with the ground.

Astronomical Date		Number and Name of Station	Observed Vertical Angle		Height in feet			Terrestrial Befraction			Height in feet of 2nd Station above Mean Sea Level			
1877	Mean of Times of obser－ vation				呺	$\begin{aligned} & \text { 䯩 } \\ & \text { 兑 } \end{aligned}$		呂			Trigono Re	metrical ults		
					\％	畧		$$	－		By each deduc－ tion	Mean	$\begin{aligned} & \text { Final } \\ & \text { Result } \end{aligned}$	
														feet
Feb． 27	213	XXI（Sanahu）	D 0.411 .4	12	$2 \cdot 6$	$5 \cdot 3$	623	20	－032	$+18 \cdot 2$				
Mar． 4	239	XXIII（Harnáo）	D ○ 559.6	12	$2 \cdot 7$	$5 \cdot 3$	623	20	O32	＋182	3577			
Feb． 25	240	XXII（Arrabhit）	D o 941．3	12	$5 \cdot 4$	5＊3	912	22	－024	$-65.9$	$357{ }^{1} 1$	356－9	356	ot
Mar．3，4	245	XXIII（Harnáo）	D $0447{ }^{\circ}$	16	$5 \cdot 4$	5＊3	912	22	． 02	－659	3571	356	356	ot
＂ 15	32	XXIV（Dhanono）	D o $926 \cdot 5$	12	$2 \cdot 6$	5＊3	754	35	$\cdot 046$	$80 \cdot 7$	355•8			
＂ 3	31	XXIII（Harnáo）	D 0210.6	12	$2 \cdot 6$	5•3	754	35	046	80.7	$355 \cdot 8$			
＂ 1	223	XXI（Sanahu）	$\begin{array}{llll}\text { D } 0 & 4 & 6.2\end{array}$	12	$2 \cdot 6$	5＊3	930	8	－ 009	$+98 \cdot 8$	$438 \cdot 3$			
＂ 15	223	XXIV（Dhanono）	DO $1112{ }^{\circ}$	12	$5 \cdot 9$	5＊3	930	8			438			
Feb． 24	241	XXII（Arrabhit）	D O 5000	12	$2 \cdot 6$	5•3	668	6	－ 009	＋1177	$434 \cdot 7$	437＊0	436	ot
Mar． 15	245	XXIV（Dhanono）	Do 6115	12	$2 \cdot 6$	5＊3	668	6	－09	＋117	4347	4370	436	Ot
＂ 3	3 I	XXIII（Harnáo）	D o 210.6	12	$2 \cdot 6$	5•3				$+80 \cdot 7$	438•1			
＂ 15	32	XXIV（Dhanono）	D 0926.5	12	2.6	$5 \cdot 3$	754	35	－ 046	$+807$	$438 \cdot 1$			
＂ 3	248	XXIII（Harnáo）	D ○ 3 9．8	12	$2 \cdot 7$	5•3	598	20	． 033	＋ 28.6	385＇5			
＂ 10	248	XXVI（Ráviláhu）	D 0625.5	12	$2 \cdot 6$	$5 \cdot 3$	598	20	033	＋286	3855	85．4	384	of
＂ 15	235	XXIV（Dhanono）	D o $748 \cdot 5$	12	$2 \cdot 7$	5•3	621	21			$385 \cdot 3$	385 4	384	
＂ 10	232	XXVI（Ráviláhu）	D 0.29 .4	12	$2 \cdot 6$	5•3	621	21	O34	－ 517	3853			
＂ 3	315	XXIII（Harnáo）	D o 717.5	12	$2 \cdot 6$	$5 \cdot 3$	738			－ $32 \cdot 8$	324＊I			
＂ 7	315	XXV（Bándri）	D 0416.6	12	$2 \cdot 6$	$5 \cdot 3$	738	30	041	－ 328	324 I			
（1）	31	XXVI（Ráviláhu）	D 0815.6	8	$2 \cdot 6$	5＊3						324＊1	323	O＋
（2）	31	XXV（Bándri）	Do 26.0	12	$2 \cdot 6$	$5 \cdot 3$	676	35	$\cdot 052$	－613	324＊1			
Mar．${ }^{1877} 15$	240	XXIV（Dhanono）	D o 534.3	16	$2 \cdot 6$	5•3								
Feb．${ }^{1880}{ }^{12,13}$	256	XXIX（Máringra）	D o $748 \cdot 6$	16	$2 \cdot 7$	$5 \cdot 3$	835	24	－029	$+27.6$	$464 \cdot 6$			
（3）	258	XXVI（Ráviláhu）	D o 0 52．6	24	$2 \cdot 0$	5•3						$465^{\circ} 9$	465	ct
Feb．${ }^{1880} 12$	30	XXIX（Máringra）	D ○ 919.3	12	$2 \cdot 6$	$5 \cdot 3$	655	31	－047	＋8177	467．1			
Jan．30， 31	253	XXV（Bándri）	Do 3 8．1	12	$2 \cdot 7$	5＊3								
Feb． 8	254	XXVIII（Girája）	Do $739^{1} 1$	12	2.6	$5 \cdot 3$	692	30	$\cdot 043$	$+459$	$370 \cdot 0$			
Jan．27， 28	230	XXVI（Ráviláhu）	D o 527.6	12	$2 \cdot 7$	5•3	580	28	－048	－16．0	$369 \cdot 4$	369．7	368	o＋
Feb． 8	230	XXVIII（Girája）	D ○ 335.6	12	$2 \cdot 6$	5＊3	580	28	048		3694	3697	368	O＋
＂12，13	31	XXIX（Máringra）	Do 10 6．5	12	$2 \cdot 6$	$5 \cdot 3$	666			$-96 \cdot 3$	369.6			
＂ 8	30	XXVIII（Giraja）	Do 016．9	12	$2 \cdot 7$	5•3	666	29	－ 044	$-96 \cdot 3$	369			
Jan．30， 31	238	XXV（Bándri）	D o 588.7	$12$	$2 \cdot 5$	5＇3								
Feb．2，4	238	XXVII（Máhu）	D 0518.2	$12$	$2 \cdot 6$	5•3	670	30	－045	＋177	$325 \cdot 8$			ot
$\text { " } 8$	249	XXVIII（Girája）	D 0880.2	12	$2 \cdot 6$	5•3	783			$-45.3$		3251	324	O＋
＂ 2	248	XXVII（Máhu）	D 043 3．9	12	$2 \cdot 7$	$5 \cdot 3$	783	37	－047	－45＇3	3244			

[^11]| Astronomical Date |  | Number and Name of Station | Observed <br> Vertical Angle | suopqusierqo jo sequmn | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  | Height of Pillar or Tower |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1880 | Mean of Times of obser－ vation |  |  |  | d | $\begin{aligned} & \text { 范 } \\ & \text { 雨 } \end{aligned}$ |  | 若 |  |  | Trigono Re | metrical ults |  |  |
|  |  |  |  |  | 砸 | 完 |  | $\begin{gathered} \text { ⿷匚⿳丨コ丨卜丿 } \end{gathered}$ | $\begin{aligned} & \text { ad } \\ & \text { Od } \\ & \text { A } \\ & 0 \end{aligned}$ |  | By each deduc－ tion | Mean | Result |  |
|  | h．$m$ ． |  | － 1 |  |  |  | $"$ |  |  |  |  |  |  | feet |
| Feb． 2 | 25 | XXVII（Máhu） | D o 346.6 | 12 | $2 \cdot 6$ |  |  |  |  |  |  |  |  |  |
| ＂ 24 | 24 | XXX (Singra) | D 0984.0 | 12 | $2 \cdot 6$ | 5•3 | 835 | 40 | － 048 | ＋ $65^{1} 1$ | $390 \cdot 2$ |  |  |  |
| ＂ 8 | 255 | XXVIII（Giraja） | D o 4 26．8 | 12 | $2 \cdot 6$ | $5 \cdot 3$ | 700 | 28 | －040 | ＋21．9 | 391－6 |  | 389 | of |
| $" 24$ | 255 | XXX（Singra） | D o 634.0 | 12 | $2 \cdot 6$ | $5 \cdot 3$ | 700 | 28 | －040 | ＋ 219 | 391.6 | 3909 | 389 | Ot |
| ＂18，19 | 231 | XXXI（Asu） | D o $937^{\circ}$ | 12 | $2 \cdot 6$ | $5 \cdot 3$ |  |  |  |  |  |  |  |  |
| ＂ 24 | 231 | $\mathbf{X X X}$（Singra） | D ○ 0 47＊3 | 12 | $2 \cdot 7$ | 5•3 | 690 | 41 | －059 | $-897$ | $390 \cdot 9$ |  |  |  |
| ＂ 8 | 259 | XXVIII（Girája） | D o 114．1 | 12 | $2 \cdot 7$ | $5 \cdot 3$ | 778 | 33 | －042 | ＋110．4 | 480＇ 1 |  |  |  |
| ＂ 18 | 30 | XXXI（Asu） | D 01052.4 | 12 | $2 \cdot 6$ | $5 \cdot 3$ | 778 | 33 | －42 | ＋1104 | 480 1 |  |  |  |
| ＂ 13 | 239 | XXIX（Máringra） | D o 4 40．4 | 12 | $2 \cdot 7$ | 5．3 | 687 | 25 | $\cdot 036$ | $+15.3$ | 481 2 | 480．6 | 479 | of |
| ＂19， 20 | 245 | XXXI（Asu） | Do $611 \cdot 0$ | 12 | $2 \cdot 7$ | 5•3 | 687 | 25 | 036 | $+153$ | 4812 | 480 | 479 | ot |
| ＂ 24 | 231 | XXX（Singra） | D o 0 47．3 | 12 | $2 \cdot 7$ | $5 \cdot 3$ | 690 | 41 |  | $+89.7$ | $480 \cdot 6$ |  |  |  |
| ＂18， 19 | 231 | XXXI（Asu） | D $0937 \cdot 0$ | 12 | $2 \cdot 6$ | $5 \cdot 3$ | 690 | 41 | 059 | $+897$ | $480 \cdot 6$ |  |  |  |
| ＂24 | 233 | $\mathbf{X X X}$（Singra） | D $022 \mathrm{I} \cdot 8$ | 12 | 2•7 | 5•3 |  |  |  |  |  |  |  |  |
| Mar． 1 | 234 | XXXIII（Parethal） | D 0884.2 | 12 | $2 \cdot 5$ | $5 \cdot 3$ | 644 | 18 | －028 | ＋ 54.0 | $444 * 9$ |  |  |  |
| Feb．18， 20 | 211 | XXXI（Asu） | Do 7 31•7 | 12 |  |  |  |  |  |  |  | $443 * 7$ | 442 | of |
| Mar．1，2 | 213 | XXXIII（Parethal） | D 0 | 12 | $2 \cdot 7$ | $\begin{aligned} & 53 \\ & 5 \cdot 3 \end{aligned}$ | 745 | 32 | －043 | $-3^{8 \cdot 1}$ | $442 \cdot 5$ |  |  |  |
| Feb． 24 | 2 | XXX（Singra） | D o 5 50．2 | 12 | $2 \cdot 6$ |  |  |  |  |  |  |  |  |  |
| ＂， 27 | 234 | XXXII（Bitri） | D 0 | 12 | 2.6 | $5 \cdot 3$ $5 \cdot 3$ | 563 | 23 | －041 | － $22 \cdot 6$ | 368•3 |  |  |  |
|  | 234 | XXXII（Bitri） | Do 370 | 12 | 2.6 | 53 |  |  |  |  |  | 368•7 | 367 | O＋ |
| Mar． 1 | 159 | XXXIII（Parethal） | D 099003 | 12 | $2 \cdot 6$ | 5＊3 |  |  |  |  |  |  | 36 |  |
| Feb． 27 | 158 | XXXII（Bitri） | E O 052.8 | 12 | $2 \cdot 5$ | $5 \cdot 3$ | 512 | 23 | －045 | $-74 \cdot 6$ | 369＊1 |  |  |  |
| ，18，20， 21 | 230 | XXXI（Asu） | Do $844^{\circ}$ | 16 | 2．7 | 5＊3 |  |  |  |  |  |  |  |  |
| Mar． 4 | 231 | XXXIV（Kolu） | Do 7170 | 12 | $2 \cdot 8$ | $5 \cdot 3$ | 938 | $-7$ | $\cdot 007$ | $-19.9$ | 460•7 |  |  |  |
| ＂ 1 | 243 | XXXIII（Parethal） | D 0488.4 | 12 | $2 \cdot 7$ | $5 \cdot 3$ |  |  |  |  |  | 461．0 | 459 | of |
| ＂ 4 | 244 | XXXIV（Kolu） | $\begin{array}{llll}\text { D } 0 & 4 & 8.4 \\ \text { D } & 0.3\end{array}$ | 12 | $2 \cdot 6$ | $5 \cdot 3$ $5 \cdot 3$ | 644 | 27 | －042 | $+17 \cdot 6$ | 461•3 |  |  |  |
| Feb． 27 | 141 | XXXII（Bitri） | Do 3 1．8 | 12 | $2 \cdot 7$ | $5 \cdot 3$ |  |  |  |  |  |  |  |  |
| Mar．9，10 | 141 | XXXVI（Kháro） | D o 922.6 | 12 | $2 \cdot 6$ | $5 \cdot 3$ | 783 | 27 | －034 | $+73^{1}$ | 441•8 |  |  |  |
| $" \quad 1$ | 210 | XXXIII（Parethal） | D 0 515．2 | 12 | $2 \cdot 7$ |  |  |  |  |  |  |  |  |  |
| ＂8，9 | 212 | XXXVI（Kháro） | Do $452^{2} 2$ | 12 | $2 \cdot 5$ | $5 \cdot 3$ | 637 | 24 | －038 | －3．7 | 440 ${ }^{\circ}$ | 440＇0 | 438 | Ot |
| ＂ 4 | 157 | XXXIV（Kolu） | D O 7 4．0 | $12$ | $2 \cdot 7$ |  |  |  |  |  |  |  |  |  |
| ＂ 0,10 | 1 58 | XXXVI（Kháro） | Do 5 4＊0 | 12 | $2 \cdot 7$ | $5 \cdot 3$ | 773 | 30 | －039 | － $22 \cdot 8$ | $438 \cdot 2$ |  |  |  |
| ＂ 4 | 251 | XXXIV（Kolu） | D o 429.3 | 12 | $2 \cdot 7$ | 5＊3 |  |  |  |  |  |  |  |  |
| ＂ 6 | 251 | XXXVII（Morgich） | D o $553 \cdot 7$ | 12 | $2 \cdot 8$ | $5 \cdot 3$ | 628 | 10 | －016 | ＋1311 | 474＊1 |  |  |  |
| $" \quad 9,10$ | 154 |  | $\text { D } 0 \times 34^{\circ} 9$ |  |  |  |  |  |  |  |  | $475 \cdot 1$ | 473 | ot |
| $\begin{array}{lr} " & 0,10 \\ " & 6 \end{array}$ | 154 | XXXVII（Morgich） | D O 1 <br> D O 34 | $12$ | $\begin{aligned} & 2 \cdot 7 \\ & 2 \cdot 7 \end{aligned}$ | $5 \cdot 3$ $5 \cdot 3$ | 486 | 7 | －014 | $+36 \cdot 1$ | $476 \cdot 1$ |  |  |  |

[^12]| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  | $\begin{aligned} & \text { 号 } \\ & \text { d } \\ & \text { 品 } \\ & \text { D } \\ & 0 \end{aligned}$ | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1880 | Mean of <br> Times <br> of obser－ <br> vation |  |  |  | ］ | 䓓 |  | 若 |  |  | $\underset{\text { Trigono }}{\text { Res }}$ | metrical ults |  |  |
|  |  |  |  |  | － | 畧 |  | 봉 |  |  | By each deduc－ tion | Mean | Result |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | feet |
| Feb． 27 | 121 | XXXII（Bitri） | D o 630.9 | 12 | $2 \cdot 6$ | 5＊3 |  |  |  |  |  |  |  |  |
| Mar． 15 | 121 | XXXV（Chauki） | D 0454.4 | 12 | $2 \cdot 6$ | $5 \cdot 3$ | 707 | 19 | －027 | $-16 \cdot 8$ | 351．9 |  |  |  |
| ＂ 8 | 230 | XXXVI（Kháro） | D $010 \quad 2 \cdot 7$ | 12 | 2.6 | 5•3 | 670 | II | $\cdot 016$ | －89．1 | 350＇9 | 350＇1 | 348 | ot |
| ＂ 15 | 229 | XXXV（Chauki） | Do 1009 | 12 | $2 \cdot 6$ | 5•3 | 670 | II | Or | $-891$ | 3509 | 3501 | 348 | 아 |
| ＂ 13 | 423 | XXXVIII（Trisingh） | D o 9 26．1 | 12 | 5•5 | $5 \cdot 3$ | 812 | 34 | －042 | －779 | $347 * 6$ |  |  |  |
| ＂ 15 | 424 | XXXV（Chauki） | D 0255.8 | 12 | $5 \cdot 4$ | $5 \cdot 3$ | 812 | 34 | －42 | － 779 | 3476 |  |  |  |
| $\text { " } 15$ | 424 | XXXV（Chauki） | D ○ 255.8 | 12 | $5 \cdot 4$ | 5•3 | 812 |  |  |  |  |  |  |  |
| $\text { " } \quad 13$ | 423 | XXXVIII（Trisingh） | $\text { D } \circ 926 \cdot 1$ | 12 | 5＇5 | $5 \cdot 3$ | 812 | 34 | －042 | $+779$ | 429 3 |  |  |  |
| $\begin{array}{lr} 7 & 8 \\ \hdashline & 11 \end{array}$ | 247 | XXXVI（Kháro） | D o 5 26．2 | 12 | 2.6 | 5＊3 | 577 | 19 | －033 | －1300 | $427{ }^{\circ}$ | 426•8 | 425 | ot |
| ＂ 11 | 247 | XXXVIII（Trisingh） | D 0354.6 | 12 | $2 \cdot 6$ | $5 \cdot 3$ | 577 | 19 | －33 | － 130 | 4270 | 426 | 425 | of |
| $\# \quad 6$ | 125 | XXXVII（Morgich） | D o $755{ }^{\circ} 4$ | 12 | $2 \cdot 6$ | $5 \cdot 3$ | 639 |  |  |  | $424{ }^{\circ}$ |  |  |  |
| ＂12， 13 | 141 | XXXVIII（＇I＇risingh） | D 0229.0 | 12 | $2 \cdot 7$ | $5 \cdot 3$ | 639 | 17 | $\bigcirc$ | －51＇I | 4240 |  |  |  |
| Dec．9，10， 11 | 137 | XXXV（Chauki） | D） $0751 \cdot 2$ | 12 | $2 \cdot 5$ | $5 \cdot 2$ |  | 20 | $\cdot 028$ |  | 306•7 |  |  |  |
| ＂15， 16 | $\pm 39$ | $\mathbf{X L}$（Kiraríwáro） | D 0324.8 | 8 | $9 \cdot 8$ | $5 \cdot 2$ | 721 | 20 | －28 | － 434 | 3067 |  |  |  |
| $\text { , 17, 18, } 19$ | 128 | XXXVIII（Trisingh） | D $01132 \cdot 4$ | 16 |  |  |  |  |  |  |  | 305＇9 | 304 | ot |
| $„ 14,15,16$ | 1228 | XL（Kiraríwáro） | Do     <br> D O 1 3 3 4 | 16 12 | 2.5 2.5 | $5 \cdot 2$ $5 \cdot 2$ | 858 | 33 | －038 | －121．8 | $305^{\circ}$ |  |  |  |
| ＂ $9,10,11$ | 127 | XXXV（Chauki） | D 0759.6 | 12 | $2 \cdot 5$ | 5＊2 |  |  |  |  |  |  |  |  |
| ＂6，7， 8 | 127 | XXXIX（Thar Muhári） | D $0456 \cdot 5$ | 12 | $2 \cdot 5$ | $5 \cdot 2$ | 828 | 33 | －040 | $-37 \cdot 2$ | 312＇9 |  |  |  |
| $" 12,18,15,$ |  |  |  |  |  |  |  |  |  |  |  | 313.6 | 312 | －$\dagger$ |
| $\begin{array}{r} 16 \\ \text { 6. } 7.8 \end{array}$ | I 20 | XL（Kirariwaro） | D O <br> D 0 | 16 | 2.5 | $5 \cdot 2$ $5 \cdot 2$ | 586 | 22 | －038 | $+8.4$ | 314＊3 |  |  |  |
| $" \quad 6,7,8$ | 119 | XXXIX（Thar Muhári） | D $0510 \cdot 6$ | 12 | 2.5 | $5 \cdot 2$ |  |  |  |  |  |  |  |  |
| ＂6，7，8 | 110 | XXXIX（Thar Muhári） | D $0626 \cdot 4$ | 12 | $2 \cdot 5$ | $5 \cdot 2$ | 608 | 20 | －033 | $-27 \cdot 8$ | $285 \cdot 8$ |  |  |  |
| ＂2，4，5 | 1 II | XLI（Mári） | D O $3^{20 \%} 3$ | 12 | $2 \cdot 5$ | $5 \cdot 2$ | 608 | 20 |  |  | 285 |  |  |  |
| ，13，15， 16 | 1 37 | XL（Kiraríwáro） | D 0516.2 | 12 |  | $5^{\circ} 2$ |  |  |  |  |  | $286 \cdot 2$ | 284 | O† |
| ＂2，4，5 | 136 | XLI（Mári） | D $0 \quad 230 \cdot 7$ | 12 | $2 \cdot 5$ | $5 \cdot 2$ | 471 | 15 | －032 | $-192$ | $286 \cdot 7$ |  |  |  |
| $\text { " } \begin{array}{r} 12,13,14, \\ 15,16 \end{array}$ | 116 | XL（Kiraríwáro） | D O 5 2．0 | 20 | $6 \cdot 1$ |  |  |  |  |  |  |  | ． |  |
| $" 25,26,87,88$ | 115 | XLII（Yáru） | D ○ 351.4 | 16 | $2 \cdot 4$ | $8 \cdot 6$ | 519 | 4 | － 08 | － $12 \cdot 6$ | $293 \cdot 3$ |  |  |  |
| ＂ $\begin{array}{r}\text { 2，4，} 5 \\ \hline 126,27,\end{array}$ | 123 | XLI（Mári） | D o 21711 | 12 | 6．1 | $5 \cdot 2$ | 348 | 2 | － 06 | ＋5．1 | 291．3 | 291－8 | 290 | ot |
| ＂25，26，27， | 122 | XLII（Yáru） | D ○ 357.7 | 16 | $2 \cdot 5$ | $8 \cdot 6$ | 348 | 2 | － | ＋ 51 | 2913 | 2918 | 290 | ot |
| ＂21，22，23， | 112 | XLIII（Núrpír） | Do $739^{\circ} 3$ | 16 | 7＊4 | $5 \cdot 2$ |  |  |  |  |  |  |  |  |
| ＂25， 26,27, | 112 | XLII（Yáru） | Do 05711 | 16 | $7 \cdot 7$ | $8 \cdot 6$ | 567 | 23 | －041 | － 57.6 | 290＇9 |  |  |  |
| $\begin{array}{ll}  & 17,18,19 \\ " & 21,22,23, \end{array}$ | 120 1 27 | XXXVIII（Trisingh） | Do 931.1 | 12 | $2 \cdot 5$ | $5^{\prime 2}$ | 798 | 36 |  | $-78 \cdot 5$ | 348•3 |  |  |  |
|  | 127 | XLIII（Núrpír） | Do 24111 | 16 | $6 \cdot 0$ | $5^{\circ} 2$ | 798 | 36 | ． 045 | －785 | $340 \cdot 3$ |  |  |  |
| $\begin{array}{ll} \prime \prime & 18,15,16 \\ " & 21,22,23 \end{array}$ | 1 36 1 36 | XL（Kiraríwáro） | D o 349.0 | 12 | 2.5 | 5．2 | 725 | 22 | －030 | $+42 \cdot 7$ | 348•6 | 348＇9 | 347 | ot |
|  | 1 36 | XLIII（Núrpir） | D 0749.8 | 16 | $2 \cdot 4$ | $5 \cdot 2$ | 725 | 22 | －30 | $+427$ | 348 | 3489 | 347 |  |

† The pillar is sunk having its upper surface flush with the ground．

Astronomical Date		Number and Name of Station	$\begin{gathered} \text { Observed } \\ \text { Vertical Angle } \end{gathered}$		Height in feet			TerrestrialRefraction			Height in feet of 2nd Station above Mean Sea Level			
1880-81											Trigonometrical Results			
											By each deduction	Mean	$\underset{\text { Result }}{\text { Final }}$	
$\left\|\begin{array}{r} \text { Dec. } 25,26,27, \\ 28 \\ 721,22,23,24 \end{array}\right\|$	$\begin{array}{cc} \text { h. } & m . \\ 1 & 12 \end{array}$		$\begin{array}{cccc} \circ & \prime \prime \\ \text { D } \circ & \circ & \prime \prime \\ \hline 1 \end{array}$		$\begin{aligned} & 7 \cdot 7 \\ & 7 \cdot 4 \end{aligned}$	$\begin{aligned} & 8 \cdot 6 \\ & 5 \cdot 2 \end{aligned}$	$567$	23	. 041	$+57 \cdot 6$	349'9			feet
		XLII (Yáru)												
	112	XLIII (Núrpír)	D ○ 739.3	16										
". $25,28,278,28$	130	XLII (Yáru)	D ○ $448 \cdot 6$	16	11'1	$8 \cdot 6$	456	- 6						
Jañ. $\quad 30,81,5$	132	XLIV (Vijnot)	D $0215 \%$	16	12.5	$5 \cdot 2$	456		013	$-147$	2771			
$\left\lvert\, \begin{array}{ll} \text { Dec. } 21,22,23, \\ 24 \end{array}\right.$	128	XLIII (Núrpír)	D $\circ 8^{8} 8.3$	16	11.2	$5 \cdot 2$								
\# 30, Jan. 4,5	128	XLIV (Vijnot)	D 0 I $30 \cdot 0$	12	$8 \cdot 0$	$5 \cdot 2$	653		- 014	$-70 \cdot 3$	278.6	277*9	276	13
Jan. 8, 9, 10, 11	144	XLV (Longwáli)	D 0714.1	16	$9 \cdot 0$	$5 \cdot 2$	484							
	143	XLIV (Vijnot)	D ○ ○ $35^{\circ} \mathrm{O}$	16	$2 \cdot 5$	5.2	484			$50 \cdot 8$	$277 \times 9$			
Dec. 25, 28, 27, 28	122	XLII (Yáru)	D $045^{1} \mathrm{I}$	16	$2 \cdot 5$	$8 \cdot 6$								
Jan. 8, 0, 10, 11	122	XLV (Longwáli)	D 0726.7	16	$12 \cdot 8$	5.2	741		. 00	$+35 \cdot 2$	$327{ }^{\circ}$			
$\left\|\begin{array}{ll} \text { Dec. } 21,22,23, \\ 24 \end{array}\right\|$	139	XLIII (Núrpír)	D o 518.7	16	$2 \cdot 5$	5.2							326	
Jan. 9, 10, 11	I 39	XLV (Longwáli)	D 0214.0	12	$8 \cdot 0$	$5 \cdot 2$	467		. 017	$-18.4$	$330 \cdot 5$	328.7	326	10
$\begin{array}{lr} \text { Dec. } & 30, ~ 31, \\ \text { Jan. } & 4,5 \end{array}$	I 43	XLIV (Vijnot)	D ○ ○ $35^{\circ} \mathrm{O}$	16	$2 \cdot 5$	5.2	484							
\#8, 8, 90,11	I 44	XLV (Longwáli)	D 0714 I	16	$9 \cdot 0$	$5 \cdot 2$	484		- 010	$+50 \cdot 8$	$328 \cdot 6$			
$\left\|\begin{array}{cc} \text { Dec. } & 30,31, \\ \text { Jan. } & 4,5 \end{array}\right\|$	113	XLIV (Vijnot)	Do $522^{\circ} \mathrm{O}$	16	3.0	5.2								
$\begin{array}{r} 12,13,14, \\ 15,16 \end{array}$	113	XLVI (Vín)	D o 250.6	20	$2 \cdot 5$	$5 \cdot 2$	359	-52	145	- 13.6	$264 \cdot 3$		261	
, 8, 9, 10, 11	114	XLV (Longwáli)	D $0936 \cdot 2$	16	$2 \cdot 9$	5.2							261	
$=12,13,14,$	115	XLVI (Vín)	E ○ 337.5	20	$7 \times 7$	$5 \cdot 2$	351	- 3	-009	- $66 \cdot 0$	$262 \cdot 7$			
\% 8,9, 10, 11	123	XLV (Longwáli)	D o 826.0	16	$3 \cdot 0$		364			- $55 \cdot 8$				
" 18, 19, 20	122	XLVII (Got Mir Muhammad)	E $\circ 227^{\circ} 4$	12	$8 \cdot 0$	$5 \cdot 2$	364		- 3	- 55.8	2729	$272 \cdot 3$	270	ot
$\begin{gathered} 12,13,14, \\ 15,16 \end{gathered}$	130	XLVI (Vín)	D ○ 237.5	20	2.5	$5 \cdot 2$								
, 18, 19, 190	130	XLVII (Got Mir Muhammad)	Do 3 If	12	$15^{\circ} 2$	$5 \cdot 2$	307	-39	127	+ 8.2	2717			
$\left\|\begin{array}{lr} \text { Dec. } & 30, \\ \text { Jan. } & 31, \\ \text { Ja } \end{array}\right\|$	134	XLIV (Vijnot)	Do $525^{\circ} \mathrm{O}$	16	$2 \cdot 5$	$5 \cdot 2$								
$\begin{gathered} \text { ant } 25,26,2,2, \\ 28 \end{gathered}$	I 35	XLVIII (Dewari)	D $0.42 \cdot 3$	16	9.7	5.2	469	-53		- 599	$272{ }^{\circ} \mathrm{O}$			
$\begin{gathered} 15,16,17 \\ , \\ 25,26,27, \end{gathered}$	142	XLVI (Vín)	D ○ 314.7	20	13.3	5.2	434	-6i	141	+ 9.8	$273 \cdot 3$	$272{ }^{\circ}$	270	16
" $25,26,27$,	142	XLVIII (Dewari)	D $0438 \cdot 2$	16	$15^{\circ} \mathrm{O}$	$5 \cdot 2$	434		141		273			
" $21,22,23,24$	117	XLIX (Kot Sabzal)	D 0330.4	16	9.7	5.2					$270 \cdot 6$			
" 26, 27, 28	117	XLVIII (Dewari)	D 0222.8	12	$12 \cdot 1$	5.2	374				$270 \cdot 6$			
$\begin{aligned} & 12,18,14, \\ & 15,16 \end{aligned}$	130	XLVI (Vín)	D o 328.5	20	2.5	$5 \cdot 2$								
$\xlongequal{21,22,23,} \begin{array}{r} 16 \\ 24, \end{array}$	130	XLIX (Kot Sabzal)	D 0411.0	16	14.7	$5 \cdot 2$	368	-65		+ 99	2734			
" 18, 19, 20	137	XLVII (Got Mír Muhammad)	D ○ 344.6	12		$5 \cdot 2$						$276 \cdot 2$		28
" 21, 22, 23.	137	XLIX (Kot Sabzal)	D 0412.5	16	14.6	$5 \cdot 2$	439	-52	118	$+5.4$	$277 \times$	$276 \cdot 2$	274	28
" $26,27,28$	117	XLVIII (Dewari)	D 0222.8	12	12.1	$5 \cdot 2$								
" $21,22,23$,	117	XLIX (Kot Sabzal)	D $0330 \cdot 4$	16	9*7	5.2	374	-21	-056	$+5 \cdot 0$	$277 \cdot 6$			

† The pillar is sunk having ite upper surface flush with the ground.

Astronomical Date		Number and Name of Station	Observed Vertical Angle		Height in feet			Terrestrial Refraction			Height in feet of 2nd Station abore Mean Sea Level			Height of Pillar or Tower
1881	Mean of   Times   of obser－   vation					若		若			$\left\lvert\, \begin{gathered} \text { Trigonor } \\ \text { Res } \end{gathered}\right.$	netrical ults		
					$\infty$	蔦		$\begin{aligned} & \text { ă } \\ & \text { ®a } \end{aligned}$			By each deduc－ tion	Mean	Result	
														feet
Jan．25，26， 27 ，	$125$	XLVIII（Dewari）	$\text { Do } 234^{\circ} 8$				343	－17	－050	$+2 \cdot 3$	274＊3			
Feb．3，4，5， 6	126	LI（Ghundi）	D $0230 \cdot 0$	16	$14^{\circ} 0$	$5 \cdot 2$	343	－ 17	－	$+23$	2743			
						$5 \cdot 2$						$274{ }^{\circ} 0$	271	18.8
	123	XLIX（Kot Sabzal）	D o 313．3	16	8•7	$5 \cdot 2$	362	－18	－050	－ 2.4	$273 \cdot 8$			
Feb．3，4，5， 6	123	LI（Ghundi）	D O 227.4	16	$12 \cdot 1$	$5 \cdot 2$	362		－					
Jan．25，26， 27 ，	123	XLVIII（Dewari）	D o 256.6	16	9．6	$5 \cdot 2$				$-3 \cdot 1$	268．9			
，30，31，Feb． 2	123	L（Kubba）	D 0.56 .6	12	13.8	5．2	351	－ 9		$-31$	2689			
Feb．3，4，5， 6	120	LI（Ghundi）	D 0 312．4	16	12.8	$5 \cdot 2$						69＊1	267	20＇9
Jan．30，81，Feb． 2	120	L（Kubba）	D $0242 \cdot 3$	12	8．7	$5 \cdot 2$	366	－25	． 068	－ 4	$69^{\circ} 2$			
＂\％30，31，Feb． 2	133	L（Kubba）	D o $336 \cdot 5$	16	$12 \cdot 8$	$5^{\circ} \mathrm{P}$	480	$-48$	－ 100	$+9^{1}$	278．2			
Feb．8，9， 10	I 35	LIX（Máchka）	D $0450 \cdot 8$	20	13.4	$5 \cdot 2$	480	－48	100	$+91$	278	78．0	273	$23 \cdot 8$
＂3，4，5，6	128	LI（Ghundi）	D $0425^{\circ}$	28	$12 \cdot 8$	$5 \cdot 2$				$+3 \cdot 8$		278 －	\％	23
＂8，9，10	128	LIX（Máchka）	D 0442.4	24	$16 \cdot 0$	$5 \cdot 2$	505	－58	115	＋ 3 ＇	$277{ }^{8}$			
Jan．21，22，23， 24	144	XLIX（Kot Sabzal）	D 0 3 21．2	16	14＊1	$5 \cdot 2$	484	－27	－056	$+7 \cdot 3$	$283 \cdot 5$			
Feb．14，15，16， 17	144	LXII（Dáowála）	D $0430 \cdot 7$	16	$12 \cdot 1$	$5 \cdot 2$	484	－27	－5	$+73$	2835	$282 \cdot 3$	282	$22 \cdot 4$
$\cdots \begin{array}{r}3,4,5,6 \\ \hline 14,15,16\end{array}$	130	LI（Ghundi）	D o 124.4	16	$15.9$	$5 \cdot 2$	348				281＊2			
＂14，15，16， 17	130	LXII（Dáowála）	D $0248 \cdot 0$	16	16.0	$5^{\prime 2}$	348	－15	－043	＋ 72	2812			

Notr．－Stations LIX（Máchka）and LXII（Dáowála）appertain to the Great Indus Series．

June， 1885.

W．H．COLE， In charge of Computing Office．

## EASTERN SIND MERIDIONAL SERIES.

## PRINCIPAL TRIANGULATION. AZIMUTHAL OBSERVATIONS.

## At XIV (Malar)

Lat. N. $26^{\circ} 2^{\prime} 25^{\prime \prime} \cdot 80$; Long. E. $70^{\circ} 6^{\prime} 3^{\prime \prime} \cdot 37=\begin{gathered}n \\ 4 \\ 40\end{gathered} \mathrm{~m}^{m} 24^{\prime} \cdot 2$; Height above Mean Sea Level, 328 feet. January 1877 ; observed by Captain M. W. Rogers, R.E., with Barrow's 24 -inch Theodolite No. 2.

Stars observed
Mean Right Ascension 1877.0
Mean North Polar Distance 1877.0
Local Mean Times of Elongation, January 25
$a$ Ursæ Minoris (West) and No. 1612 $\dagger$ (East).
$1^{\mathrm{h}} \quad 13^{\mathrm{m}} 41^{\mathrm{t}} \quad 13^{\mathrm{b}} 45^{\mathrm{m}} 5^{6^{\mathrm{b}}}$
$1^{\circ} \quad 20^{\prime} \quad 48^{\prime \prime} \cdot 11 \quad 6^{\circ} \quad 37^{\prime} \quad 50^{\prime \prime} \cdot 84$
Western $10^{\text {h }} 50^{\mathrm{m}}$
Eastern $1^{\text {b }}{ }^{\text {b }} 3^{8 m}$

† Of Greenwich New Seven-year Catalogue of 2,760 Stars for 1864.


Abstract of Astronomical Azimuth observed at XIV (Malar) 1877.

1. By Eastern Elongation of No. 1612†.

2. By Western Elongation of $a$ Ursæ Minoris.

Face   Zero	$\begin{array}{cc} \mathbf{L} & \mathbf{R} \\ 209^{\circ} & 29^{\circ} \end{array}$	$\begin{gathered} \text { L } \\ 288^{\circ} \end{gathered}$	$\begin{gathered} R \\ 108^{\circ} \end{gathered}$	$\begin{aligned} & \mathbf{L} \\ & 8^{\circ} \end{aligned}$	$\begin{gathered} \mathbf{R} \\ 188^{\circ} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \mathbf{8 7} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 267^{\circ} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ 166^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 346^{\circ} \end{gathered}$				
Date	January 25	January 26		January 29		January 30		January 31					
Observed difference of Circle-Readings, Ref. M. - Star reduced to Elongation	$33.42 \quad 31 \cdot 56$	$\begin{aligned} & 33.47 \\ & 33 \cdot 95 \\ & 33 \cdot 73 \\ & 33 \cdot 0 \\ & 35 \cdot 30 \end{aligned}$	$\begin{aligned} & 32.34 \\ & 28 \cdot 48 \\ & 30.63 \\ & 27.70 \\ & 30.82 \end{aligned}$	$\begin{aligned} & 32 \cdot 29 \\ & 30.88 \\ & 37 \cdot 81 \\ & 32.83 \\ & 33.09 \end{aligned}$	$\begin{aligned} & 3 \mathrm{I} \cdot 22 \\ & 29.33 \\ & 32 \cdot 03 \\ & 3 \mathrm{I} \cdot 57 \\ & 3 \mathrm{~F} \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 36 \cdot 72 \\ & 34 \cdot 06 \\ & 32 \cdot 61 \\ & 34.61 \\ & 34 \cdot 58 \end{aligned}$	$\begin{aligned} & 33 \cdot 10 \\ & 29 \cdot 07 \\ & 32 \cdot 83 \\ & 31.68 \\ & 30 \cdot 48 \end{aligned}$	$\begin{aligned} & 37 \cdot 05 \\ & 34.74 \\ & 33 \cdot 88 \\ & 31.91 \\ & 29.06 \end{aligned}$	$\begin{aligned} & 33 \cdot 04 \\ & 29.83 \\ & 33.68 \\ & 29.13 \\ & 33 \cdot 41 \end{aligned}$				
	$33 \cdot 33 \quad 27 \cdot 90$												
	$36 \cdot 50 \quad 28.31$												
	$32 \cdot 12$ $81 \cdot 14$												
	$37.25 \quad 32 \cdot 90$												
Means	34.52 $30 \cdot 36$	33'90 29*99		33.28	31.21	34.52	31*43	$33 \cdot 33$	31.82				
	- 1	"		"		"		*					
Means of both faces	121032.44$-\quad 0.10$	$\begin{array}{r} 3 \mathrm{3} \cdot 95 \\ -\quad 0.86 \end{array}$		$\begin{array}{r} 32.25 \\ +\quad 0.11 \end{array}$		$\begin{array}{r} 32.98 \\ +\quad 0.36 \end{array}$		$32 \cdot 58$					
Level Corrections													
Corrected Means	+ $121032 \cdot 34$			$32 \cdot 36$		$33 \cdot 34$		$32 \cdot 66$					
Az. of Star fr Az. of Ref., $\mathbf{M}$. by W.	$\begin{array}{r}178 \\ \hline 103032.29\end{array}$	32.183.27		$32 \cdot 07$		31.96		31.74					
Az. of Ref. M. "	190414.63	$3 \cdot 27$		$4 \cdot 43$		5.30		$4 \cdot 40$					


Astronomical Azimuth of Referring Mark	by Eastern Elongation		$\ldots$	...	...	1904	4.19
	\{by Western		...	...	...	"	4.41
		Mean	...			"	4.30
Angle Referring Mark and XVI (Ramsar) see page 144 ante		...	...			2914	42.23
Astronomical Azimuth of Ramsar by observation		$\ldots$	$\ldots$				22.
Geodetical Azimuth of „ by calculation from that adopted (Vol. II, page 141) at							
Kaliánpur, see page 204 anteAstronomical-Geodetical Azimuth at XIV		...	...	...	...		24.93
	alar)	...	...	...			$2 \cdot 86$

[^13]
## At XXXI (Asu)

Lat. N. $27^{\circ} 10^{\prime} 32^{\prime \prime} \cdot 14$; Long. E. $70^{\circ} 13^{\prime} 26^{\prime \prime} \cdot 85=\stackrel{n}{4} \stackrel{m}{4} 50^{\circ} \cdot 8$; Height above Mean Sea Level, 479 feet. February 1880 ; observed by Captain M. W. Rogers, R.E., with Barrow's 24 -inch Theodolite No. 2.

Stars observed
Mean Right Ascension $1880 \cdot 0$
Mean North Polar Distance $1880 \cdot 0$
Local Mean Times of Elongation, February 17
$a$ Ursæ Minoris (West) and No. 1612† (East).

Western $9^{\text {h }} \quad 23^{\text {m }}$

			pace left				pace bight			
			Observed Horizontal Angle : Diff. of Readings Ref. Mark - Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation	Observed Horizontal Angle : Diff. of Readings Ref. Mark - Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark-Star at Elongation
Feb. 17	W.	$\begin{array}{ccc}0 & 1 \\ 201 & 30 \\ \& & \\ 211 & 30\end{array}$	$\begin{array}{r} 443940 \cdot 16 \\ 3935 \cdot 62 \\ 3919 \cdot 62 \\ 396 \cdot 70 \end{array}$	$\begin{array}{rrr}m & 8 \\ 7 & \\ 7 & 30 \\ 9 & 31 \\ 23 & 24 \\ 25 & 28\end{array}$	$\prime \prime \prime$ +02.86 0	$\begin{array}{r} +443943 \cdot 02 \\ 40 \cdot 24 \\ 47 \cdot 49 \\ 39 \cdot 67 \end{array}$	$\begin{array}{r} +443937 \cdot 12 \\ 3936 \cdot 06 \\ 3927 \cdot 96 \\ 3925 \cdot 78 \end{array}$	$\begin{array}{rr} m & 8 \\ 0 & 19 \\ 1 & 6 \\ 15 & 18 \\ 17 & 6 \end{array}$	$\begin{array}{r} 1 " \\ +00.01 \\ 00.06 \\ 011.92 \\ 014.90 \end{array}$	$\begin{array}{r} +443937 \cdot 13 \\ 36 \cdot 12 \\ 39 \cdot 88 \\ 40 \cdot 68 \end{array}$
" 17	E.	$\begin{gathered} 201 \quad 30 \\ \& \\ 21 \quad 30 \end{gathered}$	$\begin{array}{r} 354130 \cdot 16 \\ 4132 \cdot 34 \\ 43 \\ 9 \cdot 70 \\ 4328 \cdot 26 \end{array}$	$\begin{array}{rr}3 & 13 \\ 5 & 29 \\ 19 & 43 \\ 22 & 15\end{array}$	$\begin{array}{rr} \\ -0 & 2 \cdot 62 \\ 0 & 7.66 \\ 1 & 39.41 \\ 2 & 6.54\end{array}$	$\begin{array}{r} +354127 \cdot 54 \\ 24 \cdot 68 \\ 30 \cdot 29 \\ 21 \cdot 72 \end{array}$	$\begin{array}{r} +354152 \cdot 96 \\ 4153 \cdot 72 \\ 42 \quad 5 \cdot 78 \end{array}$	1128   1132   1344	$\begin{array}{r} -033 \cdot 34 \\ 033 \cdot 93 \\ 048 \cdot 17 \end{array}$	$\begin{array}{r} +354119.62 \\ 19.79 \\ 17.61 \end{array}$
" 18	W.	$\begin{gathered} 28045 \\ \& \\ 100 \quad 45 \end{gathered}$	$\begin{array}{r} +443940 \cdot 44 \\ 3937 \cdot 16 \\ 3944.40 \\ 3942^{\prime} 14 \end{array}$	$\begin{array}{r} 1050 \\ 847 \\ 524 \\ 729 \end{array}$		$\begin{array}{r} +443946 \cdot 42 \\ 41 \cdot 10 \\ 45 \cdot 89 \\ 45 \cdot 00 \end{array}$	$\begin{array}{r} +443940 \cdot 84 \\ 3939 \cdot 40 \\ 3932 \cdot 02 \\ 3925 \cdot 16 \end{array}$	$\begin{array}{rr} 3 & 4 \\ 0 & 55 \\ 13 & 37 \\ 15 & 38 \end{array}$	$\begin{array}{r} +0 \\ \hline 0 \end{array} 0.48$	$\begin{array}{r} +443941 \cdot 32 \\ 39 \cdot 44 \\ 41 \cdot 47 \\ 37 \cdot 60 \end{array}$
" 18	E.	$\begin{gathered} 28045 \\ \& \\ 100 \quad 45 \end{gathered}$	$\begin{array}{r} +354157 \cdot 96 \\ 4 \mathrm{I} 42 \cdot 62 \\ 4138 \cdot 44 \\ 4139 \cdot 18 \end{array}$	$\begin{array}{ll} 9 & 47 \\ 7 & 40 \\ 5 & 25 \\ 7 & 22 \end{array}$	$\begin{array}{r} -\mathrm{O} \quad 24 \cdot 28 \\ \mathrm{O} \\ \mathrm{I} 4 \cdot 89 \\ 0 \\ 0 \\ \mathrm{O} \\ 13 \cdot 46 \end{array}$		$\begin{array}{r} +354122 \cdot 16 \\ 4121 \cdot 60 \\ 42 \\ 4246 \\ 4211 \cdot 86 \end{array}$	$\begin{array}{r} 128 \\ 0 \\ 126 \\ 12 \\ 1433 \\ 14 \end{array}$	$\begin{array}{rr} -0 & 0.54 \\ 0 & 0.02 \\ 0 & 40.18 \\ 0 & 52.35 \end{array}$	$\begin{array}{r} +354121.62 \\ 21.58 \\ 23.28 \\ 19.51 \end{array}$
" 20	W.	7910 25910	$\begin{array}{r} 443930 \cdot 08 \\ 3934 \cdot 44 \\ 3948 \cdot 14 \\ 3941 \cdot 74 \end{array}$	$\begin{array}{rr}16 & 38 \\ 14 & 9 \\ 2 & 44 \\ 4 & 34\end{array}$	$\begin{array}{r} +014.11 \\ 0 \\ 0 \\ 0 \end{array} 0.3088$	$+443944 \cdot 19$ $44 \cdot 64$ $48 \cdot 52$ $42 \cdot 80$	a $+443940 \cdot 32$ $3938 \cdot 36$ $3934 \cdot 50$ $3932 \cdot 84$	$\begin{array}{rrr}7 & 52 \\ 5 & 41 \\ 10 & 26 \\ 12 & 1\end{array}$		$\begin{array}{r} +443943.47 \\ 40.01 \\ 40 \cdot 04 \\ 40.19 \end{array}$
" 20	E.	$\begin{gathered} 79 \text { \& } 10 \\ 25910 \end{gathered}$	$\begin{array}{r} +354153 \cdot 76 \\ 4139 \cdot 82 \\ 4143 \cdot 60 \\ \text { 41 } \quad 4150 \cdot 52 \end{array}$	$\begin{array}{rrr}9 & 45 \\ 7 & 1 \\ 7 & 33 \\ 9 & 32\end{array}$		$\begin{array}{r} +354129 \cdot 65 \\ 27 \cdot 30 \\ 29 \cdot 06 \\ 27 \cdot 31 \end{array}$	$\begin{array}{r} +354233.78 \\ 4120 \cdot 56 \\ 4117 \cdot 02 \\ 4222.24 \end{array}$	$\begin{array}{rr}16 & 47 \\ 0 & 16 \\ 1 & 58 \\ 15 & 10\end{array}$	$\begin{array}{r} -111 \cdot 31 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} +354122.47 \\ 20.54 \\ 16.03 \\ 23.47 \end{array}$
" 21	W.	$\begin{gathered} 158 \quad 20 \\ \& \\ 33820 \end{gathered}$	$\begin{array}{r} 443937 \cdot 78 \\ 3937 \cdot 38 \\ 3945 \cdot 04 \\ 3945 \cdot 06 \end{array}$	$\begin{array}{rr} 13 & 40 \\ 11 & 44 \\ 2 & 20 \\ 4 & 11 \end{array}$	$\begin{array}{rr} +0 & 9.53 \\ 0 & 7.02 \\ 0 & 0.28 \\ 0 & 0.89 \end{array}$	$\begin{array}{r} +443947 \cdot 31 \\ 44 \cdot 40 \\ 45 \cdot 32 \\ 45 \cdot 95 \end{array}$	$\begin{array}{r} +443940 \cdot 28 \\ 3938 \cdot 62 \\ 3936 \cdot 12 \\ 3930 \cdot 52 \end{array}$	$\begin{array}{r} 5 \\ 5 \\ 3 \end{array} 44$	$\begin{array}{cc} +0 & 1.51 \\ 0 & 0.71 \\ 0 & 5.80 \\ 0 & 8.09 \end{array}$	$\begin{array}{r} +44394 \mathrm{I} \cdot 79 \\ 39 \cdot 33 \\ 4 \mathrm{I} \cdot 92 \\ 38 \cdot 6 \mathrm{I} \end{array}$

† Of Greenwich New Seven-Year Catalogue of 2760 Stars for 1864.

			page lipt				pact right			
			Observed   Horizontal Angle : Diff. of Readings Ref. Mark - Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation	Observed   Horizontal Angle : Diff. of Readings Ref. Mark - Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation
Feb. 21	E.	$\begin{gathered} \circ \\ 158 \quad 20 \\ \& \\ 33820 \end{gathered}$	$\begin{array}{r} 354157 \cdot 98 \\ 4148 \cdot 26 \\ 4135 \cdot 98 \\ 41140 \cdot 86 \end{array}$	$\boldsymbol{m} \boldsymbol{8}$	$\begin{array}{r} 1 " 1 \\ -028 \cdot 63 \\ 019 \cdot 07 \end{array}$	$\begin{array}{r} +354129.35 \\ 29.19 \end{array}$	$\begin{array}{r} +354125.66 \\ 4121.66 \end{array}$	$\boldsymbol{m} \quad \boldsymbol{8}$		$+354124 \cdot 63$
				$\begin{array}{r} 1037 \\ 840 \end{array}$				$\begin{array}{ll}2 & 1 \\ 0 & 24\end{array}$	- 01.03 0 0	
				$\begin{array}{ll} 5 & 32 \\ 7 & 33 \end{array}$	$\begin{aligned} & 0 \\ & \hline \end{aligned} \quad 7 \cdot 82$	$\begin{aligned} & 28 \cdot 16 \\ & 26 \cdot 35 \end{aligned}$	$\begin{array}{lr} 42 & 7 \cdot 46 \\ 42 & 20 \cdot 02 \end{array}$	$\begin{array}{ll} 13 & 4 \\ 15 & 0 \end{array}$	$\begin{aligned} & \circ 43 \cdot 53 \\ & 057 \cdot 42 \end{aligned}$	$\begin{aligned} & 23 \cdot 93 \\ & 22 \cdot 60 \end{aligned}$
" 22	W.	$\begin{gathered} 35957 \\ \& \\ 17958 \end{gathered}$	$\begin{array}{r} 443936 \cdot 16 \\ 3937 \cdot 70 \end{array}$	$\begin{array}{lll}13 & 47 \\ 11 & 42\end{array}$	+09.70 06698	$443945 \cdot 86$ 44.68	$\begin{array}{r} +443939^{\circ} 40 \\ 3936.30 \end{array}$	$\begin{array}{lr} 6 & 2 \\ 4 & 27 \end{array}$	+01.86 01.01	$+443941 \cdot 26$ $37 \cdot 31$
			$\begin{aligned} & 3945 \cdot 20 \\ & 3945 \cdot 74 \end{aligned}$	$\begin{array}{lll} 1 & 22 \\ 3 & 15 \end{array}$	$\begin{array}{ll} 0 & 0.10 \\ 0 & 0.54 \end{array}$	$45 \cdot 30$ $46 \cdot 28$	$\begin{aligned} & 3936 \cdot 10 \\ & 3932 \cdot 22 \end{aligned}$	$\begin{array}{r} 855 \\ 10 \quad 25 \end{array}$	$\begin{array}{ll}0 & 4.04 \\ 0 & 5.53\end{array}$	$\begin{aligned} & 40^{\circ} 14 \\ & 37 \cdot 75 \end{aligned}$
" 22	E.	$\begin{gathered} 35957 \\ \& \\ 17958 \end{gathered}$	$\begin{array}{r}\text { + } \\ +3542 \\ 42 \\ 42 \\ \hline\end{array}$	$\begin{array}{lll}14 & 35 \\ 12 & 26\end{array}$	$\begin{array}{r} -053 \cdot 88 \\ 039 \cdot 16 \end{array}$	$\begin{array}{r} +354128 \cdot 44 \\ . \quad 29.32 \end{array}$	$\begin{array}{r} 35413 I \cdot 48 \\ 4127 \cdot 30 \end{array}$	$\begin{array}{ll}5 & 53 \\ 4 & 12\end{array}$	$\begin{array}{r}-088.77 \\ 0 \\ \hline\end{array}$	+ +354122.71 22.81
			$\begin{aligned} & 4129^{\circ} 92 \\ & 4310 \cdot 42 \end{aligned}$	$\begin{array}{rr}1 & 24 \\ 20 & 0\end{array}$	$\begin{array}{rr} 0 & 0.50 \\ 142.19 \end{array}$	$\begin{aligned} & 29 \cdot 42 \\ & 28 \cdot 23 \end{aligned}$	$\begin{array}{r} 4156 \cdot 60 \\ 4255 \cdot 70 \end{array}$	$\begin{array}{lll}11 & 42 \\ 13 & 27\end{array}$	$\begin{aligned} & \circ 34 \cdot 97 \\ & 046 \cdot 15 \end{aligned}$	$\begin{aligned} & 21.63 \\ & 19.55 \end{aligned}$

Abstract of Astronomical Azimuth observed at XXXI (Asu) 1880.

1. By Eastern Elongation of No. 1612†.

$\dagger$ Of Greenwich New Seven-Year Catalogue of 2760 Stars for 1864.

Abstract of Astronomical Azimuth at XXXI (Asu) 1880-(Continued).
2. By Western Elongation of a Ursæ Minoris.

Face   Zero	$\begin{array}{cl} \mathbf{L} & \mathbf{R} \\ 202^{\circ} & 22^{\circ} \end{array}$	$\begin{array}{cc} \mathbf{L} & \mathbf{R} \\ 281^{\circ} & 101^{\circ} \end{array}$	$\begin{array}{cc} \mathbf{L} & \mathbf{R} \\ 79^{\circ} & 259^{\circ} \end{array}$	$\begin{array}{cc} \mathbf{L} & \mathbf{R} \\ 158^{\circ} & 338^{\circ} \end{array}$	$\begin{array}{cc} \mathbf{L} & \mathbf{R} \\ \mathbf{0}^{\circ} & 180^{\circ} \end{array}$
Date	February 17	February 18	February 20	February 21	February 22
Observed. difference of Circle-Readings, Ref. M. -Star reduced to Elongation	$43 \cdot 02$ $37 \cdot 13$   $40 \cdot 24$ $36 \cdot 12$   $47 \cdot 49$ $39 \cdot 88$   $39 \cdot 67$ $40 \cdot 68$	$\begin{array}{ll} 46 \cdot 42 & 41 \cdot 32 \\ 41 \cdot 10 & 39 \cdot 44 \\ 45 \cdot 89 & 41 \cdot 47 \\ 45 \cdot 00 & 37 \cdot 60 \end{array}$	$\begin{array}{ll} 44 \cdot 19 & 43 \cdot 47 \\ 44 \cdot 64 & 40 \cdot 01 \\ 48.52 & 40 \cdot 04 \\ 42 \cdot 80 & 40 \cdot 19 \end{array}$	$47 \cdot 31$ $41 \cdot 79$   $44 \cdot 40$ $39 \cdot 33$   $45 \cdot 32$ 41.92   $45 \cdot 95$ $38 \cdot 61$	$45 \cdot 86$ $41 \cdot 26$   $44 \cdot 68$ $37 \cdot 31$   $45 \cdot 30$ $40 \cdot 14$   $46 \cdot 28$ $37 \cdot 75$
Means	42.61 $\quad 38 \cdot 45$	44.60 39'96	$45^{\circ} 04 \quad 40^{\prime} 93$	45*75 40.41	$45^{\circ} 53 \quad 39^{\prime 12}$
	- 1	-	"	*	"
Means of both faces Level Corrections	443940.53 $+\quad 1.76$	42.28 $-\quad 0.17$	42.99 $+\quad 0.23$	43.08 $+\quad 0.62$	42.33 -0.85
Corrected Means	+ +443942.29	- 42.11	+ 43.22	+0.62 43.70	- 41.48
Az. of Star fr. S., by W.	1783042.48	$42 \cdot 26$	41.81	41.58	$41 \cdot 36$
Az. of Ref. M. "	2231024.77	24.37	25.03	$25 \cdot 28$	$22 \cdot 84$

Astronomical Azimuth of Referring Mark
$\left\{\begin{array}{cccccrrr}\text { by Eastern Elongation } & \ldots & \ldots & \ldots & 223 & 10 & 24.63 \\ \text { by Western } & " & \ldots & \ldots & \ldots & \# & 24.46 \\ & \text { Mean } & \ldots & \ldots & \ldots & \# & 24.55\end{array}\right.$

Angle Referring Mark and XXXIV (Kolu) see page 157 ante	...	...	...	-21	32	52.30		
Astronomical Azimuth of Kolu by observation	..	...	...	...	..	201	37	32.25

Geodetical Azimuth of ," by calculation from that adopted (Vol. II, page 141) at Kaliánpur, see page 205 ante ... ... ... ... ..
... $2013733^{\circ} 14$
Astronomical-Geodetical Azimuth at XXXI (Asu) ... ... ... ... - 0.89

## At XLIV (Vijnot)


December 1880 and January 1881 ; observed by Lt.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Stars observed
Mean Right Ascension $1881 \cdot 0$
Mean North Polar Distance $1881 \cdot 0$
Local Mean Times of Elongation, December 30

51 Cephei (East) and $\lambda$ Ursæ Minoris (West).

$6^{\mathrm{h}} 44^{\mathrm{m}} 17^{\text {b }}$	$19^{\text {b }} 43^{\text {m }} 9^{\text {a }}$
$2^{\circ} 46^{\prime} 18^{\prime \prime} \cdot 96$	$1^{\circ} 3^{\prime} 14^{\prime \prime} \cdot 33$
$6^{\text {b }} 13^{\text {m }}$	$7^{\text {b }} 2^{\text {m }}$


			pace lept				pace bigit			
			Observed Horizontal Angle : Diff. of Readings Ref. Marz - Star		Reduction in Are to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation	Observed Horizontal Angle : Diff. of Readings Ref. Mark-Star		Reduction in Arc to Time of Elongation	Reduced Obeervation Ref. Mart - Slar at Elongation
Dec. 30	E.	$\begin{gathered} 323 \\ \& \\ 143 \\ 149 \end{gathered}$	- ' ${ }^{\text {a }}$	$m$ s	-"	$\bigcirc$ '	- '	$m$ \%	'	- '
			( $+12618 \cdot 78$ $6042 \cdot 98$	$\begin{array}{lll}37 & 49 \\ 34 & 34\end{array}$	$\begin{array}{r}1 \\ -23.77 \\ 2781 \\ \hline\end{array}$	$\begin{array}{r}125836 \cdot 01 \\ \hline 35 \cdot 27\end{array}$	+ +125921.90 59 9	$\begin{array}{lll}21 & 36 \\ 18 & 56\end{array}$	$\begin{array}{r} -\quad \begin{array}{r} 49.99 \\ 038.42 \end{array} \end{array}$	
			6042.98 5846.26	34 11 11 14	278.71 0 0	$35 \cdot 27$ $32 \cdot 73$	59 58 58.09 58		038.42	$30 \cdot 67$
			$5840 \cdot 90$	. 818	- $7 \cdot 38$	33.52	$5832 \cdot 05$ $5830 \cdot 40$	$\begin{array}{lll}0 & 1 \\ 2 & 32\end{array}$	0 0 $0 \cdot 00$	$32 \cdot 05$   29.71
			$5848 \cdot 10$ $5922 \cdot 51$		- $16 \cdot 01$   - 48 .0I	32.09 34.50	6015.40 6133.74	$\begin{array}{rrr}31 & 15 \\ 41 & 5\end{array}$	1   145	$30 \cdot 20$ $3 \mathrm{I} \cdot 89$
				217						
" 30	W.	$\begin{aligned} & 323 \quad 29 \\ & \& \quad 43.29 \end{aligned}$	r +171746.80 1755.13	$\begin{array}{lll}32 & 41 \\ 29 & 58\end{array}$	+ +043.55 036.62	$\begin{array}{r}171830 \cdot 35 \\ \hline 1 \times 75 \\ \hline\end{array}$	$\begin{array}{r} 171819.53 \\ 1823.14 \end{array}$	$\begin{aligned} & 1322 \\ & 1037 \end{aligned}$	$\begin{array}{r} +07.30 \\ +04.60 \end{array}$	$\begin{array}{r} +171826 \cdot 83 \\ 27.74 \end{array}$
			$1831 \cdot 14$	148	$0 \cdot 0.13$	31.27	1822.15		- 8.32	$30 \cdot 47$
			$1830 \cdot 79$	56	- 1-06	31.85	1816.52	1648	O 11.51	28.03
			$\begin{array}{r}18 \\ \hline 17 \\ \hline 189\end{array}$	2647	$\bigcirc 29.21$	29.90	$1726 \cdot 19$	393	$1 \quad 1.99$	$28 \cdot 18$
			$1757 \cdot 61$	2927	$\bigcirc 35 \cdot 3 \mathrm{I}$	$32^{2} 92$.	$1720 \cdot 59$	4213	112.41	$33^{\circ} 00$
" 81									-24.21	
	E.	$\begin{gathered} 4241 \\ \& 24^{2} \\ 22241 \end{gathered}$	$\begin{array}{r} 125927.92 \\ 5913.15 \end{array}$	$\begin{array}{rrr}22 & 30 \\ 20 & 3\end{array}$	$\begin{array}{r} -054.25 \\ 043.09 \end{array}$	$\begin{array}{r} 125833.67 \\ 30.06 \end{array}$	+ $126039 \cdot 76$	34 5   31 19		125835.55$32 \cdot 06$33
							6016.99			
			$5836 \cdot 12$		01.04		$5844 \cdot 83$   58   6.85	10   15   7	11164 0 0	$33 \cdot 19$ $30 \cdot 43$
			$5839 \cdot 18$	6 1	- 3.90	35.28	5836.85	744	$\bigcirc 6.42$	$30 \cdot 43$
			6044.30	3452	$210 \cdot 94$	$33 \cdot 36$	59 5.92		- 31.46	$34 \div 46$
			$62 \quad 2 \cdot 37$	441	328.68	$33 \cdot 69$	$5941 \cdot 46$	2526	19.65	$3_{1} \cdot 81$
" 81	W.	$\begin{gathered} 4^{42} 41 \\ \& 2 I^{41} \\ 222{ }^{2} \end{gathered}$	$\begin{array}{r} 171826 \cdot 15 \\ +1830 \cdot 29 \end{array}$	$\begin{array}{rrr}10 & 32 \\ 7 & 8\end{array}$	$\begin{array}{r} \\ + \\ \hline\end{array}$	+$+171830 \cdot 67$$32 \cdot 36$	$\begin{array}{r} +1717 \begin{array}{c} 58.89 \\ 1.60 \end{array} \end{array}$	$\begin{aligned} & 28 \quad 30 \\ & 2547 \end{aligned}$	$\begin{array}{r} +\quad 33 \cdot 13 \\ +\quad 27 \cdot 12 \end{array}$	$+1718 \underset{28 \cdot 7_{2}^{3}}{ }$
			181515	1934	-15.60	30.75	1826.64	539	- 1.30	27.94
			$185^{\circ} 46$	2253	$\bigcirc 21 \cdot 32$	$26 \cdot 78$	1822.88	922	- 3.57	$26 \cdot 45$
			${ }^{16} 57 \cdot 67$	4729	131.50	29.17 28.	$1741 \cdot 98$	337	- 44.61	26.59
			1645.81	5017	142.55	$28 \cdot 36$	$1731 \times 76$	3559	$\bigcirc 52 \cdot 65$	24.41
Jan. 1	E.	$\begin{gathered} 12153 \\ \text { \& } 53 \\ 30153 \end{gathered}$	$\begin{array}{r} 126029.44 \\ 6013.11 \\ 5852.53 \\ 5844.07 \end{array}$		151.16-150.16140.39	+ 125834.28	+ 126154.59		$\begin{array}{r} -316 \cdot 22 \\ 251.68 \end{array}$	$+125838 \cdot 37$34.6835
				3038		$\begin{aligned} & 32.72 \\ & 3546 \end{aligned}$	6126.36	406		
				1237	140.39 017.07 0.10 .34		5933.24	2310	$046 \cdot 07$	
				949	$\begin{array}{r}0 \\ \hline \\ \hline\end{array}$	33.733.35	$\begin{aligned} & 5920.91 \\ & 5839.00 \end{aligned}$	$\begin{array}{rr} 20 & 44 \\ 1 & 38 \end{array}$		$\begin{gathered} 34 \cdot 84 \\ 38 \cdot 72 \end{gathered}$
			593.23	1623						
			$5942 \cdot 43$	2528	19.83	$\begin{aligned} & 34.35 \\ & 32.60 \end{aligned}$	$5840 \cdot 98$	732	- 6.09	$34 \cdot 89$


			pact lbpt				paor bight			
			Observed Horizontal Angle: Diff. of Readings Ref. Mart - Star		Reduction in Arc to Time of Elongation	Reduced Observation   Ref. Mark - Star at Elongation	Observed Horizontal Angle : Diff. of Readings Ref. Mark-Star Ref. Marz-Sta		Reduction in Arc to Time of Elongation	Reduced Observation   Ref. Mark - Star   at Elongation
Jan. 1	W.	$\begin{gathered} 121 \quad 53 \\ \text { \& } \\ 30153 \end{gathered}$	- ' "	$m 8$	' "	- ' "	- ' "	$\boldsymbol{m} 8$	1	- '
			171756.56 +18184	$\begin{array}{ll} 29 \\ 26 & 3 \\ 9 \end{array}$	$\begin{array}{r} +034 \cdot 43 \\ +\quad 27 \cdot 90 \end{array}$	$\begin{array}{r}\text { + } 171830 \cdot 99 \\ 29.74 \\ \hline\end{array}$	$\begin{array}{r} 17178.23 \\ 1714.40 \\ 1831.86 \\ 1828.85 \end{array}$	4624	+127.74	+171835.97
			1831.49	$269$	$\begin{aligned} & 027.90 \\ & 0 \quad 0.10 \end{aligned}$			$\begin{array}{r} 1151 \\ 845 \\ 8 \end{array}$	$\begin{array}{lll} 0 & 5 \cdot 73 \\ 0 & 3 \cdot 12 \end{array}$	
			1831 18 30	5 \%	$\bigcirc 1.02$	31.59				$31 \cdot 97$
			$1740 \cdot 67$ 1731.50	$\begin{array}{ll}35 & 1 \\ 38 & 1\end{array}$	049.87   0.58 .75	$\begin{aligned} & 30 \cdot 54 \\ & 30 \cdot 25 \end{aligned}$	$\begin{aligned} & 1816 \cdot 34 \\ & 1810 \cdot 12 \end{aligned}$	$\begin{aligned} & 1940 \\ & 2212 \end{aligned}$	$\begin{aligned} & 015.75 \\ & 020.07 \end{aligned}$	$\begin{aligned} & 32 \cdot 09 \\ & 30 \cdot 19 \end{aligned}$
			1731.50		- 58.75					
" 2	E.	$\begin{array}{rr} 20{ }_{21} & 5 \\ \text { \& } & 5 \end{array}$	$\begin{array}{r} 125919.29 \\ 5955.27 \\ 5835.10 \end{array}$		$\begin{array}{r} -\quad 44 \cdot 10 \\ 029 \cdot 91 \end{array}$	+ 12583519	$+12608 \cdot 16$	2917	- $131 \cdot 78$	+ 125836.38
						$35 \cdot 36$	$\begin{aligned} & 5845^{\circ} 72 \\ & 5840.03 \end{aligned}$	$27 \quad 7$	118.73	35 98
				$\begin{array}{r} 1642 \\ 046 \end{array}$	$00.06$	$35 \cdot 04$		944657	1000 1.178	$35 \cdot 55$$34 \cdot 85$
			$5834 \cdot 58$	$\begin{array}{rl} 1 & 24 \\ 23 & 34 \\ 32 & 84 \end{array}$						
			5934.67			$\begin{gathered} 34.37 \\ 34 \cdot 89 \\ 34 \cdot 95 \end{gathered}$	$\begin{array}{r} 58 \quad 41 \cdot 82 \\ 59 \\ 5 \cdot 39 \end{array}$	$\begin{array}{r} 828 \\ 1626 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 29 \cdot 1172 \end{aligned}$	$\begin{aligned} & 34 \cdot 10 \\ & 34 \cdot 28 \end{aligned}$
			$6026 \cdot 14$							
" 2	W.	$\begin{array}{cc} 201 & 5 \\ \& & 5 \\ 21 & 5 \end{array}$	$\begin{array}{r} 171811 \cdot 78 \\ 181590 \end{array}$	$\begin{aligned} & 2144 \\ & 1912 \end{aligned}$	$\begin{array}{r} +\quad 19.29 \\ 015.06 \end{array}$	$\begin{array}{r} 171831 \cdot 07 \\ 30 \cdot 96 \end{array}$	+171734.99	3724	+ 057.03	171832.02+10.62
							1742.13 +1830.	3429754	+ 048.49	
			18 31-35	$\begin{array}{r} 1912 \\ 4 \quad 2 \end{array}$	- 0.66	$32 \cdot 01$	$1830 \cdot 02$ 1831.13		$\begin{array}{ll} \circ & 2.55 \\ \circ & 0.93 \end{array}$	$32 \cdot 06$
			1829.96	${ }^{4} 54$	- 1•94		$1831 \cdot 13$	446		
			$1741 \cdot 67$	34343838	$\begin{array}{r} 047 \cdot 97 \\ 059.13 \end{array}$	$\begin{aligned} & 29.64 \\ & 29.75 \end{aligned}$	$\begin{array}{ll} 18 & 19.99 \\ 18 & 12 \cdot \\ 12 \cdot \end{array}$	$\begin{aligned} & 16 \quad 56 \\ & 20 \quad 48 \end{aligned}$	$\begin{array}{r} \circ 11 \cdot 69 \\ 0 \\ 0 \\ 17 \cdot 63 \end{array}$	$\begin{aligned} & 31 \cdot 68 \\ & 29 \cdot 80 \end{aligned}$
			$1730 \cdot 62$							
7 8	E.	$\begin{gathered} 280 \quad 17 \\ \& \\ 100 \quad 17 \end{gathered}$	$\begin{array}{r} 125923.59 \\ 5913.36 \\ 583180 \end{array}$	2210	$\begin{array}{r} -052 \cdot 64 \\ -41 \cdot 52 \end{array}$	+ 125830.94	+ $1260{ }^{\circ} 53.62$	$36 \quad 6$	- 219.26	$\begin{array}{r}125834.36 \\ \hline 3.20 \\ \hline\end{array}$
				$\begin{array}{r} 19 \\ \mathbf{2} 1 \\ 21 \end{array}$			+ 6019 10	3119   11   19	144.90	
					$\begin{gathered} 041 \cdot 52 \\ 0.48 \end{gathered}$	$31 \cdot 32$	$\begin{aligned} & 5847 \cdot 97 \\ & 5841975 \end{aligned}$		$\begin{aligned} & 014.14 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 33 \cdot 83 \\ & 32 \cdot 90 \end{aligned}$
			5833.31	$\begin{array}{r} 115 \\ 2520 \\ 33 \\ 30 \end{array}$	$\begin{array}{lll} 0 & 0 \cdot 17 \\ 1 & 9 \cdot 10 \\ 1 & 97 \\ 1 & 57 & 41 \end{array}$	$\begin{aligned} & 33 \cdot 14 \\ & 33 \cdot 28 \\ & 32 \cdot 57 \end{aligned}$		95	$\text { - } 8 \cdot 85$	
			$5942 \cdot 38$				$\begin{array}{rr} 58 & 44 \cdot 03 \\ 59 & 4 \cdot 19 \end{array}$	$\begin{array}{rr} 9 & 6 \\ 17 & 13 \end{array}$	$\begin{aligned} & \circ \quad 8 \cdot 89 \\ & \circ \\ & \circ \\ & 31 \cdot 89 \end{aligned}$	$\begin{aligned} & 35 \cdot 14 \\ & 32 \cdot 30 \end{aligned}$
			6029.98							
" 3	W.	$\begin{gathered} 280 \\ \& \\ \& \\ 100 \\ 17 \end{gathered}$	$\begin{array}{r} 171813.20 \\ +1818.60 \end{array}$	20221748	$\begin{array}{r} +\circ 16 \cdot 92 \\ +12.92 \end{array}$	$+171830 \cdot 12$			$\begin{array}{r} +\quad 53 \cdot 84 \\ +46.65 \end{array}$	$\begin{array}{r} 171833.07 \\ 28 \cdot 90 \end{array}$
						$171830 \cdot 12$ 31.52 2890	+17173923 1742.25	33649		
			1827.36	$6 \quad 9$			1828.29 1829.83	$\begin{array}{r}6 \\ \hline\end{array}$	0 1.61   0 0.44	$29 \cdot 90$ $30 \cdot 27$
			1826.80	952		$30 \cdot 77$	1829.83	316	- $0 \cdot 44$	30. 27
			$1740^{\circ} 06$	$35 \quad 27$ 38		$\begin{aligned} & 31 \cdot 18 \\ & 31 \cdot 10 \end{aligned}$	$18 \quad 5 \cdot 14$	$\begin{aligned} & 2139 \\ & 2449 \end{aligned}$	$\begin{aligned} & 019 \cdot 10 \\ & 025 \cdot 09 \end{aligned}$	$\begin{aligned} & 30 \cdot 72 \\ & 30 \cdot 23 \end{aligned}$
			$1731 \times 97$	388						

Abstract of Astronomical Azimuth observed at XLIV (Vijnot) 1880-81.

1. By Eastern Elongation of No. 51 Cephei.

2. By Western Elongation of $\lambda$ Ursæ Minoris.


## At LXII (Dáowála)*

Lat. N. $28^{\circ} 20^{\prime} 12^{\prime \prime} \cdot 87$; Long. E. $69^{\circ} 52^{\prime} 57^{\prime \prime} \cdot 86=\stackrel{n}{4}{ }_{4}^{4} 3931^{\circ} \cdot 9$; Height above Mean Sea Level, 282 feet.
February 1881 ; observed by Lieut.-Colouel B. R. Branfill with Troughton and Simms' 24 -inch Theodolite No. 1.

Stars observed
Mean Right Ascension $1881 \cdot 0$
Mean North Polar Distance 1881.0
Local Mean Times of Elongation, February 13
$\delta$ Ursæ Minoris (East) and 51 Cephei (West).
$18^{\text {h }} \quad 10^{\mathrm{m}} 43^{\mathrm{a}} \quad 6^{\mathrm{h}} \quad 44^{\mathrm{m}} 17^{\mathrm{d}}$
$\begin{array}{lllll}3^{\circ} 23^{\prime} & 26^{\prime \prime} \cdot 67 & 2^{\circ} \quad 46^{\prime} & 18^{\prime \prime} \cdot 96\end{array}$
Eastern $14^{\mathrm{h}} 41^{\mathrm{m}} \quad$ Western $15^{\mathrm{h}} \quad 3^{\mathrm{m}}$

			pace left				pact bight			
			Obserred   Horizontal Angle :   Diff. of Readings   Ref. Mark - Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation	Observed   Horizontal Angle : Diff. of Readings Ref. Mark - Star		Reduction in Are to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation
Feb. 13	E.	$\begin{array}{r} \circ \\ 30 \\ 30 \\ \& \\ 210 \\ 56 \end{array}$	$\begin{array}{r} 0 \quad \prime \prime \\ -1545228 \cdot 53 \\ 5625 \cdot 80 \\ 5629.11 \end{array}$	$\begin{array}{rr} m & 8 \\ 43 & 21 \\ 9 & 16 \\ 5 & 1 \end{array}$	$\begin{array}{cc} 11 \\ -4 & 5 \cdot 73 \\ 0 & 11 \cdot 30 \\ 0 & 3 \cdot 31 \end{array}$	$\begin{array}{r} 1545634 \cdot 26 \\ 37 \cdot 10 \\ 32 \cdot 42 \end{array}$	$\begin{array}{r} -1545447 \cdot 00 \\ 558 \cdot 77 \end{array}$	$\begin{array}{cc} \boldsymbol{m} & \boldsymbol{s} \\ 28 & 44 \\ 25 & 44 \end{array}$	$\begin{array}{r} 148 \cdot 34 \\ 126 \cdot 94 \end{array}$	$-1545635^{\circ} 34$
" 13	W.	$\begin{gathered} 3055 \\ \& \\ 210 \quad 56 \end{gathered}$	$\begin{array}{r} -1475828 \cdot 76 \\ 5713 \cdot 50 \\ 5652 \cdot 31 \\ 5744 \cdot 00 \end{array}$	$\begin{array}{ll} 33 & 56 \\ 21 & 28 \\ 16 & 11 \\ 27 & 23 \end{array}$	$\begin{array}{r} +24 \cdot 19 \\ 049 \cdot 74 \\ 028 \cdot 14 \\ 120.41 \end{array}$	-14756 $24.5781{ }^{23.76} \begin{array}{r}\text { 24.17 } \\ 23.59\end{array}$	$1475948 \cdot 09$ $5638 \cdot 58$ $5625 \cdot 34$ $5919 \cdot 90$	43 10 10 28 2 218	$\begin{array}{r} 323.18 \\ +12.98 \\ 0 \quad 0.59 \\ 254.68 \end{array}$	$\begin{array}{r} -1475624.91 \\ 25^{\circ} 60 \\ \\ 24^{\circ} 75 \\ 25^{\circ} 23 \end{array}$
" 14	E.	$\begin{array}{cc} 110 & 8 \\ \& & \\ 290 & 8 \end{array}$	$\begin{array}{rr} -15455 & 50 \cdot 10 \\ 56 & 4.39 \\ 55 & 49 \cdot 99 \\ 55 & 32 \cdot 60 \end{array}$	$\begin{array}{rrr}19 & 0 \\ 15 & 38 \\ 18 & 50 \\ 22 & 22\end{array}$	$\begin{array}{r} -047.48 \\ 032.16 \\ 046.93 \\ 1 \quad 6.20 \end{array}$	$\begin{array}{r} -1545637 \cdot 58 \\ 36 \cdot 55 \\ 36 \cdot 92 \\ 38 \cdot 80 \end{array}$	1545313.90 5350.75 5636.53 5633.07	$\begin{array}{rr} 39 & 17 \\ 35 & 35 \\ 0 & 35 \\ 3 & 37 \end{array}$	$\begin{array}{r} -322.07 \\ 245.94 \\ 0 \quad 0.05 \\ 0 \\ 0.73 \end{array}$	$\begin{array}{r} -1545635 \cdot 97 \\ 36 \cdot 69 \\ 36 \cdot 58 \\ 34 \cdot 80 \end{array}$
" 14	W.	$\begin{array}{cc} 110 & 8 \\ \& & \\ 290 & 8 \end{array}$	- $147 \begin{array}{r}5823.21 \\ 5626.61 \\ 5627.57 \\ 5928.26\end{array}$	$\begin{array}{rr}33 & 16 \\ 5 & 42 \\ 4 & 21 \\ 41 & 16\end{array}$	1 +159.43 0 0.50 0 3	-14756 23.78	$\begin{array}{r}1475726 \cdot 97 \\ 5644 \cdot 54 \\ 56 \\ 56 \cdot 70 \\ 58 \\ \hline\end{array}$	$\begin{array}{rrr}24 & 8 \\ 14 & 31 \\ 17 & 18 \\ 30 & 5\end{array}$	$\begin{array}{r} 122.84 \\ +022.73 \\ 03217 \\ 137.02 \end{array}$	-1475624.13 21.81 24.53 24.62
" 15	E.	$\begin{gathered} 18920 \\ \& \\ 920 \end{gathered}$	1545613.20    5612.14         $5510 \cdot 14$    5444.28	$\begin{array}{ll} 13 & 31 \\ 10 & 32 \\ 25 & 56 \\ 29 & 16 \end{array}$	$\begin{array}{r} -024 \cdot 06 \\ 014 \cdot 62 \\ 128 \cdot 98 \\ 153.36 \end{array}$	-15456 $37 \cdot 26$	$1545430 \cdot 54$ $5456 \cdot 92$ $5634 \cdot 30$ $5628 \cdot 21$	$\begin{array}{rrr}31 & 4 \\ 27 & 27 \\ 5 & 0 \\ 7 & 46\end{array}$	$\begin{array}{rr}2 & 6 \cdot 65 \\ 138 \cdot 97 \\ 0 & 3 \cdot 30 \\ 0 & 7 \cdot 97\end{array}$	$-1545637 \cdot 19$ $35 \cdot 89$ 37.60 $36 \cdot 18$
" 15	W.	$\begin{gathered} 18920 \\ \& \\ 920 \end{gathered}$	$\begin{array}{r} -1475857 \cdot 30 \\ 5753 \cdot 77 \\ 5626 \cdot 70 \\ 5636 \cdot 96 \end{array}$	$\begin{array}{rr}37 & 34 \\ 28 & 30 \\ 1 & 13 \\ 10 & 55\end{array}$	$\begin{array}{r} 232.25 \\ +27.61 \\ 0 \quad 0.16 \\ 012.80 \end{array}$	$\begin{array}{r} -1475625 \cdot 05 \\ 26 \cdot 16 \\ 26 \cdot 54 \\ 24 \cdot 16 \end{array}$		19 19 8 31 21	$\begin{array}{r} +040.22 \\ 0 \quad 7.80 \\ 049.21 \\ 146.06 \end{array}$	$\begin{array}{r} -1475626 \cdot 20 \\ 25 \cdot 31 \\ 26 \cdot 63 \\ 24.67 \end{array}$
" 16	E.	$\begin{gathered} 2683^{22} \\ \& \\ 88 \quad 32 \end{gathered}$	$\begin{array}{r} 1545618 \cdot 71 \\ 5625 \cdot 47 \\ 5446 \cdot 15 \\ 5418 \cdot 41 \end{array}$	$\begin{array}{rrr}11 & 18 \\ 7 & 58 \\ 28 & 49 \\ 32 & 13\end{array}$	$\begin{array}{r} -016.80 \\ 088.35 \\ 149.85 \\ 217.33 \end{array}$	$1545635 \cdot 51$ $33 \cdot 82$ $36 \cdot 00$ $35 \cdot 74$	$\begin{array}{r} -1545359.16 \\ 5428.47 \\ 5624.90 \\ 5618.00 \end{array}$	$\begin{array}{rrr}34 & 44 \\ 31 & 14 \\ 8 & 34 \\ 11 & 36\end{array}$	$\begin{array}{rr} -2 & 38 \cdot 09 \\ 2 & 7.94 \\ 0 & 9 \cdot 68 \\ 0 & 17.76 \end{array}$	$\begin{array}{r} 1545637 \cdot 25 \\ 36 \cdot 41 \\ 34 \cdot 58 \\ 35 \cdot 76 \end{array}$

* This station appertains to the Grest Indus Series.

			pact lipt				paor bight			
			Observed Horizontal Angle : Diff. of Readings Ref. Mark-Star Ref. Mark - Sta		Reduction in Arc to Time of Elongation	Reduced Observation   Ref. Mark - Star at Elongation	Observed Horizontal Angle : Diff. of Readings Ref. Mark - Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation
Feb. 16	W.	$\begin{array}{cc} 268 \quad 32 \\ \& & \\ 88 \quad 32 \end{array}$	- ,	$m 8$	,	- '	- ,	$\boldsymbol{m}$ \&	,	- ,
			$\begin{array}{r} -1475849 \cdot 60 \\ 5732.62 \end{array}$	$\begin{array}{ll} 37 & 9 \\ 25 & 35 \end{array}$	$\begin{array}{r} 228.84 \\ +\quad 10.64 \end{array}$	$\left\|\begin{array}{r} -1475620 \cdot 76 \\ 21 \cdot 98 \end{array}\right\|$		$\begin{array}{rr} 16 & 1 \\ 6 & 12 \end{array}$	$\begin{array}{r} +027.68 \\ 04.84 \end{array}$	$\left\|\begin{array}{r} 1475621 \cdot 73 \\ 24.03 \end{array}\right\|$
			$\begin{aligned} & 5626 \cdot 55 \\ & 5645 \cdot 53 \end{aligned}$	$\begin{array}{rr} 4 & 7 \\ 14 & 22 \end{array}$	$\begin{array}{ll} 0 & 1 \cdot 82 \\ 0 & 22 \cdot 19 \end{array}$		$\begin{aligned} & 5729 \cdot 20 \\ & 5833 \cdot 58 \end{aligned}$	$\begin{aligned} & 24 \quad 29 \\ & 343^{2} \end{aligned}$	$\begin{array}{ll}1 & 4.31 \\ 2 & 7\end{array}$	24.89 25.88
" 17	E.	$\begin{gathered} 3 \text { II } 44 \\ \text { \& } 44 \\ \text { 13 } 44 \end{gathered}$	$-1545636 \cdot 35$	4 1   1 1	$\begin{array}{r} -0.13 \\ -0 \\ 0.14 \end{array}$	$\left\|\begin{array}{r} -1545638.48 \\ 36 \cdot 24 \end{array}\right\|$	$\begin{array}{r} -15454 \\ 54 \\ 54 \cdot 92 \\ 52 \cdot 57 \end{array}$	$\begin{aligned} & 3429 \\ & 28 \quad 14 \end{aligned}$	$\begin{array}{r} -235.92 \\ 144.66 \end{array}$	$\begin{array}{r} 1545637 \cdot 84 \\ 37 \cdot 23 \end{array}$
			$\begin{aligned} & 5332 \cdot 05 \\ & 5234 \cdot 34 \end{aligned}$	$\begin{aligned} & 3746 \\ & 40 \quad 57 \end{aligned}$	$\begin{aligned} & 3 \quad 8 \cdot 67 \\ & 3 \\ & 41 \cdot 86 \end{aligned}$	$\begin{aligned} & 40 \cdot 72 \\ & 36 \cdot 20 \end{aligned}$	$\begin{aligned} & 56 \quad 0 \cdot 29 \\ & 5545 \cdot 45 \end{aligned}$	$\begin{array}{lr} 17 & 4 \\ 19 & 43 \end{array}$	$\begin{aligned} & \circ 38 \cdot 52 \\ & \circ \quad 51 \cdot 42 \end{aligned}$	$\begin{aligned} & 38 \cdot 8 \mathrm{I} \\ & 36 \cdot 87 \end{aligned}$
" 17	W	$\begin{gathered} 311 \\ 84 \\ 13144 \end{gathered}$	$\begin{array}{r} 1475757 \cdot 12 \\ 57 \quad 2 \cdot 32 \\ 5719 \cdot 16 \end{array}$	$\begin{array}{lr} 29 & 5 \\ 18 & 28 \\ 22 & 34 \end{array}$	$\begin{array}{r} 131.29 \\ +36 \cdot 79 \\ 054.67 \end{array}$	$\begin{array}{r} -1475625 \cdot 83 \\ 25.53 \\ 24.49 \end{array}$	$\begin{array}{r} -1475634 \cdot 11 \\ 5626 \cdot 28 \\ 6011 \cdot 48 \end{array}$	$\begin{array}{r} 752 \\ 240 \\ 4615 \end{array}$	$\begin{array}{r} +0 \\ +0.67 \\ 0 \\ 3 \\ 38.77 \\ 48.28 \end{array}$	$\begin{array}{r} -1475627.44 \\ 25.51 \\ 23.20 \end{array}$

Abstract of Astronomical Azimuth observed at LXII (Dáowála) 1881.

1. By Eastern Elongation of $\delta$ Ursæ Minoris.

$\begin{aligned} & \text { Face } \\ & \text { Zero } \end{aligned}$	$\begin{array}{cc} \text { L } & \text { R } \\ 81^{\circ} & 211^{\circ} \end{array}$	$\begin{gathered} \text { L } \\ 110^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 290^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{L} \\ 189^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \boldsymbol{0}^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{L} \\ 269^{\circ} \end{gathered}$		$\begin{gathered} \text { L } \\ 812^{\circ} \end{gathered}$			
Date	February ${ }^{18}$	Febraary 14		February 15		February 16		February 17			
Observed difference	$\begin{array}{ll} 34 \cdot 26 & 35 \cdot 34 \\ 3 \cdot 10 \cdot 10 & 35 \cdot 71 \\ 32^{2} \cdot 42 \end{array}$	$\begin{aligned} & 37 \cdot 58 \\ & 36.55 \\ & 36.92 \\ & 38 \cdot 80 \end{aligned}$	$\begin{aligned} & 35 \cdot 97 \\ & 36.69 \\ & 36.58 \\ & 34 \cdot 80 \end{aligned}$	$\begin{aligned} & 37 \cdot 26 \\ & 38.76 \\ & 39.72 \\ & 39 \cdot 64 \end{aligned}$	$\begin{aligned} & 37 \cdot 19 \\ & 35 \cdot 89 \\ & 37.60 \\ & 36 \cdot 18 \end{aligned}$	35.51   36.00   $35 \cdot 74$	37.25	$\begin{array}{ll}38.48 & 37.84\end{array}$			
of Circle-Readings, Ref. M. - Star							36.41	${ }^{36} \cdot \underline{24}$	37.23		
(educed to Elongation							34.58 357	$40 \cdot 72$ 36			
Means	34*59 $35 \cdot 53$	$37 \cdot 46$	$36 \cdot 01$	38.30 $36 \cdot 72$		$35.27 \quad 36 \cdot 00$		37*91	37.69		
- , "		-		"		"		"			
Means of both faces	- 1545635.06	- $\begin{array}{r}36.74 \\ -0.06\end{array}$		37.46$+\quad 0.71$		- $35 \cdot 64$		37.80$-\quad 001$			
Level Corrections	- ${ }^{-154.32}$										
		$36 \cdot 80$27		36.7527.82		35.7528.05		37.8128.28			
Az. of Ref. M. ${ }^{\text {a }}$,	${ }^{28} 5451{ }^{\circ} 99$	50.79		${ }_{51}^{27}$		28.05$52 \cdot 30$		50.47			

Abstract of Astronomical Azimuth observed at LXII (Dáowala) 1881-(Continued).
2. By Western Elongation of 51 Cephei.

Face Zero	$\begin{array}{cc} \mathbf{L} & \mathbf{R} \\ \mathbf{8 1} & 211^{\circ} \end{array}$	$\begin{array}{cc} \mathbf{L} & \mathbf{R} \\ 110^{\circ} & 290^{\circ} \end{array}$	$\begin{array}{cc} \mathbf{L} & \mathbf{R} \\ 189^{\circ} & \boldsymbol{\theta}^{\circ} \end{array}$	$\begin{array}{cc} \mathbf{L} & \mathbf{R} \\ 269^{\circ} & 89^{\circ} \end{array}$	$\begin{array}{cc} \text { L } & \mathbf{R} \\ 312^{\circ} & 132^{\circ} \end{array}$
Date   Observed difference of Circle-Readings   Ref. M. - Star reduced to Elongation	February 13 $\begin{array}{ll} 24.57 & 24.91 \\ 23.76 & 25 \cdot 60 \\ 24.17 & 24.75 \\ 23.59 & 25.22 \end{array}$	February 14 $\begin{array}{ll} 23 \cdot 78 & 24 \cdot 13 \\ 23 \cdot 11 & 21 \cdot 81 \\ 25 \cdot 53 & 24 \cdot 53 \\ 26 \cdot 29 & 24 \cdot 62 \end{array}$	February 15   25.05 $26 \cdot 20$ $26 \cdot 16 \quad 25 \cdot 31$   $26 \cdot 54 \quad 26 \cdot 63$   $24.16 \quad 24.67$	February 16   20.76 21•73   21.98 $24 \cdot 03$   $\begin{array}{ll}24.73 & 24.89\end{array}$   $23 \cdot 34 \quad 25 \cdot 88$	$$
Means	$24.02 \quad 25 \cdot 12$	$24.68 \quad 23.77$	$25 \cdot 48 \quad 25 \cdot 70$	22:70 24.13	$25 \cdot 28 \quad 25 \cdot 38$
Means of both faces   Level Corrections Corrected Means Az. of Star fr. S., by W. Az. of Ref. M.   "	$\begin{array}{r} -1475624.57 \\ -1475624.74 \\ -1765113.33 \\ 285448.59 \end{array}$	17 24.23 $+\quad 0.25$ 23.98 13.67 49.69	$\begin{array}{r} 25.59 \\ +\quad 0.66 \\ 24.93 \\ 13.90 \\ 48.97 \end{array}$	$\begin{array}{r} 23.42 \\ -0.08 \\ 23.50 \\ 14.12 \\ 50.62 \end{array}$	$\begin{array}{r} 25.33 \\ +\quad 0.14 \\ 25.19 \\ 14.35 \\ 49.16 \end{array}$



Ogitireoby, Google

Fig. No. 6


Fig. No. 4


Fig. No. 5


Fig. No. 2



Ogitieoby, Google
$\mathrm{Fig}_{\mathrm{ig}}$ No. 12


Fig. No. 10


Fig. ${ }^{\text {No. }} 9$


Fig. No. 11


$\because \mathrm{XXXI}$


Scale 1 Fich $=12$ Moiles at $\frac{1}{\text { y60320 }}$


PRINCIPAL TRIANGULATION
OF
THE EASTERN SIND MERIDIONAL SERIES
OF THE GREAT TRIGONOMETRICAL SURVEY



$3)$

\#ir



List of Published Works of the Great Trigonometrical Survey of India.

An Account of the Measurement of an Arc of the meridian between the parallels of $18^{\circ} \mathbf{3}^{\prime}$ and $24^{\circ} 7^{\prime}$, being a continuation of the Grand Meridional Arc of India as detailed by the late Lieutenant-Colonel Lambton in the Volumes of the Asiatic Society of Calcutta. By Captain George Everest, of the Bengal Artillery, F.R.S., \&c. London, 1830.

An Account of the Measurement of two Sections of the Meridional Arc of India, bounded by the parallels of $18^{\circ} 3^{\prime} 5^{\prime \prime}$; $24^{\circ} 7^{\prime} 11^{\prime \prime}$; and $29^{\circ} 30^{\prime} 18^{\prime \prime}$. By Lieutenant-Colonel Everest, F.R.S., \&c., late Surveyor General of India, and his Assistants. London, 1847.

Account of the Operations of the Great Trigonometrical Survey of India.

Volume I. The Standards of Measure and the Base-Lines, also an Introductory Account of the early Operations of the Survey, during the period of 1800-1830. By Colonel J. T. Walker, R.E., F.R.S., \&C., \&c., Superintendeut of the Survey. Dehra Dún, 1870.
Do. II. History and General Description of the Principal Triangulation and of its Reduction. By Colonel J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1879.
Do. III. The Principal Triangulation, the Base-Line Figures, the Karáchi Longitudinal, N.W. Himalaya, and the Great Indus Series of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1873.
Do. IV. The PrincipalTriangulation, the GreatArc (Section $24^{\circ}-30^{\circ}$ ), Rahún, Gurhágarh and Jogi-Tila Meridional Series, and the Sutlej Series of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1876.
Do. IV A. The Principal Triangulation of the North-West Quadrilateral, including the Reduction and Details of the Jodhpore and Eastern Sind Meridional Series. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel C. T. Haig, R.E., Offg. Deputy Surveyor General, in charge, and published under the orders of Colonel G. C. DePrée, S.C., Surveyor General of India. Dehra Dún, 1886.
Do. V. Details of the Pendulum Operations by Captains J. P. Basevi, R.E., and W. J. Heaviside, R.E., and of their Reduction. Prepared under the directions of Major-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Trigonometrical Survey. Dehra Dún and Calcutta, 1879.

# List of Published Works of the Great Trigonometrical Survey of India-(Continued). <br> Account of the Operations of the Great Trigonometrical Survey of India-(Continued). 


#### Abstract

Volume VI. The Principal Triangulation of the South-East Quadrilateral including the Great Arc-Section $18^{\circ}$ to $24^{\circ}$, the East Coast Series, the Calcutta and the Bider Longitudinal Series, the Jabalpur and the Biláspur Meridional Series, and the Details of their Simultaneous Reduction. Prepared under the directions of Major-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Trigonometrical Survey. Dehra Dún, 1880. Do. VII. General Description of the Principal Triangulation of the North-East Quadrilateral including the Simultaneous Reduction and the Details of Five of the Component Series, the North-East Longitudinal, the Budhon Meridional, the Rangir Meridional, the Amua Meridional, and the Karára Meridional. Prepared under the directions of Lieutenant-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Trigonometrical Survey. Dehra Dún, 1882. Do. VIII. Details of the Principal Triangulation of Eleven of the Component Series of the North-East Quadrilateral, including the following Series; the Gurwani Meridional, the Gora Meridional, the-Hurilaong Meridional, the Chendwár Meridional, the North Párasnáth Meridional, the North Malúncha Meridional, the Calcutta Meridional, the East Calcutta Longitudinal, the Brahmaputra Meridional, the Eastern Frontier-Section $23^{\circ}$ to $26^{\circ}$, and the Assam Longitudinal. Prepared under the directions of Lieut.-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Trigonometrical Survey. Dehra Dún, 1882. Do. IX. Electro-Telegraphic Longitude Operations executed during the years 1875-77 and 1880-81, by Lieut.-Colonel W. M. Campbell, R.E., and Major W. J. Heaviside, R.E. Prepared under the directions of Lieut.-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Trigonometrical Survey. Dehra Dún, 1883.


Synopses of the Results of the Great Trigonometrical Survey of India, comprising Descriptions, Co-ordinates, \&c., of the Principal and Secondary Stations and other Fixed Points, of the Several Series of Triangles, as follows:-

Volume I. The Great Indus Series, or Series $D$ of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1874.
Do. $\frac{I}{A}$. The Survey of India Operations in North and South Afghánistan. Prepared (Preliminary) by Major 1. H. Holdich, 凡.L., and Lieut.-Colonel E. P. Leach, R.E. Published at the Office of the Trigonometrical Branch, Survey of India, Colonel C. T. Haig, R.E., Offg. Deputy Surveyor General, in charge, and published under the orders of Colonel G. C. DePrée, S.C., Surveyor General of India. Dehra Dún, 1885.
Do. II. The Great Arc-Section $24^{\circ}$ to $30^{\circ}$, or Series $\boldsymbol{A}$ of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1874.
Do. III. The Karáchi Longitudinal Series, or Series B of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superiutendent of the Survey, and his Assistants. Dehra Dún, 1874.
Do. IV. The Gurhágarh Meridional Series, or Series $F$ of the North-West Quadrilateral. By Colonel J. T. Walker R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1875.

List of Published Works of the Great Trigonometrical Survey of India-(Continued).
Synopses of the Results of the G. T. Survey of India, \&c.-(Continued).
Volume V. The Rahún Meridional Series, or Series $E$ of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1875.
Do. VI. The Jogi-Tíla Meridional Series, or Series $G$, and the Sutlej Series, or Series $\boldsymbol{H}$ of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1875.
Do. VII. The North-West Himalaya Series, or Series $C$ of the North-West Quadrilateral, and the Triangulation of the Kashmir Survey. By Major-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1879.
Do. VIII. The Great Arc-Section $18^{\circ}$ to $24^{\circ}$, or Series $A$ of the South-East Quadrilateral. By Colonel J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1878.
Do. IX. The Jabalpur Meridional Series, or Series $\boldsymbol{E}$ of the South-East Quadrilateral. By Colonel J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1878.
Do. X. The Bider Longitudinal Series, or Series $\boldsymbol{D}$ of the South-East Quadrilateral. By Major-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1880.
Do. XI. The Biláspur Meridional Series, or Series $F$ of the South-East Quadrilateral. By Major-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1880.
Do. XII. The Calcutta Longitudinal Series, or Series $B$ of the South-East Quadrilateral. By Major-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1880.
Do. XIII. The East Coast Series, or Series $C$ of the South-East Quadrilateral. By MajorGeneral J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1880.
Do. XIII A. The South Párasnáth Meridional Series and the South Malúncha Meridional Series of the South-East Quadrilateral. Prepared in the Office of the 'Irigonometrical Branch, Survey of India, Colonel C. T. Haig, R.E., Offg. Deputy Surveyor General, in charge, and published under the orders of Colonel G. C. DePrée, S.C., Surveyor General of India. Dehra Dún, 1885.
Do. XIV. The Budhon Meridional Series, or Series $J$ of the North-East Quadrilateral. By Lieutenant-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1883.
Do. XV. The Rangir Meridional Series, or Series $K$ of the North-East Quadrilateral. By Lieutenant-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1883.
Do. XVI. The Amua Meridional Series, or Series $L$, and the Karára Meridional Series, or Series $M$ of the North-East Quadrilateral. By Lieutenant-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1883.
Do. XVII. The Gurwáni Meridional Series, or Series $N$, and the Gora Meridional Series, or Series $\mathbf{O}$ of the North-East Quadrilateral. By Lieutenant-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1883.
Do. XVIII. The Huríláong Meridional Series, or Series $\boldsymbol{P}$, and the Chendwár Meridional Series, or Series $Q$ of the North-East Quadrilateral. By Lieutenant-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Suryey, and his Assistants. Dehra Dún, 1883.

Synopses of the Results of the G. T. Survey of India, \&c.-(Continued).
Volume XIX. The North Párasnáth Meridional Series, or Series $R$, and the North Malúncha Meridional Series, or Series $S$ of the North-East Quadrilateral. Prepared by J. B. N. Heunessey, Esq., M.A., F.R.S., \&c., \&c., Offg. Deputy Surveyor General, in charge of Trigonometrical Surveys, and his Assistants, and published under the orders of Colonel G. C. DePree, S.C., Offg. Surveyor General of India. Dehra Dún, 1883.
Do. XX. The Calcutta Meridional Series, or Series T, and the Brahmaputra Meridional Series, or Series $V$ of the North-East Quadrilateral. Prepared by J. B. N. Hennessey, Esq., M.A., F.R.S., \&c., \&c., Offg. Deputy Surveyor General, in charge of Trigonometrical Surveys, and his Assistants, and published uuder the orders of Colouel G. C. DePrée, S.C., Offg. Surveyor General of lndia. Dehra Dún, 1883.

Do. XXI. The East Calcutta Longitudinal Series, or Series $U$, and the Eastern Frontier Series-Section $23^{\circ}$ to $26^{\circ}$, or Series $W$ of the North-East Quadrilateral. Prepared by J. B. N. Hennessey, Esq, M.A., F.R.S., \&c., \&c., Offg. Deputy Surveyor General, in charge of Trigonometrical Surveys, and his Assistants, and published under the orders of Colonel G. C. DePrée, S.C., Off. Surveyor General of India. Dehra Dún, 1883.

March, 1886.
ogneacty Googlé
ogitiex by Google
oombecty Google
$=$ Digitizea by uncer
z
Ph $\quad$ ．
－
Digitized by

－
$\qquad$（


[^0]:    Drira Dun,
    March, 1886.
    C. T. HAIG, Colonel, R.E., Offg. Dy. Surveyor General, In charge Trigonometrical Surveys.

[^1]:    * Strictly spesking the denominator in the expression which gives the value of $o$ would be $N-Z$; but a larger denominator, as $N$ or $N$ - $I$, is preferable in the present instance, because $o$ is combined with $g$ which, strictly speaking, would represent the total error and not that of graduation only, if each measure were absolutely independent of all the others, which it is not. Thus, though the denominator $\boldsymbol{N}$-I was originally employed by an oversight, as may be here frankly acknowledged, it has been retained as more appropriate than $N$ - $Z$ under existing circumstances.

[^2]:    * The factor $\frac{\operatorname{cosec} \mathrm{I}^{\prime \prime}}{2 \boldsymbol{r}^{2}}$ has been tabulated for every degree of latitude from 5 to 36 in the Auxiliary Tables to facilitate the calculations of the Survey Department of India, Dehra Doon, 1868.

[^3]:    *The values of the portions of the formula enclosed in brackets within the limits of $\delta P=30^{m}$ and $a=10^{\circ}$ have been calculated and are given in the Auxiliary Tables, and as $\tan A \cos ^{2} a$ may be treated as a constant for each elongation, the calculation of $\delta \boldsymbol{A}$ is eatily performed.

[^4]:    * In calculating these values 7-place Logarithm Tables were employed, the 8th place here shewn being obtained by interpolation.
    + Stations XLI and XLIV appertain to the Karachi Longitudinal Series.

[^5]:    * The values of the tabular log. differences of the first terms of $\Delta \lambda, \Delta L$ and $\Delta \Delta$ in the expressions for them on pages [14] and [15] were employed for t.d. log. $\Delta \lambda$, t.d. $\log . \Delta L$ and t.d. log. $\Delta A$.

[^6]:    *For the deecription of this instrument vide Appendix No. 2, Volume II of the Account of the Operations, \&o.

[^7]:    - Estimated.

[^8]:    $\uparrow$ Pillar 3 feet in height is sunk having its upper surfuce dush with the ground.

[^9]:    + Of Greenwinh Now Seren-Yenr Catalogue of 2760 Stars fur 1864.

[^10]:    Note.-Stations LIX (MÉchka) and LXII (Dáowála) appertain to the Great Indus Series.

[^11]:    ＋The pillar is sunk having its upper surface flush with the ground．（1）．The mean of obeervations taken on 10th March 1877 and 27 th January 1880. （2）．The mean of observations taken on 7 th March 1877 and 30th， 81 st January 1880．（3）．The mean of observations taken on 11 th March 1877 and $27 t h, 28 t h$ January 1880.

[^12]:    $\dagger$ The pillar is sunk haring ite upper surface flush with the ground．

[^13]:    † Of Greenwich New Seven-Year Catalogue of 2760 Stars for 1864.

